1
|
Cao X, Wang Q, Zhang L, Sun H, Xu G, Chen X, Wu Z, Liu H, Yuan G, Wu J, Liu T. Oxytocin alleviates high-fat diet-induced anxiety by decreasing glutamatergic synaptic transmission in the ventral dentate gyrus in adolescent mice. Neuropharmacology 2025; 262:110201. [PMID: 39481751 DOI: 10.1016/j.neuropharm.2024.110201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/21/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
A high-fat diet (HFD)-induced obesity is associated with mental disorders in adolescence. However, the mechanisms underlying these associations remain unclear. In this study, we hypothesized that synaptic remodeling occurs in the ventral hippocampus (vHP) of obese mice. To investigate this, we established a postnatal model of HFD-induced obesity in mice and observed increased body weight, elevated plasma luteinizing hormone and testosterone levels, premature puberty, and enhanced anxiety-like behavior in male subjects. We also examined the effect of HFD on the c-Fos protein expression in the ventral dentate gyrus (vDG) and explored the influence of intracerebroventricular (i.c.v) oxytocin injections on HFD-induced anxiety. Our results indicated an increase in c-Fos-positive cells in the vDG following HFD consumption. Additionally, we recorded the spontaneous synaptic activity of miniature excitatory postsynaptic currents (mEPSCs) in the vDG. Notably, HFD resulted in an elevated mEPSC frequency without affecting mEPSC amplitude. Subsequently, investigations demonstrated that i.c.v oxytocin injections reversed anxiety-like behavior induced by HFD. Moreover, the application of oxytocin in a bath solution reduced the mEPSC frequency in the vDG. These findings suggest that postnatal HFD intake induces synaptic dysfunction in the vDG, associated with the hyperactivity of vDG neurons, potentially contributing to the anxiety-like behavior in juvenile obesity.
Collapse
Affiliation(s)
- Xi Cao
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Qiyuan Wang
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Lina Zhang
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Huichao Sun
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Gang Xu
- Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xiao Chen
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Zhihong Wu
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Huibao Liu
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Gaole Yuan
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Jian Wu
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Tao Liu
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
2
|
Contreras E, Bhoi JD, Sonoda T, Birnbaumer L, Schmidt TM. Melanopsin activates divergent phototransduction pathways in intrinsically photosensitive retinal ganglion cell subtypes. eLife 2023; 12:e80749. [PMID: 37937828 PMCID: PMC10712949 DOI: 10.7554/elife.80749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/06/2023] [Indexed: 11/09/2023] Open
Abstract
Melanopsin signaling within intrinsically photosensitive retinal ganglion cell (ipRGC) subtypes impacts a broad range of behaviors from circadian photoentrainment to conscious visual perception. Yet, how melanopsin phototransduction within M1-M6 ipRGC subtypes impacts cellular signaling to drive diverse behaviors is still largely unresolved. The identity of the phototransduction channels in each subtype is key to understanding this central question but has remained controversial. In this study, we resolve two opposing models of M4 phototransduction, demonstrating that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are dispensable for this process and providing support for a pathway involving melanopsin-dependent potassium channel closure and canonical transient receptor potential (TRPC) channel opening. Surprisingly, we find that HCN channels are likewise dispensable for M2 phototransduction, contradicting the current model. We instead show that M2 phototransduction requires TRPC channels in conjunction with T-type voltage-gated calcium channels, identifying a novel melanopsin phototransduction target. Collectively, this work resolves key discrepancies in our understanding of ipRGC phototransduction pathways in multiple subtypes and adds to mounting evidence that ipRGC subtypes employ diverse phototransduction cascades to fine-tune cellular responses for downstream behaviors.
Collapse
Affiliation(s)
- Ely Contreras
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
- Northwestern University Interdisciplinary Biological Sciences Program, Northwestern UniversityEvanstonUnited States
| | - Jacob D Bhoi
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
- Northwestern University Interdepartmental Neuroscience Program, Northwestern UniversityChicagoUnited States
| | - Takuma Sonoda
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
- Northwestern University Interdepartmental Neuroscience Program, Northwestern UniversityChicagoUnited States
| | - Lutz Birnbaumer
- Laboratory of Signal Transduction, National Institute of Environmental Health SciencesDurhamUnited States
- Institute of Biomedical Research (BIOMED), Catholic University of ArgentinaBuenos AiresArgentina
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
- Department of Ophthalmology, Feinberg School of MedicineChicagoUnited States
| |
Collapse
|
3
|
The T-type calcium channel Ca V 3.2 regulates bladder afferent responses to mechanical stimuli. Pain 2022; 164:1012-1026. [PMID: 36279179 PMCID: PMC10108591 DOI: 10.1097/j.pain.0000000000002795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/09/2022] [Indexed: 11/06/2022]
Abstract
ABSTRACT The bladder wall is innervated by a complex network of afferent nerves that detect bladder stretch during filling. Sensory signals, generated in response to distension, are relayed to the spinal cord and brain to evoke physiological and painful sensations and regulate urine storage and voiding. Hyperexcitability of these sensory pathways is a key component in the development of chronic bladder hypersensitivity disorders including interstitial cystitis/bladder pain syndrome and overactive bladder syndrome. Despite this, the full array of ion channels that regulate bladder afferent responses to mechanical stimuli have yet to be determined. Here, we investigated the role of low-voltage-activated T-type calcium (Ca V 3) channels in regulating bladder afferent responses to distension. Using single-cell reverse-transcription polymerase chain reaction and immunofluorescence, we revealed ubiquitous expression of Ca V 3.2, but not Ca V 3.1 or Ca V 3.3, in individual bladder-innervating dorsal root ganglia neurons. Pharmacological inhibition of Ca V 3.2 with TTA-A2 and ABT-639, selective blockers of T-type calcium channels, dose-dependently attenuated ex-vivo bladder afferent responses to distension in the absence of changes to muscle compliance. Further evaluation revealed that Ca V 3.2 blockers significantly inhibited both low- and high-threshold afferents, decreasing peak responses to distension, and delayed activation thresholds, thereby attenuating bladder afferent responses to both physiological and noxious distension. Nocifensive visceromotor responses to noxious bladder distension in vivo were also significantly reduced by inhibition of Ca V 3 with TTA-A2. Together, these data provide evidence of a major role for Ca V 3.2 in regulating bladder afferent responses to bladder distension and nociceptive signalling to the spinal cord.
Collapse
|
4
|
Harding EK, Zamponi GW. Central and peripheral contributions of T-type calcium channels in pain. Mol Brain 2022; 15:39. [PMID: 35501819 PMCID: PMC9063214 DOI: 10.1186/s13041-022-00923-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
AbstractChronic pain is a severely debilitating condition that reflects a long-term sensitization of signal transduction in the afferent pain pathway. Among the key players in this pathway are T-type calcium channels, in particular the Cav3.2 isoform. Because of their biophysical characteristics, these channels are ideally suited towards regulating neuronal excitability. Recent evidence suggests that T-type channels contribute to excitability of neurons all along the ascending and descending pain pathways, within primary afferent neurons, spinal dorsal horn neurons, and within pain-processing neurons in the midbrain and cortex. Here we review the contribution of T-type channels to neuronal excitability and function in each of these neuronal populations and how they are dysregulated in chronic pain conditions. Finally, we discuss their molecular pharmacology and the potential role of these channels as therapeutic targets for chronic pain.
Collapse
|
5
|
Zhi YR, Cao F, Su XJ, Gao SW, Zheng HN, Jiang JY, Su L, Liu J, Wang Y, Zhang Y, Zhang Y. The T-Type Calcium Channel Cav3.2 in Somatostatin Interneurons in Spinal Dorsal Horn Participates in Mechanosensation and Mechanical Allodynia in Mice. Front Cell Neurosci 2022; 16:875726. [PMID: 35465611 PMCID: PMC9024096 DOI: 10.3389/fncel.2022.875726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Somatostatin-positive (SOM+) neurons have been proposed as one of the key populations of excitatory interneurons in the spinal dorsal horn involved in mechanical pain. However, the molecular mechanism for their role in pain modulation remains unknown. Here, we showed that the T-type calcium channel Cav3.2 was highly expressed in spinal SOM+ interneurons. Colocalization of Cacna1h (which codes for Cav3.2) and SOMtdTomato was observed in the in situ hybridization studies. Fluorescence-activated cell sorting of SOMtdTomato cells in spinal dorsal horn also proved a high expression of Cacna1h in SOM+ neurons. Behaviorally, virus-mediated knockdown of Cacna1h in spinal SOM+ neurons reduced the sensitivity to light touch and responsiveness to noxious mechanical stimuli in naïve mice. Furthermore, knockdown of Cacna1h in spinal SOM+ neurons attenuated thermal hyperalgesia and dynamic allodynia in the complete Freund’s adjuvant-induced inflammatory pain model, and reduced both dynamic and static allodynia in a neuropathic pain model of spared nerve injury. Mechanistically, a decrease in the percentage of neurons with Aβ-eEPSCs and Aβ-eAPs in superficial dorsal horn was observed after Cacna1h knockdown in spinal SOM+ neurons. Altogether, our results proved a crucial role of Cav3.2 in spinal SOM+ neurons in mechanosensation under basal conditions and in mechanical allodynia under pathological pain conditions. This work reveals a molecular basis for SOM+ neurons in transmitting mechanical pain and shows a functional role of Cav3.2 in tactile and pain processing at the level of spinal cord in addition to its well-established peripheral role.
Collapse
Affiliation(s)
- Yu-Ru Zhi
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Feng Cao
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Xiao-Jing Su
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shu-Wen Gao
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Hao-Nan Zheng
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Jin-Yan Jiang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Li Su
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, China
| | - Jiao Liu
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, China
| | - Yun Wang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yan Zhang
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Ying Zhang,
| | - Ying Zhang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
- Yan Zhang,
| |
Collapse
|
6
|
Kuang H, Liu T, Jiao C, Wang J, Wu S, Wu J, Peng S, Davidson AM, Zeng SX, Lu H, Mostany R. Genetic Deficiency of p53 Leads to Structural, Functional, and Synaptic Deficits in Primary Somatosensory Cortical Neurons of Adult Mice. Front Mol Neurosci 2022; 15:871974. [PMID: 35465090 PMCID: PMC9021533 DOI: 10.3389/fnmol.2022.871974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor suppressor p53 plays a crucial role in embryonic neuron development and neurite growth, and its involvement in neuronal homeostasis has been proposed. To better understand how the lack of the p53 gene function affects neuronal activity, spine development, and plasticity, we examined the electrophysiological and morphological properties of layer 5 (L5) pyramidal neurons in the primary somatosensory cortex barrel field (S1BF) by using in vitro whole-cell patch clamp and in vivo two-photon imaging techniques in p53 knockout (KO) mice. We found that the spiking frequency, excitatory inputs, and sag ratio were decreased in L5 pyramidal neurons of p53KO mice. In addition, both in vitro and in vivo morphological analyses demonstrated that dendritic spine density in the apical tuft is decreased in L5 pyramidal neurons of p53KO mice. Furthermore, chronic imaging showed that p53 deletion decreased dendritic spine turnover in steady-state conditions, and prevented the increase in spine turnover associated with whisker stimulation seen in wildtype mice. In addition, the sensitivity of whisker-dependent texture discrimination was impaired in p53KO mice compared with wildtype controls. Together, these results suggest that p53 plays an important role in regulating synaptic plasticity by reducing neuronal excitability and the number of excitatory synapses in S1BF.
Collapse
Affiliation(s)
- Haixia Kuang
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Liu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
- *Correspondence: Tao Liu Hua Lu Ricardo Mostany
| | - Cui Jiao
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianmei Wang
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shinan Wu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Wu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Sicong Peng
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Andrew M. Davidson
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Shelya X. Zeng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
- *Correspondence: Tao Liu Hua Lu Ricardo Mostany
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
- *Correspondence: Tao Liu Hua Lu Ricardo Mostany
| |
Collapse
|
7
|
Joksimovic SL, Jevtovic-Todorovic V, Todorovic SM. The Mechanisms of Plasticity of Nociceptive Ion Channels in Painful Diabetic Neuropathy. FRONTIERS IN PAIN RESEARCH 2022; 3:869735. [PMID: 35419564 PMCID: PMC8995507 DOI: 10.3389/fpain.2022.869735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Treating pain in patients suffering from small fiber neuropathies still represents a therapeutic challenge for health care providers and drug developers worldwide. Unfortunately, none of the currently available treatments can completely reverse symptoms of either gain or loss of peripheral nerve sensation. Therefore, there is a clear need for novel mechanism-based therapies for peripheral diabetic neuropathy (PDN) that would improve treatment of this serious condition. In this review, we summarize the current knowledge on the mechanisms and causes of peripheral sensory neurons damage in diabetes. In particular, we focused on the subsets of voltage-gated sodium channels, TRP family of ion channels and a CaV3.2 isoform of T-type voltage-gated calcium channels. However, even though their potential is well-validated in multiple rodent models of painful PDN, clinical trials with specific pharmacological blockers of these channels have failed to exhibit therapeutic efficacy. We argue that understanding the development of diabetes and causal relationship between hyperglycemia, glycosylation, and other post-translational modifications may lead to the development of novel therapeutics that would efficiently alleviate painful PDN by targeting disease-specific mechanisms rather than individual nociceptive ion channels.
Collapse
Affiliation(s)
- Sonja L Joksimovic
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO, United States
| | | | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO, United States
- Neuroscience Graduate Program, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
8
|
Voltage-dependent Ca V3.2 and Ca V2.2 channels in nociceptive pathways. Pflugers Arch 2022; 474:421-434. [PMID: 35043234 DOI: 10.1007/s00424-022-02666-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
Noxious stimuli like cold, heat, pH change, tissue damage, and inflammation depolarize a membrane of peripheral endings of specialized nociceptive neurons which eventually results in the generation of an action potential. The electrical signal is carried along a long axon of nociceptive neurons from peripheral organs to soma located in dorsal root ganglions and further to the dorsal horn of the spinal cord where it is transmitted through a chemical synapse and is carried through the spinal thalamic tract into the brain. Two subtypes of voltage-activated calcium play a major role in signal transmission: a low voltage-activated CaV3.2 channel and a high voltage-activated CaV2.2 channel. The CaV3.2 channel contributes mainly to the signal conductance along nociceptive neurons while the principal role of the CaV2.2 channel is in the synaptic transmission at the dorsal horn. Both channels contribute to the signal initiation at peripheral nerve endings. This review summarizes current knowledge about the expression and distribution of these channels in a nociceptive pathway, the regulation of their expression and gating during pain pathology, and their suitability as targets for pharmacological therapy.
Collapse
|
9
|
Zhu M, Yan Y, Cao X, Zeng F, Xu G, Shen W, Li F, Luo L, Wang Z, Zhang Y, Zhang X, Zhang D, Liu T. Electrophysiological and Morphological Features of Rebound Depolarization Characterized Interneurons in Rat Superficial Spinal Dorsal Horn. Front Cell Neurosci 2021; 15:736879. [PMID: 34621158 PMCID: PMC8490703 DOI: 10.3389/fncel.2021.736879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/25/2021] [Indexed: 11/18/2022] Open
Abstract
Substantia gelatinosa (SG) neurons, which are located in the spinal dorsal horn (lamina II), have been identified as the “central gate” for the transmission and modulation of nociceptive information. Rebound depolarization (RD), a biophysical property mediated by membrane hyperpolarization that is frequently recorded in the central nervous system, contributes to shaping neuronal intrinsic excitability and, in turn, contributes to neuronal output and network function. However, the electrophysiological and morphological properties of SG neurons exhibiting RD remain unclarified. In this study, whole-cell patch-clamp recordings were performed on SG neurons from parasagittal spinal cord slices. RD was detected in 44.44% (84 out of 189) of the SG neurons recorded. We found that RD-expressing neurons had more depolarized resting membrane potentials, more hyperpolarized action potential (AP) thresholds, higher AP amplitudes, shorter AP durations, and higher spike frequencies in response to depolarizing current injection than neurons without RD. Based on their firing patterns and morphological characteristics, we propose that most of the SG neurons with RD mainly displayed tonic firing (69.05%) and corresponded to islet cell morphology (58.82%). Meanwhile, subthreshold currents, including the hyperpolarization-activated cation current (Ih) and T-type calcium current (IT), were identified in SG neurons with RD. Blockage of Ih delayed the onset of the first spike in RD, while abolishment of IT significantly blunted the amplitude of RD. Regarding synaptic inputs, SG neurons with RD showed lower frequencies in both spontaneous and miniature excitatory synaptic currents. Furthermore, RD-expressing neurons received either Aδ- or C-afferent-mediated monosynaptic and polysynaptic inputs. However, RD-lacking neurons received afferents from monosynaptic and polysynaptic Aδ fibers and predominantly polysynaptic C-fibers. These findings demonstrate that SG neurons with RD have a specific cell-type distribution, and may differentially process somatosensory information compared to those without RD.
Collapse
Affiliation(s)
- Mengye Zhu
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Yi Yan
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Xuezhong Cao
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Fei Zeng
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Gang Xu
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Wei Shen
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Fan Li
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Lingyun Luo
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Zhijian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Yong Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Xuexue Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Daying Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Tao Liu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Reversal of Bortezomib-Induced Neurotoxicity by Suvecaltamide, a Selective T-Type Ca-Channel Modulator, in Preclinical Models. Cancers (Basel) 2021; 13:cancers13195013. [PMID: 34638498 PMCID: PMC8507761 DOI: 10.3390/cancers13195013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Chemotherapy-induced peripheral neurotoxicity (CIPN) is a side-effect of anti-cancer medications, which can lead to pain, disruptions to movement, and eventually results in the need to interrupt or stop chemotherapy. This study sought to test whether the drug suvecaltamide could help to reduce the impact of the chemotherapy agent bortezomib (BTZ) on symptoms of CIPN using animal models and human cells. Suvecaltamide did reverse negative changes in nerve conduction velocity and intraepidermal nerve fiber density indicative of CIPN in rats, and did not interfere with the anti-cancer effect of BTZ. These results indicate that suvecaltamide could potentially be useful for patients experiencing CIPN, although further mechanistic and molecular studies in vitro and in vivo are required before clinical trials. Abstract This study evaluated suvecaltamide, a selective T-type calcium channel modulator, on chemotherapy-induced peripheral neurotoxicity (CIPN) and anti-cancer activity associated with bortezomib (BTZ). Rats received BTZ (0.2 mg/kg thrice weekly) for 4 weeks, then BTZ alone (n = 8) or BTZ+suvecaltamide (3, 10, or 30 mg/kg once daily; each n = 12) for 4 weeks. Nerve conduction velocity (NCV), mechanical threshold, β-tubulin polymerization, and intraepidermal nerve fiber (IENF) density were assessed. Proteasome inhibition was evaluated in peripheral blood mononuclear cells. Cytotoxicity was assessed in human multiple myeloma cell lines (MCLs) exposed to BTZ alone (IC50 concentration), BTZ+suvecaltamide (10, 30, 100, 300, or 1000 nM), suvecaltamide alone, or vehicle. Tumor volume was estimated in athymic nude mice bearing MCL xenografts receiving vehicle, BTZ alone (1 mg/kg twice weekly), or BTZ+suvecaltamide (30 mg/kg once daily) for 28 days, or no treatment (each n = 8). After 4 weeks, suvecaltamide 10 or 30 mg/kg reversed BTZ-induced reduction in NCV, and suvecaltamide 30 mg/kg reversed BTZ-induced reduction in IENF density. Proteasome inhibition and cytotoxicity were similar between BTZ alone and BTZ+suvecaltamide. BTZ alone and BTZ+suvecaltamide reduced tumor volume versus the control (day 18), and BTZ+suvecaltamide reduced tumor volume versus BTZ alone (day 28). Suvecaltamide reversed CIPN without affecting BTZ anti-cancer activity in preclinical models.
Collapse
|
11
|
Harding EK, Dedek A, Bonin RP, Salter MW, Snutch TP, Hildebrand ME. The T-type calcium channel antagonist, Z944, reduces spinal excitability and pain hypersensitivity. Br J Pharmacol 2021; 178:3517-3532. [PMID: 33871884 PMCID: PMC8453510 DOI: 10.1111/bph.15498] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/02/2021] [Accepted: 04/05/2021] [Indexed: 11/29/2022] Open
Abstract
Background and Purpose T‐type voltage‐gated calcium channels are an emerging therapeutic target for neurological disorders including epilepsy and pain. Inhibition of T‐type channels reduces the excitability of peripheral nociceptive sensory neurons and reverses pain hypersensitivity in male rodent pain models. However, administration of peripherally restricted T‐type antagonists failed to show efficacy in multiple clinical and preclinical pain trials, suggesting that inhibition of peripheral T‐type channels alone may be insufficient for pain relief. Experimental Approach We utilized the selective and CNS‐penetrant T‐type channel antagonist, Z944, in electrophysiological, calcium imaging and behavioural paradigms to determine its effect on lamina I neuron excitability and inflammatory pain behaviours. Key Results Voltage‐clamp recordings from lamina I spinal neurons of adult rats revealed that approximately 80% of neurons possess a low threshold T‐type current, which was blocked by Z944. Due to this highly prevalent T‐type current, Z944 potently blocked action‐potential evoked somatic and dendritic calcium transients in lamina I neurons. Moreover, application of Z944 to spinal cord slices attenuated action potential firing rates in over half of laminae I/II neurons. Finally, we found that intraperitoneal injection of Z944 (1–10 mg·kg−1) dose‐dependently reversed mechanical allodynia in the complete Freund's adjuvant model of persistent inflammatory pain, with a similar magnitude and time course of analgesic effects between male and female rats. Conclusion and Implications T‐type calcium channels critically shape the excitability of lamina I pain processing neurons and inhibition of these channels by the clinical stage antagonist Z944 potently reverses pain hypersensitivity across sexes.
Collapse
Affiliation(s)
- Erika K Harding
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Annemarie Dedek
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Robert P Bonin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, Ontario, Canada
| | - Michael W Salter
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael E Hildebrand
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Homeostatic plasticity and burst activity are mediated by hyperpolarization-activated cation currents and T-type calcium channels in neuronal cultures. Sci Rep 2021; 11:3236. [PMID: 33547341 PMCID: PMC7864958 DOI: 10.1038/s41598-021-82775-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/20/2021] [Indexed: 01/27/2023] Open
Abstract
Homeostatic plasticity stabilizes neuronal networks by adjusting the responsiveness of neurons according to their global activity and the intensity of the synaptic inputs. We investigated the homeostatic regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) and T-type calcium (CaV3) channels in dissociated and organotypic slice cultures. After 48 h blocking of neuronal activity by tetrodotoxin (TTX), our patch-clamp experiments revealed an increase in the depolarizing voltage sag and post-inhibitory rebound mediated by HCN and CaV3 channels, respectively. All HCN subunits (HCN1 to 4) and T-type Ca-channel subunits (CaV3.1, 3.2 and 3.3) were expressed in both control and activity-deprived hippocampal cultures. Elevated expression levels of CaV3.1 mRNA and a selective increase in the expression of TRIP8b exon 4 isoforms, known to regulate HCN channel localization, were also detected in TTX-treated cultured hippocampal neurons. Immunohistochemical staining in TTX-treated organotypic slices verified a more proximal translocation of HCN1 channels in CA1 pyramidal neurons. Computational modeling also implied that HCN and T-type calcium channels have important role in the regulation of synchronized bursting evoked by previous activity-deprivation. Thus, our findings indicate that HCN and T-type Ca-channels contribute to the homeostatic regulation of excitability and integrative properties of hippocampal neurons.
Collapse
|
13
|
Yin D, Chen Y, Li Y, Lu R, Wang B, Zhu S, Fan B, Xu Z. Interleukin-1 Receptor Associated Kinase 1 Mediates the Maintenance of Neuropathic Pain after Chronic Constriction Injury in Rats. Neurochem Res 2019; 44:1214-1227. [PMID: 30859436 DOI: 10.1007/s11064-019-02767-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/17/2022]
Abstract
Neuropathic pain (NP) has complicated pathogenesis as it mainly involves a lesion or dysfunction of the somatosensory nervous system and its clinical treatment remains challenging. Chronic constriction injury (CCI) model is a widely used neuropathic pain model and involved in mechanisms including both nerve inflammatory and injury. Cytokines and their receptors play essential roles in the occurrence and persistence of neuropathic pain, but the underlying mechanisms have not well been understood. Therefore, Interleukin-1 receptor-associated kinase 1 (IRAK1) is chosen to explore the possible mechanisms of NP. In the present study, IRAK1 was found to persistently increase in the dorsal root ganglion (DRG) and spinal cord (SC) during CCI detected by western blot. The staining further confirmed that IRAK1 was mainly co-located in the DRG astrocytes or SC neurons, but less in the DRG microglia or SC astrocytes. Moreover, the region of increased IRAK1 expression was observed in superficial laminae of the spinal dorsal horn, which was the nociceptive neuronal expression domain, suggesting that IRAK1 may mediated CCI-induced pain by nociceptive primary afferent. In addition, intrathecal injection of Toll-like receptor 4 (TLR4) inhibitor or IRAK1 siRNA decreased the expression of IRAK1 accompanied with the alleviation of CCI-induced neuropathic pain. The upregulation of p-NF-κB expression was reversed by IRAK1 siRNA in SC, and intrathecal injection of p-NF-κB inhibitor relieved neuropathic pain. Taking together, targeting IRAK1 may be a potential treatment for chronic neuropathic pain.
Collapse
Affiliation(s)
- Dekun Yin
- Department of Anesthesiology, Funing People's Hospital of Jiangsu, Yancheng, 224400, Jiangsu, China
| | - Yonglin Chen
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yao Li
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Rongxiang Lu
- Department of Anesthesiology, Taizhou People's Hospital, Taizhou, 225300, Jiangsu, China
| | - Binbin Wang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Shunxing Zhu
- Laboratory Animal Center, Nantong University, Nantong, 226001, China
| | - Bingbing Fan
- Department of Radiology, Zhongshan Hospital, Shanghai Institute of Medical Imaging, Department of Medical Imaging, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhongling Xu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
14
|
Cav3.2 T-type calcium channels shape electrical firing in mouse Lamina II neurons. Sci Rep 2019; 9:3112. [PMID: 30816223 PMCID: PMC6395820 DOI: 10.1038/s41598-019-39703-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
The T-type calcium channel, Cav3.2, is necessary for acute pain perception, as well as mechanical and cold allodynia in mice. Being found throughout sensory pathways, from excitatory primary afferent neurons up to pain matrix structures, it is a promising target for analgesics. In our study, Cav3.2 was detected in ~60% of the lamina II (LII) neurons of the spinal cord, a site for integration of sensory processing. It was co-expressed with Tlx3 and Pax2, markers of excitatory and inhibitory interneurons, as well as nNOS, calretinin, calbindin, PKCγ and not parvalbumin. Non-selective T-type channel blockers slowed the inhibitory but not the excitatory transmission in LII neurons. Furthermore, T-type channel blockers modified the intrinsic properties of LII neurons, abolishing low-threshold activated currents, rebound depolarizations, and blunting excitability. The recording of Cav3.2-positive LII neurons, after intraspinal injection of AAV-DJ-Cav3.2-mcherry, showed that their intrinsic properties resembled those of the global population. However, Cav3.2 ablation in the dorsal horn of Cav3.2GFP-Flox KI mice after intraspinal injection of AAV-DJ-Cav3.2-Cre-IRES-mcherry, had drastic effects. Indeed, it (1) blunted the likelihood of transient firing patterns; (2) blunted the likelihood and the amplitude of rebound depolarizations, (3) eliminated action potential pairing, and (4) remodeled the kinetics of the action potentials. In contrast, the properties of Cav3.2-positive neurons were only marginally modified in Cav3.1 knockout mice. Overall, in addition to their previously established roles in the superficial spinal cord and in primary afferent neurons, Cav3.2 channel appear to be necessary for specific, significant and multiple controls of LII neuron excitability.
Collapse
|
15
|
Cheng XE, Ma LX, Feng XJ, Zhu MY, Zhang DY, Xu LL, Liu T. Antigen retrieval pre-treatment causes a different expression pattern of Cav3.2 in rat and mouse spinal dorsal horn. Eur J Histochem 2019; 63. [PMID: 30678436 PMCID: PMC6346256 DOI: 10.4081/ejh.2019.2988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/20/2019] [Indexed: 11/27/2022] Open
Abstract
Cav3 channels consist of three isoforms, Cav3.1 (α1G), Cav3.2 (α1H), and Cav3.3 (α1I), which produce low-threshold spikes that trigger burst firings in nociceptive neurons of the spinal dorsal horn (SDH) and dorsal root ganglion (DRG). Although Cav3.2 plays a crucial role in pathological pain, it is distribution in SDH still remains controversial. One study showed that Cav3.2 is ubiquitously expressed in neurons, but another study implied that Cav3.2 is expressed restricted to astrocytes. To unravel these discrepancies, we used methods of immunohistochemistry either with or without antigen retrieval (AR) pre-treatment to detect Cav3 in SDH and DRG from both rats and mice. Moreover, Cav3.2 mRNA was detected in mice SDH using in situ hybridization. We found that the expression pattern of Cav3.2 but not Cav3.1 and Cav3.3 in SDH were largely different with or without AR pre-treatment, which showed a neuron- like and an astrocyte-like appearance, respectively. Double staining further demonstrated that Cav3.2 was mainly costained with the neuronal marker NeuN in the presence of AR but was with glial fibrillary acidic protein (GFAP, marker for astrocytes) in the absence of AR pre-treatment. Importantly, Cav3.2 mRNA was mainly colocalized with Cav3.2 but not GFAP. Together, our findings indicate that AR pretreatment or not impacts the expression pattern of Cav3.2, which may make a significant contribution to the future study of Cav3.2 in SDH.
Collapse
Affiliation(s)
- Xiao E Cheng
- The First Affiliated Hospital of Nanchang University, Center for Experimental Medicine.
| | | | | | | | | | | | | |
Collapse
|
16
|
Feng XJ, Ma LX, Jiao C, Kuang HX, Zeng F, Zhou XY, Cheng XE, Zhu MY, Zhang DY, Jiang CY, Liu T. Nerve injury elevates functional Cav3.2 channels in superficial spinal dorsal horn. Mol Pain 2019; 15:1744806919836569. [PMID: 30803310 PMCID: PMC6458665 DOI: 10.1177/1744806919836569] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/02/2019] [Accepted: 02/12/2019] [Indexed: 01/23/2023] Open
Abstract
Cav3 channels play an important role in modulating chronic pain. However, less is known about the functional changes of Cav3 channels in superficial spinal dorsal horn in neuropathic pain states. Here, we examined the effect of partial sciatic nerve ligation (PSNL) on either expression or electrophysiological properties of Cav3 channels in superficial spinal dorsal horn. Our in vivo studies showed that the blockers of Cav3 channels robustly alleviated PSNL-induced mechanical allodynia and thermal hyperalgesia, which lasted at least 14 days following PSNL. Meanwhile, PSNL triggered an increase in both mRNA and protein levels of Cav3.2 but not Cav3.1 or Cav3.3 in rats. However, in Cav3.2 knockout mice, PSNL predominantly attenuated mechanical allodynia but not thermal hyperalgesia. In addition, the results of whole-cell patch-clamp recordings showed that both the overall proportion of Cav3 current-expressing neurons and the Cav3 current density in individual neurons were elevated in spinal lamina II neurons from PSNL rats, which could not be recapitulated in Cav3.2 knockout mice. Altogether, our findings reveal that the elevated functional Cav3.2 channels in superficial spinal dorsal horn may contribute to the mechanical allodynia in PSNL-induced neuropathic pain model.
Collapse
Affiliation(s)
- Xiao-Jin Feng
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Anesthesiology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Long-Xian Ma
- Department of Anesthesiology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cui Jiao
- Department of Pediatrics, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hai-Xia Kuang
- Department of Pediatrics, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fei Zeng
- Department of Pain Clinic, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xue-Ying Zhou
- Department of Pediatrics, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao-E Cheng
- Department of Anesthesiology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meng-Ye Zhu
- Department of Pain Clinic, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Da-Ying Zhang
- Department of Pain Clinic, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chang-Yu Jiang
- Jisheng Han Academician Workstation for Pain Medicine, Nanshan Hospital, Shenzhen, China
| | - Tao Liu
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Pediatrics, the First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|