1
|
Zhai Y, Yuan Y, Cui Y, Wang X, Zhou H, Teng Q, Wang H, Sun B, Sun H, Tang J. Suppression of PINK1 autophosphorylation attenuates pilocarpine-induced seizures and neuronal injury in rats. Brain Res Bull 2024; 219:111117. [PMID: 39522561 DOI: 10.1016/j.brainresbull.2024.111117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
PTEN-induced kinase 1 (PINK1) autophosphorylation triggers the PINK1/Parkin pathway, which is the main mitophagic pathway in the mammalian nervous system. In the present study, we aimed to mechanistically explore the role of PINK1 in pilocarpine-induced status epilepticus (SE) in Sprague-Dawley rats. Evidence from immunohistochemistry, western blotting, biochemical assays, and behavioral testing showed that pilocarpine-induced SE led to increased levels of PINK1 phosphorylation, mitophagy, mitochondrial oxidative stress, neuronal damage and learning and memory deficits. Using shRNA interference to suppress the expression of translocase outer mitochondrial membrane 7, a positive regulator of PINK1 autophosphorylation, lowered the increased levels of phosphorylated PINK1 following pilocarpine administration. It also reduced the levels of mitophagy, mitochondrial oxidative stress and neuronal damage, and attenuated seizure severity and cognitive deficits. In contrast, suppressing the expression of overlapping with the m-AAA protease 1 homolog, a negative regulator of PINK1 autophosphorylation, led to higher levels of phosphorylated PINK1 following pilocarpine administration. It also led to more serious mitophagy, neuronal damage, as well as worsened seizure severity and cognitive deficits. Our results indicate that PINK1 autophosphorylation plays a vital role in epileptic seizures and neuronal injury by mediating mitophagy. Regulating PINK1 autophosphorylation may change the adverse consequences of epilepsy, and may be an effective neuroprotective strategy.
Collapse
Affiliation(s)
- Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Yi Yuan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Xiaoqian Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Hua Zhou
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Qian Teng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Hongjin Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Bohan Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Jianhua Tang
- Affiliated Yantai Mountain Hospital, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
2
|
Shigetomi E, Suzuki H, Hirayama YJ, Sano F, Nagai Y, Yoshihara K, Koga K, Tateoka T, Yoshioka H, Shinozaki Y, Kinouchi H, Tanaka KF, Bito H, Tsuda M, Koizumi S. Disease-relevant upregulation of P2Y 1 receptor in astrocytes enhances neuronal excitability via IGFBP2. Nat Commun 2024; 15:6525. [PMID: 39117630 PMCID: PMC11310333 DOI: 10.1038/s41467-024-50190-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/26/2024] [Indexed: 08/10/2024] Open
Abstract
Reactive astrocytes play a pivotal role in the pathogenesis of neurological diseases; however, their functional phenotype and the downstream molecules by which they modify disease pathogenesis remain unclear. Here, we genetically increase P2Y1 receptor (P2Y1R) expression, which is upregulated in reactive astrocytes in several neurological diseases, in astrocytes of male mice to explore its function and the downstream molecule. This astrocyte-specific P2Y1R overexpression causes neuronal hyperexcitability by increasing both astrocytic and neuronal Ca2+ signals. We identify insulin-like growth factor-binding protein 2 (IGFBP2) as a downstream molecule of P2Y1R in astrocytes; IGFBP2 acts as an excitatory signal to cause neuronal excitation. In neurological disease models of epilepsy and stroke, reactive astrocytes upregulate P2Y1R and increase IGFBP2. The present findings identify a mechanism underlying astrocyte-driven neuronal hyperexcitability, which is likely to be shared by several neurological disorders, providing insights that might be relevant for intervention in diverse neurological disorders.
Collapse
Affiliation(s)
- Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan.
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan.
| | - Hideaki Suzuki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Yukiho J Hirayama
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Fumikazu Sano
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Yuki Nagai
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Kohei Yoshihara
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keisuke Koga
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Neurophysiology, Hyogo College of Medicine, Hyogo, 663-8501, Japan
| | - Toru Tateoka
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Hideyuki Yoshioka
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Hiroyuki Kinouchi
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan.
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan.
| |
Collapse
|
3
|
Cheng Y, Zhai Y, Yuan Y, Wang Q, Li S, Sun H. The Contributions of Thrombospondin-1 to Epilepsy Formation. Neurosci Bull 2024; 40:658-672. [PMID: 38528256 PMCID: PMC11127911 DOI: 10.1007/s12264-024-01194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/27/2024] [Indexed: 03/27/2024] Open
Abstract
Epilepsy is a neural network disorder caused by uncontrolled neuronal hyperexcitability induced by an imbalance between excitatory and inhibitory networks. Abnormal synaptogenesis plays a vital role in the formation of overexcited networks. Recent evidence has confirmed that thrombospondin-1 (TSP-1), mainly secreted by astrocytes, is a critical cytokine that regulates synaptogenesis during epileptogenesis. Furthermore, numerous studies have reported that TSP-1 is also involved in other processes, such as angiogenesis, neuroinflammation, and regulation of Ca2+ homeostasis, which are closely associated with the occurrence and development of epilepsy. In this review, we summarize the potential contributions of TSP-1 to epilepsy development.
Collapse
Affiliation(s)
- Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yi Yuan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Shucui Li
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
4
|
Zhai Y, Cheng Y, Yuan Y, Meng X, Li Y, Wang Y, Ren T, Li S, Sun H. Increased thrombospondin-1 levels contribute to epileptic susceptibility in neonatal hyperthermia without seizures via altered synaptogenesis. Cell Death Discov 2024; 10:73. [PMID: 38346981 PMCID: PMC10861539 DOI: 10.1038/s41420-024-01837-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
Childhood febrile seizures (FS) represent one of the most common types of seizures and may lead to severe neurological damage and an increased risk of epilepsy. However, most children with fevers do not show clinical manifestations of convulsions, and the consequences of hyperthermia without seizures remain elusive. This study focused on hyperthermia not reaching the individual's seizure threshold (sub-FS stimulus). Changes in thrombospondin-1 (TSP-1) levels, synapses, seizure susceptibility, and seizure severity in subsequent FS were investigated in rats exposed to sub-FS stimuli. Pharmacological and genetic interventions were used to explore the role of TSP-1 in sub-FS-induced effects. We found that after sub-FS stimuli, the levels of TSP-1 and synapses, especially excitatory synapses, were concomitantly increased, with increased epilepsy and FS susceptibility. Moreover, more severe neuronal damage was found in subsequent FS. These changes were temperature dependent. Reducing TSP-1 levels by genetic intervention or inhibiting the activation of transforming growth factor-β1 (TGF-β1) by Leu-Ser-Lys-Leu (LSKL) led to lower synapse/excitatory synapse levels, decreased epileptic susceptibility, and attenuated neuronal injury after FS stimuli. Our study confirmed that even without seizures, hyperthermia may promote synaptogenesis, increase epileptic and FS susceptibility, and lead to more severe neuronal damage by subsequent FS. Inhibition of the TSP-1/TGF-β1 pathway may be a new therapeutic target to prevent detrimental sub-FS sequelae.
Collapse
Affiliation(s)
- Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yi Yuan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xianfeng Meng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yang Li
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yan Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Tianpu Ren
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Shucui Li
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
5
|
Su C, Miao J, Guo J. The relationship between TGF-β1 and cognitive function in the brain. Brain Res Bull 2023; 205:110820. [PMID: 37979810 DOI: 10.1016/j.brainresbull.2023.110820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Transforming growth factor-β1 (TGF-β1), a multifunctional cytokine, plays a pivotal role in synaptic formation, plasticity, and neurovascular unit regulation. This review highlights TGF-β1's potential impact on cognitive function, particularly in the context of neurodegenerative disorders. However, despite the growing body of evidence, a comprehensive understanding of TGF-β1's precise role remains elusive. Further research is essential to unravel the complex mechanisms through which TGF-β1 influences cognitive function and to explore therapeutic avenues for targeting TGF-β1 in neurodegenerative conditions. This investigation sheds light on TGF-β1's contribution to cognitive function and offers prospects for innovative treatments and interventions. This review delves into the intricate relationship between TGF-β1 and cognitive function.
Collapse
Affiliation(s)
- Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China
| | - Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China.
| |
Collapse
|
6
|
Tian Y, Yi S, Guo W, Feng C, Zhang X, Dong H, Wang K, Li R, Tian Y, Gan M, Wu T, Xie H, Gao X. SYNJ1 rescues motor functions in hereditary and sporadic Parkinson's disease mice by upregulating TSP-1 expression. Behav Brain Res 2023; 452:114569. [PMID: 37419331 DOI: 10.1016/j.bbr.2023.114569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
This study aimed to explore the role of SYNJ1 in Parkinson's disease (PD) and its potential as a neuroprotective factor. We found that SYNJ1 was decreased in the SN and striatum of hSNCA*A53T-Tg and MPTP-induced mice compared to normal mice, associated with motor dysfunction, increased α-synuclein and decreased tyrosine hydroxylase. To investigate its neuroprotective effects, SYNJ1 expression was upregulated in the striatum of mice through injection of the rAdV-Synj1 virus into the striatum, which resulted in the rescue of behavioral deficiencies and amelioration of pathological changes. Subsequently, transcriptomic sequencing, bioinformatics analysis and qPCR were conducted in SH-SY5Y cells following SYNJ1 gene knockdown to identify its downstream pathways, which revealed decreased expression of TSP-1 involving extracellular matrix pathways. The virtual protein-protein docking further suggested a potential interaction between the SYNJ1 and TSP-1 proteins. This was followed by the identification of a SYNJ1-dependent TSP-1 expression model in two PD models. The coimmunoprecipitation experiment verified that the interaction between SYNJ1 and TSP-1 was attenuated in 11-month-old hSNCA*A53T-Tg mice compared to normal controls. Our findings suggest that overexpression of SYNJ1 may protect hSNCA*A53T-Tg and MPTP-induced mice by upregulating TSP-1 expression, which is involved in the extracellular matrix pathways. This suggests that SYNJ1 could be a potential therapeutic target for PD, though more research is needed to understand its mechanism.
Collapse
Affiliation(s)
- Yueqin Tian
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Shang Yi
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Wanyun Guo
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Cuilian Feng
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Xiufen Zhang
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Huateng Dong
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Kaitao Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Runtong Li
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Yuanxin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Min Gan
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China.
| | - Ting Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| | - Haiting Xie
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China.
| | - Xiaoya Gao
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China; Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China.
| |
Collapse
|
7
|
Cheng Y, Cui Y, Zhai Y, Xin W, Yu Y, Liang J, Li S, Sun H. Neuroprotective Effects of Exogenous Irisin in Kainic Acid-Induced Status Epilepticus. Front Cell Neurosci 2021; 15:738533. [PMID: 34658794 PMCID: PMC8517324 DOI: 10.3389/fncel.2021.738533] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/10/2021] [Indexed: 01/03/2023] Open
Abstract
Elevated reactive oxygen species (ROS) level is considered a crucial causative factor for neuronal damage in epilepsy. Irisin has been reported to ameliorate mitochondrial dysfunction and to reduce ROS levels; therefore, in this study, the effect of exogenous irisin on neuronal injury was evaluated in rats with kainic acid (KA)-induced status epilepticus (SE). Our results showed that exogenous irisin treatment significantly increased the expression of brain-derived neurotrophic factor (BDNF) and uncoupling protein 2 (UCP2), and reduced the levels of neuronal injury and mitochondrial oxidative stress. Additionally, an inhibitor of UCP2 (genipin) was administered to investigate the underlying mechanism of irisin-induced neuroprotection; in rats treated with genipin, the neuroprotective effects of irisin on KA-induced SE were found to be partially reversed. Our findings confirmed the neuroprotective effects of exogenous irisin and provide evidence that these effects may be mediated via the BDNF/UCP2 pathway, thus providing valuable insights that may aid the development of exogenous irisin treatment as a potential therapeutic strategy against neuronal injury in epilepsy.
Collapse
Affiliation(s)
- Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Wenyu Xin
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yan Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Jia Liang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Shucui Li
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
8
|
Succinate accumulation contributes to oxidative stress and iron accumulation in pentylenetetrazol-induced epileptogenesis and kainic acid-induced seizure. Neurochem Int 2021; 149:105123. [PMID: 34224804 DOI: 10.1016/j.neuint.2021.105123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 11/21/2022]
Abstract
This study explored the role of succinate accumulation in the oxidative stress and iron accumulation in both pentylenetetrazol (PTZ)-induced epileptogenesis and kainic acid (KA)-induced status epilepticus (SE). The levels of succinate, oxidative stress, iron content, iron-related protein expression, and the severity of neuronal injury and seizures were measured in both models. We found that increased concentrations of succinate were associated with increased levels of oxidative stress, iron content, iron regulator protein, and iron importer divalent metal transporter 1, as well as decreased levels of iron exporter ferropotin 1. Aggravated neuronal injury was observed in the hippocampi and cortices of both models. The cell-permeable molecule dimethyl malonate (DM), a competitive inhibitor of succinate dehydrogenase (SDH), significantly attenuated succinate accumulation, reduced the oxidative stress and iron levels, and mitigated the severity of the seizures and neuronal injury. Our results thus indicate that the accumulation of succinate due to the reverse catalysis of SDH may exacerbate oxidative stress and thus induce iron accumulation and neuronal injury in both models. Targeting succinate accumulation may achieve neuroprotective and anti-seizure effects.
Collapse
|
9
|
Gdula AM, Swiatkowska M. A2 A receptor agonists and P2Y 12 receptor antagonists modulate expression of thrombospondin-1 (TSP-1) and its secretion from Human Microvascular Endothelial Cells (HMEC-1). Microvasc Res 2021; 138:104218. [PMID: 34182003 DOI: 10.1016/j.mvr.2021.104218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/07/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUNDS AND AIMS To address the problem of resistance to standard antiplatelet therapy in some patients, our team proposed a purinoceptor-dependent dual therapy. Its efficacy is also determined by the condition of the vascular endothelium which, by secreting numerous factors, is involved in hemostasis. Among them, thrombospondin-1 is important in the context of thrombotic events. Therefore we sought to determine if the novel dual purinoceptor-dependent concept is associated with TSP-1 changes in vascular endothelial cells. METHODS AND RESULTS TSP-1 expression in human microvascular endothelial cells was determined at transcriptional and protein level. We performed real-time PCR, the Western blot analysis and ELISA test. We found that TSP-1 mRNA and protein expression levels significantly changed in response to P1R agonists treatment. Furthermore, we have observed that co-administration of selective A2AR agonists (UK-432,097 or MRE0094) with P2Y12R antagonists altered TSP-1 expression levels, and the direction of these changes was not synergistic. MRE0094 applied with ARC69931MX or R-138727 increased mRNA expression from 39 to 56 or 57%, respectively (*P < 0.05 vs. MRE0094; ***P < 0.001 vs. control). Also, in the case of the P2Y12R antagonists used together with UK-432,097, there was an increase from 53 to 71 and 70% (*P < 0.05 vs. UK-432,097; ***P < 0.001 vs. control). The observed trends in gene expression were reflected in the protein expression and the level of its secretion from HMEC-1. CONCLUSION The article presents evidence which proves that the purinoceptor-dependent concept is associated with TSP-1 changes in endothelial cells (EC). Moreover, Human Microvascular Endothelial Cells treatment applied together with agonists (MRE0094 or UK-432,097) and P2Y12R antagonist did not result in any synergistic effect, implicating a possible crosstalk between G proteins in GPCRs dependent signaling. Therefore, we suggest that understanding of the specific mechanism underlying TSP-1 alterations in EC in the context of the dual purinoceptor-dependent approach is essential for antiplatelet therapies and should be the subject of future research.
Collapse
Affiliation(s)
- Anna M Gdula
- Department of Cytobiology and Proteomics, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland.
| | - Maria Swiatkowska
- Department of Cytobiology and Proteomics, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland
| |
Collapse
|
10
|
Beamer E, Kuchukulla M, Boison D, Engel T. ATP and adenosine-Two players in the control of seizures and epilepsy development. Prog Neurobiol 2021; 204:102105. [PMID: 34144123 DOI: 10.1016/j.pneurobio.2021.102105] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/07/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
Despite continuous advances in understanding the underlying pathogenesis of hyperexcitable networks and lowered seizure thresholds, the treatment of epilepsy remains a clinical challenge. Over one third of patients remain resistant to current pharmacological interventions. Moreover, even when effective in suppressing seizures, current medications are merely symptomatic without significantly altering the course of the disease. Much effort is therefore invested in identifying new treatments with novel mechanisms of action, effective in drug-refractory epilepsy patients, and with the potential to modify disease progression. Compelling evidence has demonstrated that the purines, ATP and adenosine, are key mediators of the epileptogenic process. Extracellular ATP concentrations increase dramatically under pathological conditions, where it functions as a ligand at a host of purinergic receptors. ATP, however, also forms a substrate pool for the production of adenosine, via the action of an array of extracellular ATP degrading enzymes. ATP and adenosine have assumed largely opposite roles in coupling neuronal excitability to energy homeostasis in the brain. This review integrates and critically discusses novel findings regarding how ATP and adenosine control seizures and the development of epilepsy. This includes purine receptor P1 and P2-dependent mechanisms, release and reuptake mechanisms, extracellular and intracellular purine metabolism, and emerging receptor-independent effects of purines. Finally, possible purine-based therapeutic strategies for seizure suppression and disease modification are discussed.
Collapse
Affiliation(s)
- Edward Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; Centre for Bioscience, Manchester Metropolitan University, John Dalton Building, All Saints Campus, Manchester M15 6BH, UK
| | - Manvitha Kuchukulla
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA.
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.
| |
Collapse
|
11
|
He Q, Li Z, Li T, Zhang Z, Zhao J. ATP Stimulation Promotes Functional Recovery after Intracerebral Haemorrhage by Increasing the mBDNF/proBDNF Ratio. Neuroscience 2021; 459:104-117. [PMID: 33421569 DOI: 10.1016/j.neuroscience.2020.12.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), including mature BDNF (mBDNF) and precursor BDNF (proBDNF), plays a pivotal role in neuronal survival, synaptic plasticity and neurogenesis. However, the functional effect of the mBDNF/proBDNF ratio in haemorrhagic stroke remains unclear. ATP is a known mediator of BDNF production in neurons and glia. Therefore, we hypothesized that ATP could facilitate BDNF production, increase the mBDNF/proBDNF ratio and thereby alleviate cerebral haemorrhage-induced injury. In this experiment, a model of intracerebral haemorrhage (ICH) was produced by injecting 50 μL autologous blood into the right corpus striatum in healthy male rats. ATP was injected to promote BDNF production and increase the mBDNF/proBDNF ratio. After ATP pretreatment, P2X4R-shRNA and SB203580 were used to inhibit P2X4R and p38-MAPK, respectively. We provide direct evidence that ATP administration was successful in promoting mBDNF expression and increasing the mBDNF/proBDNF ratio after ICH injury. Additionally, ATP stimulation could significantly improve cerebral neurological function and alleviate neuronal damage. Furthermore, ATP injection was able to upregulate the expression of P2X4R and p-p38-MAPK. Moreover, both P2X4R-shRNA and SB203580 could effectively abolish the effect of ATP injection on the levels of P2X4R and p-p38-MAPK and the mBDNF/proBDNF ratio. Together, these findings show that ATP stimulation contributes to functional recovery after cerebral haemorrhage and that neuroprotection induced by ATP administration in ICH rats is accompanied by a strong increase in the mBDNF/proBDNF ratio. Here, we also show a significant role of P2X4R-p38-MAPK signalling in the ATP-induced increase in the mBDNF/proBDNF ratio in ICH.
Collapse
Affiliation(s)
- Qi He
- The School of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China; Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhenyu Li
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Tiegang Li
- Institute of Materia Medica, Peking Union Medical College Hospital, Peking, People's Republic of China
| | - Zhiqian Zhang
- The School of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, People's Republic of China; Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
12
|
Zhu W, Zhu J, Zhao S, Li J, Hou D, Zhang Y, Sun H. Xenon Exerts Neuroprotective Effects on Kainic Acid-Induced Acute Generalized Seizures in Rats via Increased Autophagy. Front Cell Neurosci 2020; 14:582872. [PMID: 33132850 PMCID: PMC7573545 DOI: 10.3389/fncel.2020.582872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/03/2020] [Indexed: 12/04/2022] Open
Abstract
Xenon has been shown to have neuroprotective effects and is clinically used as a favorable safe inhalation anesthetic. We previously confirmed the neuroprotective effects of xenon treatment in epileptic animals. However, the mechanism underlying these protective effects remains unclear. We aimed to assess the effects of xenon inhalation on autophagy in neuronal injury induced by acute generalized seizures. Kainic acid (KA) was injected into the lateral ventricle of male Sprague–Dawley rats to induce acute generalized seizures. Next, the rats were treated via inhalation of a 70% xenon/21% oxygen/9% nitrogen mixture for 60 min immediately after KA administration. The control group was treated via inhalation of a 79% nitrogen/21% oxygen mixture. Subsequently, two inhibitors (3-methyladenine or bafilomycin A1) or an autophagy inducer (rapamycin) were administered, respectively, before KA and xenon administration to determine the role of autophagy in the protective effects of xenon. The levels of apoptosis, neuronal injury, and autophagy were determined in all the rats. Xenon inhalation significantly attenuated the severity of the seizure-induced neuronal injury. Increased autophagy accompanied this inhibitive effect. Autophagy inhibition eliminated these xenon neuroprotective effects. A simulation of autophagy using rapamycin recapitulated xenon’s protective effects on KA-induced acute generalized seizures in the rats. These findings confirmed that xenon exerts strong neuroprotective effects in KA-induced acute generalized seizures. Further, they indicate that increased autophagy may underlie the protective effects of xenon. Therefore, xenon and autophagy inducers may be useful clinical options for their neuroprotective effects in epileptic seizures.
Collapse
Affiliation(s)
- Wei Zhu
- Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | - Jianguo Zhu
- Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | | | - Jieqing Li
- Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | - Dianjun Hou
- Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | - Yurong Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
13
|
Xenon exerts anti-seizure and neuroprotective effects in kainic acid-induced status epilepticus and neonatal hypoxia-induced seizure. Exp Neurol 2019; 322:113054. [DOI: 10.1016/j.expneurol.2019.113054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 07/27/2019] [Accepted: 09/01/2019] [Indexed: 12/16/2022]
|
14
|
Zhang Y, Zhang M, Zhu W, Yu J, Wang Q, Zhang J, Cui Y, Pan X, Gao X, Sun H. Succinate accumulation induces mitochondrial reactive oxygen species generation and promotes status epilepticus in the kainic acid rat model. Redox Biol 2019; 28:101365. [PMID: 31707354 PMCID: PMC6854095 DOI: 10.1016/j.redox.2019.101365] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/15/2019] [Accepted: 10/28/2019] [Indexed: 11/29/2022] Open
Abstract
Though succinate accumulation is associated with reactive oxygen species (ROS) production and neuronal injury, which play critical roles in epilepsy, it is unclear whether succinate accumulation contributes to the onset of epilepsy or seizures. We sought to investigate changes in succinate, oxidative stress, and mito-SOX levels, as well as mitophagy and neuronal change, in different status epilepticus (SE) rat models. Our results demonstrate that KA-induced SE was accompanied by increased levels of succinate, oxidative stress, and mito-SOX, as well as mitophagy and neuronal degeneration. The similarly increased levels of succinate, oxidative stress, and mito-SOX were also found in pilocarpine-induced SE. Moreover, the reduction of succinate accumulation by the inhibition of succinate dehydrogenase (SDH), malate/aspartate shuttle (MAS), or purine nucleotide cycle (PNC) served to reduce succinate, oxidative stress, and mito-SOX levels, thereby preventing oxidative stress-related neuronal damage and lessening seizure severity. Interestingly, simulating succinate accumulation with succinic acid dimethyl ester may induce succinate accumulation and increased oxidative stress and mito-SOX levels, as well as behavior and seizures in electroencephalograms similar to those observed in rats exposed to KA. Our results indicate that succinate accumulation may contribute to the increased oxidative stress/mitochondrial ROS levels, neuronal degeneration, and SE induced by KA administration. Furthermore, we found that succinate accumulation was mainly due to the inverse catalysis of SDH from fumarate, which was supplemented by the MAS and PNC pathways. These results reveal new insights into the mechanisms underlying SE and that reducing succinate accumulation may be a clinically useful therapeutic target in SE. KA- or pilocarpine-induced SE was accompanied by succinate accumulation. Succinate accumulation caused elevated ROS/mito-ROS levels and neuronal injury. Inverse catalysis of SDH from fumarate mainly caused succinate accumulation. Inhibiting succinate accumulation relieved oxidative stress level, neuronal injury, and seizure. Simulating succinate accumulation induced elevated oxidative stress level and seizure.
Collapse
Affiliation(s)
- Yurong Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wei Zhu
- Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Jie Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Jinjin Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiaohong Pan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xue Gao
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
15
|
Zhang Y, Zhang M, Zhu W, Pan X, Wang Q, Gao X, Wang C, Zhang X, Liu Y, Li S, Sun H. Role of Elevated Thrombospondin-1 in Kainic Acid-Induced Status Epilepticus. Neurosci Bull 2019; 36:263-276. [PMID: 31664678 DOI: 10.1007/s12264-019-00437-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/22/2019] [Indexed: 11/29/2022] Open
Abstract
Previous studies have suggested that thrombospondin-1 (TSP-1) regulates the transforming growth factor beta 1 (TGF-β1)/phosphorylated Smad2/3 (pSmad2/3) pathway. Moreover, TSP-1 is closely associated with epilepsy. However, the role of the TSP-1-regulated TGF-β1/pSmad2/3 pathway in seizures remains unclear. In this study, changes in this pathway were assessed following kainic acid (KA)-induced status epilepticus (SE) in rats. The results showed that increases in the TSP-1/TGF-β1/pSmad2/3 levels spatially and temporally matched the increases in glial fibrillary acidic protein (GFAP)/chondroitin sulfate (CS56) levels following KA administration. Inhibition of TSP-1 expression by small interfering RNA or inhibition of TGF-β1 activation with a Leu-Ser-Lys-Leu peptide significantly reduced the severity of KA-induced acute seizures. These anti-seizure effects were accompanied by decreased GFAP/CS56 expression and Smad2/3 phosphorylation. Moreover, inhibiting Smad2/3 phosphorylation with ponatinib or SIS3 also significantly reduced seizure severity, alongside reducing GFAP/CS56 immunoreactivity. These results suggest that the TSP-1-regulated TGF-β1/pSmad2/3 pathway plays a key role in KA-induced SE and astrogliosis, and that inhibiting this pathway may be a potential anti-seizure strategy.
Collapse
Affiliation(s)
- Yurong Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wei Zhu
- Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Xiaohong Pan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xue Gao
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Chaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiuli Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yuxia Liu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Shucui Li
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
16
|
Zhang Y, Zhang M, Yu J, Zhu W, Wang Q, Pan X, Gao X, Yang J, Sun H. Mode-Dependent Effect of Xenon Inhalation on Kainic Acid-Induced Status Epilepticus in Rats. Front Cell Neurosci 2019; 13:375. [PMID: 31474835 PMCID: PMC6702968 DOI: 10.3389/fncel.2019.00375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Previous studies have reported the possible neuroprotective effects of xenon treatment. The purpose of this study was to define the range of effective xenon ratio, most effective xenon ratio, and time-window for intervention in the kainic acid (KA) – induced status epilepticus (SE) rat model. Different ratios of xenon (35% xenon, 21% oxygen, 44% nitrogen, 50% xenon, 21% oxygen, 29% nitrogen, 70% xenon, 21% oxygen, and 9% nitrogen) were used to treat the KA-induced SE. Our results confirmed the anti-seizure role of 50 and 70% xenon mixture, with a stronger effect from the latter. Further, 70% xenon mixture was dispensed at three time points (0 min, 15 min delayed, and 30 min delayed) after KA administration, and the results indicated the anti-seizure effect at all treated time points. The results also established that the neuronal injury in the hippocampus and entorhinal cortex (EC), assessed using Fluoro-Jade B (FJB) staining, were reversed by the xenon inhalation, and within 30 min after KA administration. Our study, therefore, indicates the appropriate effective xenon ratio and time-window for intervention that can depress seizures. The prevention of neuronal injury and further reversal of the loss of effective control of depress network in the hippocampus and EC may be the mechanisms underlying the anti-seizure effect of xenon.
Collapse
Affiliation(s)
- Yurong Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Jie Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Wei Zhu
- Shandong Academy of Medical Sciences, Jinan, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Xiaohong Pan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Xue Gao
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Jing Yang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
17
|
Zhang Y, Zhu W, Yu H, Yu J, Zhang M, Pan X, Gao X, Wang Q, Sun H. P2Y4/TSP-1/TGF-β1/pSmad2/3 pathway contributes to acute generalized seizures induced by kainic acid. Brain Res Bull 2019; 149:106-119. [PMID: 31005663 DOI: 10.1016/j.brainresbull.2019.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/07/2019] [Accepted: 04/08/2019] [Indexed: 01/23/2023]
Abstract
Epilepsy is accompanied by angiogenesis and blood-brain barrier (BBB) disruption. The transforming growth factor-β1 (TGF-β1)/phosphorylated small mothers against decapentaplegic 2 and 3 (pSmad2/3)/vascular endothelial growth factor (VEGF) pathway, activated by thrombospondin-1 (TSP-1), which is further regulated by Y type P2 purinergic receptor activity, may participate in angiogenesis. We sought to investigate the relationship between the P2R/TSP-1/TGF-β1/pSmad2/3/VEGF pathway, angiogenesis, and BBB damage in a kainic acid (KA) model of acute generalized seizure. Our results demonstrated that KA-induced seizures were accompanied by angiogenesis and BBB damage. In addition, expression of TSP-1, TGF-β1, and pSmad2/3 was increased. Rats treated with pyridoxal phosphate-6-azophenyl-2', 4'-disulfonic acid, a broad P2 receptor antagonist, or Reactive Blue 2, a potent P2Y4 receptor antagonist, showed significant attenuation of TSP-1 expression and Smad2/3 phosphorylation levels. Furthermore, angiogenesis, BBB damage, and acute seizure severity were also reduced. The inhibition of TSP-1 expression by siRNA or TGF-β1 activation by Leu-Ser-Lys-Leu (LSKL) treatment prevented KA-induced phosphorylation of Smad2/3, angiogenesis, BBB damage, and acute seizures. Our results strongly indicate that the P2Y4/TSP-1/TGF-β1/pSmad2/3/VEGF pathway plays an essential role in seizure pathophysiology and angiogenesis. Therapeutic interventions targeting this pathway may offer new treatment options for acute seizures.
Collapse
Affiliation(s)
- Yurong Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Wei Zhu
- Shandong Academy of Medical Sciences, Jinan, China
| | - Haiying Yu
- Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Xiaohong Pan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Xue Gao
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China.
| |
Collapse
|
18
|
Huang L, Otrokocsi L, Sperlágh B. Role of P2 receptors in normal brain development and in neurodevelopmental psychiatric disorders. Brain Res Bull 2019; 151:55-64. [PMID: 30721770 DOI: 10.1016/j.brainresbull.2019.01.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 12/19/2022]
Abstract
The purinergic signaling system, including P2 receptors, plays an important role in various central nervous system (CNS) disorders. Over the last few decades, a substantial amount of accumulated data suggest that most P2 receptor subtypes (P2X1, 2, 3, 4, 6, and 7, and P2Y1, 2, 6, 12, and 13) regulate neuronal/neuroglial developmental processes, such as proliferation, differentiation, migration of neuronal precursors, and neurite outgrowth. However, only a few of these subtypes (P2X2, P2X3, P2X4, P2X7, P2Y1, and P2Y2) have been investigated in the context of neurodevelopmental psychiatric disorders. The activation of these potential target receptors and their underlying mechanisms mainly influence the process of neuroinflammation. In particular, P2 receptor-mediated inflammatory cytokine release has been indicated to contribute to the complex mechanisms of a variety of CNS disorders. The released inflammatory cytokines could be utilized as biomarkers for neurodevelopmental and psychiatric disorders to improve the early diagnosis intervention, and prognosis. The population changes in gut microbiota after birth are closely linked to neurodevelopmental/neuropsychiatric disorders in later life; thus, the dynamic expression and function of P2 receptors on gut epithelial cells during disease processes indicate a novel avenue for the evaluation of disease progression and for the discovery of related therapeutic compounds.
Collapse
Affiliation(s)
- Lumei Huang
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - Lilla Otrokocsi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|