1
|
Ran LY, Kong YT, Xiang JJ, Zeng Q, Zhang CY, Shi L, Qiu HT, Liu C, Wu LL, Li YL, Chen JM, Ai M, Wang W, Kuang L. Serum extracellular vesicle microRNA dysregulation and childhood trauma in adolescents with major depressive disorder. Bosn J Basic Med Sci 2022; 22:959-971. [PMID: 35659238 PMCID: PMC9589301 DOI: 10.17305/bjbms.2022.7110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/23/2022] [Indexed: 07/20/2023] Open
Abstract
Major depressive disorder (MDD) seriously endangers adolescent mental and physical health. Extracellular vesicles (EVs) are mediators of cellular communication and are involved in many physiological brain processes. Although EV miRNAshave been implicated in adults with major psychiatric disorders, investigation into their effects in adolescent MDDremains scarce. In discovery set, we conducted a genome-wide miRNA sequencing of serum EVs from 9 untreated adolescents with MDD and 8 matched healthy controls (HCs), identifying 32 differentially expressed miRNAs (18 upregulated and 14 downregulated). In the validation set, 8 differentially expressed and highly enriched miRNAs were verified in independent samples using RT-PCR, with 4 (miR-450a-2-3p, miR-3691-5p, miR-556-3p, and miR-2115-3p) of the 8 miRNAs found to be significantly elevated in 34 untreated adolescents with MDD compared with 38 HCs and consistent with the sequencing results. After the Bonferroni correction, we found that three miRNAs (miR-450a-2-3p, miR-556-3p, and miR-2115-3p) were still significantly different. Among them, miR-450a-2-3p showed the most markeddifferential expression and was able to diagnose disease with 67.6% sensitivity and 84.2% specificity. Furthermore, miR-450a-2-3p partially mediated the associations between total childhood trauma, emotional abuse, and physical neglect and adolescent MDD. We also found that the combination of miR-450a-2-3p and emotional abuse could effectively diagnose MDD in adolescents with 82.4% sensitivity and 81.6% specificity. Our data demonstrate the association of serum EV miRNA dysregulation with MDD pathophysiology and, furthermore, show that miRNAs may mediate the relationship between early stress and MDD susceptibility. We also provide a valid integrated model for the diagnosis of adolescent MDD.
Collapse
Affiliation(s)
- Liu-Yi Ran
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yi-Ting Kong
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiao-Jiao Xiang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Zeng
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Chen-Yu Zhang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Shi
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hai-Tang Qiu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuan Liu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Lin-Li Wu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Ya-Lan Li
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Mei Chen
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Ai
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wo Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Li Kuang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Fan C, Li Y, Lan T, Wang W, Long Y, Yu SY. Microglia secrete miR-146a-5p-containing exosomes to regulate neurogenesis in depression. Mol Ther 2022; 30:1300-1314. [PMID: 34768001 PMCID: PMC8899528 DOI: 10.1016/j.ymthe.2021.11.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/20/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
Enhancing neurogenesis within the hippocampal dentate gyrus (DG) is critical for maintaining brain development and function in many neurological diseases. However, the neural mechanisms underlying neurogenesis in depression remain unclear. Here, we show that microglia transfer a microglia-enriched microRNA, miR-146a-5p, via secreting exosomes to inhibit neurogenesis in depression. Overexpression of miR-146a-5p in hippocampal DG suppresses neurogenesis and spontaneous discharge of excitatory neurons by directly targeting Krüppel-like factor 4 (KLF4). Downregulation of miR-146a-5p expression ameliorates adult neurogenesis deficits in DG regions and depression-like behaviors in rats. Intriguingly, circular RNA ANKS1B acts as a miRNA sequester for miR-146a-5p to mediate post-transcriptional regulation of KLF4 expression. Collectively, these results indicate that miR-146a-5p can function as a critical factor regulating neurogenesis under conditions of pathological processes resulting from depression and suggest that microglial exosomes generate new crosstalk channels between glial cells and neurons.
Collapse
Affiliation(s)
- Cuiqin Fan
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ye Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tian Lan
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wenjing Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yifei Long
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shu Yan Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
3
|
Fan C, Li Y, Lan T, Wang W, Mao X, Yu SY. Prophylactic treatment of curcumin in a rat model of depression by attenuating hippocampal synaptic loss. Food Funct 2021; 12:11202-11213. [PMID: 34636389 DOI: 10.1039/d1fo02676c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Curcumin is a polyphenol substance considered to be effective in the treatment of a number of neurodegenerative diseases. However, details regarding the exact mechanisms for the protective effects of curcumin in neuropsychiatric disorders, like depression, remain unknown. In the pathogenesis of major depressive disorder (MDD) it appears that dysregulation of oxidative stress and immune systems, particularly within the hippocampal region, may play a critical role. Here, we show that pre-treatment with curcumin (40 mg kg-1) alleviates depression-like behaviors in a LPS-induced rat model of depression, effects which were accompanied with suppression of oxidative stress and inflammation and an inhibition of neuronal apoptosis in the hippocampal CA1 region, and results from ultramicrostructure electrophysiological experiments revealed that the curcumin pre-treatment significantly prevented excessive synaptic loss and enhanced synaptic functioning in this LPS-induced rat model. In addition, curcumin attenuated the increases in levels of miR-146a-5p and decreases in the expression of p-ERK signaling that would normally occur within CA1 regions of these depressed rats. Taken together, these results demonstrated that curcumin exerts neuroprotective and antidepressant activities by suppressing oxidative stress, neural inflammation and their related effects upon synaptic dysregulation. One of the mechanisms for these beneficial effects of curcumin appears to involve the miR-146a-5p/ERK signaling pathway within the hippocampal CA1 region. These findings not only elucidated some of the mechanisms underlying the neuroprotective/antidepressant effects of curcumin, but also suggested a role of curcumin as a potential therapeutic strategy for depression.
Collapse
Affiliation(s)
- Cuiqin Fan
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Ye Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Tian Lan
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Wenjing Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Xueqin Mao
- Department of Psychology, Qilu Hospital of Shandong University, 107 Wenhuaxilu Road, Jinan, Shandong Province, 250012, PR China
| | - Shu Yan Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China. .,Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
4
|
Gildawie KR, Ryll LM, Hexter JC, Peterzell S, Valentine AA, Brenhouse HC. A two-hit adversity model in developing rats reveals sex-specific impacts on prefrontal cortex structure and behavior. Dev Cogn Neurosci 2021; 48:100924. [PMID: 33515957 PMCID: PMC7847967 DOI: 10.1016/j.dcn.2021.100924] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Adversity early in life substantially impacts prefrontal cortex (PFC) development and vulnerability to later-life psychopathology. Importantly, repeated adverse experiences throughout childhood increase the risk for PFC-mediated behavioral deficits more commonly in women. Evidence from animal models points to effects of adversity on later-life neural and behavioral dysfunction; however, few studies have investigated the neurobiological underpinnings of sex-specific, long-term consequences of multiple developmental stressors. We modeled early life adversity in rats via maternal separation (postnatal day (P)2-20) and juvenile social isolation (P21-35). In adulthood, anxiety-like behavior was assessed in the elevated zero maze and the presence and structural integrity of PFC perineuronal nets (PNNs) enwrapping parvalbumin (PV)-expressing interneurons was quantified. PNNs are extracellular matrix structures formed during critical periods in postnatal development that play a key role in the plasticity of PV cells. We observed a female-specific effect of adversity on hyperactivity and risk-assessment behavior. Moreover, females – but not males – exposed to multiple hits of adversity demonstrated a reduction in PFC PV cells in adulthood. We also observed a sex-specific, potentiated reduction in PV + PNN structural integrity. These findings suggest a sex-specific impact of repeated adversity on neurostructural development and implicate PNNs as a contributor to associated behavioral dysfunction.
Collapse
Affiliation(s)
| | - Lilly M Ryll
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Jessica C Hexter
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Shayna Peterzell
- Department of Psychology, Northeastern University, Boston, MA, USA
| | | | | |
Collapse
|
5
|
Sarkar T, Patro N, Patro IK. Neuronal changes and cognitive deficits in a multi-hit rat model following cumulative impact of early life stressors. Biol Open 2020; 9:bio054130. [PMID: 32878878 PMCID: PMC7522020 DOI: 10.1242/bio.054130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/20/2020] [Indexed: 01/06/2023] Open
Abstract
Perinatal protein malnourishment (LP) is a leading cause for mental and physical retardation in children from poor socioeconomic conditions. Such malnourished children are vulnerable to additional stressors that may synergistically act to cause neurological disorders in adulthood. In this study, the above mentioned condition was mimicked via a multi-hit rat model in which pups born to LP mothers were co-injected with polyinosinic:polycytidylic acid (Poly I:C; viral mimetic) at postnatal day (PND) 3 and lipopolysaccharide (LPS; bacterial mimetic) at PND 9. Individual exposure of Poly I:C and LPS was also given to LP pups to correlate chronicity of stress. Similar treatments were also given to control pups. Hippocampal cellular apoptosis, β III tubulin catastrophe, altered neuronal profiling and spatial memory impairments were assessed at PND 180, using specific immunohistochemical markers (active caspase 3, β III tubulin, doublecortin), golgi studies and cognitive mazes (Morris water maze and T maze). Increase in cellular apoptosis, loss of dendritic arborization and spatial memory impairments were higher in the multi-hit group, than the single-hit groups. Such impairments observed due to multi-hit stress mimicked conditions similar to many neurological disorders and hence, it is hypothesized that later life neurological disorders might be an outcome of multiple early life hits.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tiyasha Sarkar
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India
| | - Ishan Kumar Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India
| |
Collapse
|
6
|
Zhang F, Xu F, Mi X, Dong L, Xiao Y, Jiang S, Li GD, Zhou Y. Ghrelin/GHS-R1a signaling plays different roles in anxiety-related behaviors after acute and chronic caloric restriction. Biochem Biophys Res Commun 2020; 529:1131-1136. [PMID: 32819576 DOI: 10.1016/j.bbrc.2020.05.227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/31/2020] [Indexed: 12/31/2022]
Abstract
The brain-gut hormone ghrelin and its receptor GHS-R1a, the growth hormone secretagogue receptor 1a, regulates diverse functions of central nervous system including stress response and mood. Both acute and chronic caloric restrictions (CR) were reported to increase endogenous ghrelin level meanwhile regulate anxiety-related behaviors; however, the causal relationship between CR-induced ghrelin elevation and anxiety are not fully established. Here, we introduced an acute (24 h) and a chronic (10wks) CR procedure to both GHS-R1a KO (Ghsr-/-) mice and WT (Ghsr+/+) littermates, and compared their anxiety-related behaviors. We found that acute CR induced anxiolytic and anti-despairing behaviors in Ghsr+/+ mice but not in Ghsr-/- mice. Ad-libitum refeeding abolished the effect of acute CR on anxiety-related behaviors. In contrast, chronic CR for 10wks facilitated despair-like behavior meanwhile inhibited anxiety-like behavior in Ghsr+/+ mice. GHS-R1a deficiency rescued despair-like behavior while did not affect anxiolytic response induced by chronic CR. In addition, we found elevated interleukin-6 (IL-6) in serum of Ghsr+/+ mice after chronic CR, but not in Ghsr-/- mice. Altogether, our findings indicated that acute CR and chronic CR have different impacts on anxiety-related behaviors, and the former is dependent on ghrelin/GHS-R1a signaling while the latter may not always be. In addition, our findings suggested that GHS-R1a-dependent elevation in serum IL-6 might contribute to increased despair-like behavior in chronic CR state.
Collapse
Affiliation(s)
- Fengyi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Fenghua Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xue Mi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Linfei Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yuhao Xiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Shibang Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Guo-Dong Li
- GUODONG LI MD Practice, Beverly Hills, California, 90211, USA
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China; Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China.
| |
Collapse
|
7
|
Raman S, Asle-Rousta M, Rahnema M. Protective effect of fennel, and its major component trans-anethole against social isolation induced behavioral deficits in rats. Physiol Int 2020; 107:30-39. [PMID: 32491286 DOI: 10.1556/2060.2020.00012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/05/2020] [Indexed: 11/19/2022]
Abstract
Social isolation damages the nervous system by weakening the antioxidant system and leading to behavioral disorders. Fennel (Foeniculum vulgare Mill.) is an herbal plant that has antioxidant and neuroprotective properties. The objective of this study was to evaluate the effect of fennel methanol extract and its major component trans-anethole on spatial learning and memory, anxiety and depression in male rats exposed to social isolation stress.Rats were divided into six groups of Control (C), Fennel (F), trans-Anethole (A), Isolation, Isolation-F and Isolation-A. The rats were kept in the cage alone for 30 days to induce isolation. Fennel extract (150 mg/kg) and trans-anethole (80 mg/kg) were also gavaged during this period. At the end of the course, spatial learning and memory, anxiety and depression were measured by Morris water maze (MWM), elevated plus maze (EPM) and forced swimming test (FST), respectively.Learning and memory were impaired in isolated rats. Swimming time and distance to reach the hidden platform in these animals increased compared with controls (P < 0.05). In the EPM test, the percentage of open arm entries and open arm time also decreased significantly in the Isolation group (P < 0.01). The immobilization time in FST also increased significantly in these animals compared with the Control group (P < 0.001). Fennel and trans-anethole were both able to eliminate these changes in isolated rats.It is concluded that fennel and its major component, trans-anethole are suitable candidates for the prevention and treatment of stress-induced neurological disorders.
Collapse
Affiliation(s)
- S Raman
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | | | - M Rahnema
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
8
|
Ginsenoside Rg1 fails to rescue PTSD-like behaviors in a mice model of single-prolonged stress. Biochem Biophys Res Commun 2020; 528:243-248. [PMID: 32482388 DOI: 10.1016/j.bbrc.2020.05.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/21/2020] [Indexed: 11/22/2022]
Abstract
Previous studies reported that ginsenoside Rg1 (Rg1) exerts antidepressant-like effect in animal models of depression. However, its effect on post-traumatic stress disorder (PTSD) remains elusive; PTSD is a common and costly psychiatric condition with negative cognitive and affective dysfunctions, such as anxiety and depression. In this study, we evaluated the role of Rg1 in a validated mice model of PTSD induced by single-prolonged stress (SPS). Sertraline, one of the FDA-approved medications for PTSD was used as a positive control. Our results showed that SPS exposure led to increased anxiety-like and despair-like behaviors. SPS exposure also caused enhanced contextual fear memory and overgeneralization of learned fear. Sertraline significantly ameliorated those abnormal behaviors induced by SPS, while Rg1 did not. Meanwhile, we found that sertraline but not Rg1 blocked the suppressive effect of SPS on adult neurogenesis in the hippocampus. Consistently, we found that SPS elevated adrenocorticotropic hormone (ACTH) level in the serum, which was inhibited by sertraline but not Rg1. Our results thus demonstrate that Rg1 at a dose used to treat depression may not be effective to rescue behavioral deficits associated with PTSD.
Collapse
|
9
|
Sun W, Kong Q, Zhang M, Mi X, Sun X, Yu M, Yu T, Zhou Y. Virus-mediated Dnmt1 and Dnmt3a deletion disrupts excitatory synaptogenesis and synaptic function in primary cultured hippocampal neurons. Biochem Biophys Res Commun 2020; 526:361-367. [PMID: 32222282 DOI: 10.1016/j.bbrc.2020.03.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
Abstract
Dnmt1, Dnmt3a and Dnmt3b are main genes encoding DNA methyltransferases (Dnmts) which catalyze DNA methylation and regulate gene expression without changing DNA sequence. Our previous study disclosed that double knockout of Dnmt1 and Dnmt3a in forebrain excitatory neurons impaired synaptic plasticity and led to hippocampus-dependent learning and memory deficits, however the underlying synaptic mechanisms remain uncertain. In this study, we selectively knocked down the expression of Dnmt1 and Dnmt3a in primary cultured hippocampal neurons derived from embryonic Dnmt1,3a2flox/2flox mice by transfection with Cre-expressing virus, to study the effect of Dnmts and mediated DNA methylation on synaptogenesis and synaptic function. We found that the hippocampal neurons at 15 days in vitro (DIV15) exhibited similar size of cell body, but longer dendrites with reduced number of branches and lower density of excitatory synapses formation after virus-mediated Dnmt1 and Dnmt3a deletion. Supportively, cultured neurons with Dnmt1 and Dnmt3a deficiency displayed reduced frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs), indicating that both pre- and post-synaptic dysfunction are involved. In addition, our Ca2+-image study with Rhod-3AM revealed suppression of glutamate-evoked elevation of cytoplasmic [Ca2+] after Dnmt1 and Dnmt3a deletion. Altogether our findings provide new evidence that normal expression of Dnmt1 and Dnmt3a in hippocampal neurons are essential for excitatory synaptogenesis and synaptic function.
Collapse
Affiliation(s)
- Wei Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Qingnuan Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China; Department of Pathology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, 266071, China
| | - Meng Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xue Mi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xiaomin Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Ming Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao Universtiy, Qingdao, Shandong, 266000, China.
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China; Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China.
| |
Collapse
|
10
|
Gogos JA, Crabtree G, Diamantopoulou A. The abiding relevance of mouse models of rare mutations to psychiatric neuroscience and therapeutics. Schizophr Res 2020; 217:37-51. [PMID: 30987923 PMCID: PMC6790166 DOI: 10.1016/j.schres.2019.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 01/08/2023]
Abstract
Studies using powerful family-based designs aided by large scale case-control studies, have been instrumental in cracking the genetic complexity of the disease, identifying rare and highly penetrant risk mutations and providing a handle on experimentally tractable model systems. Mouse models of rare mutations, paired with analysis of homologous cognitive and sensory processing deficits and state-of-the-art neuroscience methods to manipulate and record neuronal activity have started providing unprecedented insights into pathogenic mechanisms and building the foundation of a new biological framework for understanding mental illness. A number of important principles are emerging, namely that degradation of the computational mechanisms underlying the ordered activity and plasticity of both local and long-range neuronal assemblies, the building blocks necessary for stable cognition and perception, might be the inevitable consequence and the common point of convergence of the vastly heterogeneous genetic liability, manifesting as defective internally- or stimulus-driven neuronal activation patterns and triggering the constellation of schizophrenia symptoms. Animal models of rare mutations have the unique potential to help us move from "which" (gene) to "how", "where" and "when" computational regimes of neural ensembles are affected. Linking these variables should improve our understanding of how symptoms emerge and how diagnostic boundaries are established at a circuit level. Eventually, a better understanding of pathophysiological trajectories at the level of neural circuitry in mice, aided by basic human experimental biology, should guide the development of new therapeutics targeting either altered circuitry itself or the underlying biological pathways.
Collapse
Affiliation(s)
- Joseph A. Gogos
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA,Department of Neuroscience, Columbia University, New York, NY 10032 USA,Correspondence should be addressed to: Joseph A. Gogos ()
| | - Gregg Crabtree
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Anastasia Diamantopoulou
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
11
|
Disturbed Prefrontal Cortex Activity in the Absence of Schizophrenia-Like Behavioral Dysfunction in Arc/Arg3.1 Deficient Mice. J Neurosci 2019; 39:8149-8163. [PMID: 31488612 DOI: 10.1523/jneurosci.0623-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/06/2019] [Accepted: 08/29/2019] [Indexed: 12/11/2022] Open
Abstract
Arc/Arg3.1, an activity regulated immediate early gene, is essential for learning and memory, synaptic plasticity, and maturation of neural networks. It has also been implicated in several neurodevelopmental disorders, including schizophrenia. Here, we used male and female constitutive and conditional Arc/Arg3.1 knock-out (KO) mice to investigate the causal relationship between Arc/Arg3.1 deletion and schizophrenia-linked neurophysiological and behavioral phenotypes. Using in vivo local field potential recordings, we observed dampened oscillatory activity in the prefrontal cortex (PFC) of the KO and early conditional KO (early-cKO) mice, in which Arc/Arg3.1 was deleted perinatally. Whole-cell patch-clamp recordings from neurons in PFC slices revealed altered synaptic properties and reduced network gain in the KO mice as possible mechanisms underlying the oscillation deficits. In contrast, we measured normal oscillatory activity in the PFC of late conditional KO (late-cKO) mice, in which Arc/Arg3.1 was deleted during late postnatal development. Our data show that constitutive Arc/Arg3.1 KO mice exhibit no deficit in social engagement, working memory, sensorimotor gating, native locomotor activity, and dopaminergic innervation. Moreover, adolescent social isolation, an environmental stressor, failed to induce deficits in sociability or sensorimotor gating in adult KO mice. Thus, genetic removal of Arc/Arg3.1 per se does not cause schizophrenia-like behavior. Prenatal or perinatal deletion of Arc/Arg3.1 alters cortical network activity, however, without overtly disrupting the balance of excitation and inhibition in the brain and not promoting schizophrenia. Misregulation of Arc/Arg3.1 rather than deletion could potentially tip this balance and thereby promote emergence of schizophrenia and other neuropsychiatric disorders.SIGNIFICANCE STATEMENT The activity-regulated and memory-linked gene Arc/Arg3.1 has been implicated in the pathogenesis of schizophrenia, but direct evidence and a mechanistic link are still missing. The current study asks whether loss of Arc/Arg3.1 can affect brain circuitry and cause schizophrenia-like symptoms in mice. The findings demonstrate that genetic deletion of Arc/Arg3.1 before puberty alters synaptic function and prefrontal cortex activity. Although brain networks are disturbed, genetic deletion of Arc/Arg3.1 does not cause schizophrenia-like behavior, even when combined with an environmental insult. It remains to be seen whether misregulation of Arc/Arg3.1 might critically imbalance brain networks and lead to emergence of schizophrenia.
Collapse
|
12
|
Guo L, Niu M, Yang J, Li L, Liu S, Sun Y, Zhou Z, Zhou Y. GHS-R1a Deficiency Alleviates Depression-Related Behaviors After Chronic Social Defeat Stress. Front Neurosci 2019; 13:364. [PMID: 31057357 PMCID: PMC6478702 DOI: 10.3389/fnins.2019.00364] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 03/29/2019] [Indexed: 12/13/2022] Open
Abstract
Ghrelin is an important orexigenic hormone that regulates feeding, metabolism and glucose homeostasis in human and rodents. Ghrelin functions by binding to its receptor, the growth hormone secretagogue receptor 1a (GHS-R1a), which is widely expressed inside and outside of the brain. Recent studies suggested that acyl-ghrelin, the active form of ghrelin, is a persistent biomarker for chronic stress exposure. However, how ghrelin/GHS-R1a signaling contributes to stress responses and mood regulation remains uncertain. In this study, we applied the chronic social defeat stress (CSDS) paradigm to both GHS-R1a knock-out (Ghsr-/-) mice and littermate control (Ghsr+/+) mice, and then measured their depression- and anxiety-related behaviors. We found that Ghsr+/+ mice, but not Ghsr-/- mice, displayed apparent anxiety and depression after CSDS, while two groups mice showed identical behaviors at baseline, non-stress state. By screening the central and peripheral responses of Ghsr-/- mice and Ghsr+/+ mice to chronic stress, we found similar elevations of total ghrelin and adrenocorticotropic hormone (ACTH) in the serum of Ghsr-/- mice and Ghsr+/+ mice after CSDS, but decreased interleukin-6 (IL-6) in the serum of defeated Ghsr-/- mice compared to defeated Ghsr+/+ mice. We also found increased concentration of brain derived neurotropic factor (BDNF) in the hippocampus of Ghsr-/- mice compared to Ghsr+/+ mice after CSDS. The basal levels of ghrelin, ACTH, IL-6, and BDNF were not different between Ghsr-/- mice and Ghsr+/+ mice. Our findings thus suggested that the differential expressions of BDNF and IL-6 after CSDS may contribute to less anxiety and less despair observed in GHS-R1a-deficient mice than in WT control mice. Therefore, ghrelin/GHS-R1a signaling may play a pro-anxiety and pro-depression effect in response to chronic stress, while GHS-R1a deficiency may provide resistance to depressive symptoms of CSDS.
Collapse
Affiliation(s)
- Li Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China.,Department of Physiology, Binzhou Medical University, Yantai, China
| | - Minglu Niu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China.,Department of Clinic Laboratory, PKU Care Luzhong Hospital, Zibo, China
| | - Jie Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China.,Dongying No.1 Middle School, Dongying, China
| | - Li Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Shuhan Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Yuxiang Sun
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, United States
| | - Zhishang Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China.,Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China.,Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, China
| |
Collapse
|