1
|
Chen M, Li L, Qin Y, Teng H, Lu C, Mai R, Zhu Z, Mo J, Qi Z. Mogroside V ameliorates astrocyte inflammation induced by cerebral ischemia through suppressing TLR4/TRADD pathway. Int Immunopharmacol 2025; 148:114085. [PMID: 39847949 DOI: 10.1016/j.intimp.2025.114085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/25/2025]
Abstract
Inflammation and oxidative stress are pivotal factors in the onset and progression of secondary injury following cerebral ischemia-reperfusion (I/R). Mogroside V (MV), a primary active compound of Siraitia grosvenorii, exhibits significant anti-inflammatory and antioxidant properties. However, its specific effects in cerebral ischemia remain unclear. In this study, we evaluated the neuroprotective effects of MV in a model of focal cerebral ischemia. Male C57BL/6J mice were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) as an in vivo model of cerebral ischemia-reperfusion injury (CIRI), while U87 cells were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) to simulate CIRI in vitro. MV administration was found to reduce mortality, infarct volume, cerebral edema, and alleviate neurological deficits in these I/R mice. Furthermore, MV mitigated cerebral I/R injury by decreasing oxidative stress markers, such as reactive oxygen species (ROS) and malondialdehyde (MDA), while enhancing superoxide dismutase (SOD) levels. Gene Set Enrichment Analysis (GSEA) of the KEGG pathway revealed that most differentially expressed genes (DEGs) were involved in the Toll-like receptor/NF-κB/TNF/apoptosis signaling pathway. These findings were confirmed by real-time PCR, western blotting, immunohistochemistry, and immunofluorescence co-localization which demonstrated that MV reduced astrocyte inflammatory responses by inhibiting cytokine secretion associated with the TLR4/TRADD pathway. Additionally, MV protected neurons from apoptosis, as supported by TUNEL, Nissl, and HE staining. In conclusion, MV attenuates astrocyte inflammation and exerts neuroprotective effects following cerebral I/R injury, likely through suppression of the TLR4/TRADD signaling pathway.
Collapse
Affiliation(s)
- Meirong Chen
- Medical College of Guangxi University, Guangxi University, Nanning 530004, China; The Guangxi Clinical Research Center for Neurological Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Liangxian Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Yang Qin
- Department of Graduate and Postgraduate Education Management, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Huanyao Teng
- School of Clinical Medicine, Guilin Medical University, Guilin 541199, China
| | - Chungui Lu
- School of Clinical Medicine, Guilin Medical University, Guilin 541199, China
| | - Ruyu Mai
- School of Clinical Medicine, Guilin Medical University, Guilin 541199, China
| | - Zhifei Zhu
- School of Clinical Medicine, Guilin Medical University, Guilin 541199, China
| | - Jingxin Mo
- The Guangxi Clinical Research Center for Neurological Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China; Lab of Neurology, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China.
| | - Zhongquan Qi
- Medical College of Guangxi University, Guangxi University, Nanning 530004, China; Fujian Maternity and Child Health Hospital, Fuzhou, 350001, China; Stem Cell Therapy Research Center, Fuzhou 350001, China..
| |
Collapse
|
2
|
Wang K, Li Y, Zhang T, Liu H, Luo J. Potential benefits and mechanisms of physical exercise and rTMS in improving brain function in people with drug use disorders. Gen Hosp Psychiatry 2025; 93:61-66. [PMID: 39826308 DOI: 10.1016/j.genhosppsych.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Improving brain function impairment in people with substance use disorders (PSUD) is considered to be important in regulating their cyclic drug use impulse and relapse behavior. Physical exercise (PE) and repetitive transcranial magnetic stimulation (rTMS) may improve brain functional impairment in PSUD, respectively, but few studies have focused on the benefits and mechanisms of the combined use of the two. This editorial presents: 1) Both PE and rTMS alone appear to have positive effects on PSUD's reward system, cognitive function, and emotional regulation to varying degrees. 2) The mode of PE combined with rTMS seems to have a superimposed benefit on the brain function of PSUD by promoting the dynamic regulation of neurotransmitters and receptors, plasticity changes in neurogenesis and synapses, and the reversible development of brain structure and functional connections in PSUD. However, although this combination model provides a reference for subsequent targeted intervention therapy for drug use disorders, further studies are needed to provide more direct evidence of the corresponding benefits and mechanisms.
Collapse
Affiliation(s)
- Kun Wang
- Research Centre for Exercise Detoxification, College of Physical Education, Southwest University, Chongqing 400715, China
| | - Yan Li
- College of Liberal Studies (Sports Work Department), Chongqing Industry Polytechnic College, Chongqing 401120, China
| | - Tingran Zhang
- Research Centre for Exercise Detoxification, College of Physical Education, Southwest University, Chongqing 400715, China
| | - Hengxu Liu
- Research Centre for Exercise Detoxification, College of Physical Education, Southwest University, Chongqing 400715, China
| | - Jiong Luo
- Research Centre for Exercise Detoxification, College of Physical Education, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Zhang W, Dai L, Fang L, Zhang H, Li X, Hong Y, Chen S, Zhang Y, Zheng B, Wu J, Cao M, Chen J. Effectiveness of repetitive transcranial magnetic stimulation combined with intelligent Gait-Adaptability Training in improving lower limb function and brain symmetry after subacute stroke: a preliminary study. J Stroke Cerebrovasc Dis 2024; 33:107961. [PMID: 39173684 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024] Open
Abstract
OBJECTIVES Persistent lower limb dysfunction is a major challenge in post-stroke recovery. Repetitive transcranial magnetic stimulation is recognized for addressing post-stroke motor deficits. Our study explores the efficacy of combining rTMS with gait-adaptive training to enhance lower limb function and regulatory mechanisms in subacute stroke. MATERIALS AND METHODS This randomized controlled trial enrolled 27 patients with subacute hemiparesis, dividing them into experimental and control groups. Both groups underwent gait-adaptability training 5 times/week for 4 weeks, with the experimental group receiving daily low-frequency transcranial magnetic stimulation before training. Primary outcomes included the pairwise derived brain symmetry index, lower-extremity Fugl-Meyer Assessment, 10-meter walk test, and Berg Balance Scale. Assessments occurred before and after the four-week intervention. RESULTS The experimental and control groups showed significant improvements in the Fugl-Meyer Assessment, 10-meter walk test, and Berg Balance Scale after the 4-week intervention compared to baseline (all p<0.05). However, the experimental group demonstrated significantly greater improvements compared to the control group in the Fugl-Meyer Assessment (p=0.024) and the 10-meter walk test (p=0.033). Additionally, the experimental group exhibited a more pronounced decrease in the pairwise derived brain symmetry index (p=0.026) compared to the control group. Within the experimental group, the cortical subgroup's pairwise derived brain symmetry index was significantly lower than that of the control group (p=0.006). CONCLUSIONS Combining low-frequency transcranial magnetic stimulation with Gait-Adaptive Training effectively enhances lower limb function and Regulatory mechanisms of the cerebral hemisphere in subacute stroke recovery, and it can provide rapid and effective rehabilitation effect compared with gait adaptation training alone.
Collapse
Affiliation(s)
- Wanying Zhang
- The Affiliated Rehabilitation Hosptital of Zhejiang Chinese Medical University, 310052, Hangzhou, Zhejiang, China; The Third Affiliated Hospital of Zhejiang Chinese Medical University, 310013, Hangzhou, Zhejiang, China; Zhejiang Rehabilitation Medical Center, 310052, Hangzhou, Zhejiang, China; The Third Clinical Medical College, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China
| | - Lei Dai
- Psychological Hospital of Anhui Medical University, China; Anhui Mental Health Center, China; Hefei Fourth People's Hospital, China
| | - Linjie Fang
- Zhejiang Rehabilitation Medical Center, 310052, Hangzhou, Zhejiang, China
| | - Huihuang Zhang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, 310013, Hangzhou, Zhejiang, China
| | - Xiang Li
- Xiang'an Hospital of Xiamen University, School of Medicine, 361000, Xiamen, China
| | - Yu Hong
- Zhejiang Rehabilitation Medical Center, 310052, Hangzhou, Zhejiang, China
| | - Shishi Chen
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China
| | - Yujia Zhang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China
| | - Beisi Zheng
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China
| | - Jianing Wu
- Department of Medical Rehabilitation, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, 310016, Hangzhou, Zhejiang, China
| | - Manting Cao
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, 310013, Hangzhou, Zhejiang, China; Zhejiang Rehabilitation Medical Center, 310052, Hangzhou, Zhejiang, China; The Third Clinical Medical College, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China
| | - Jianer Chen
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, 310013, Hangzhou, Zhejiang, China; Zhejiang Rehabilitation Medical Center, 310052, Hangzhou, Zhejiang, China; The Third Clinical Medical College, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Ren M, Xu J, Wang W, Shen L, Wang C, Liu H, Chen L, Liu C, Tang Y, Wang J, Liu T. Effect of Dual-Site Non-Invasive Brain Stimulation on Upper-Limb Function After Stroke: A Systematic Review and Meta-Analysis. Brain Behav 2024; 14:e70145. [PMID: 39508474 PMCID: PMC11541860 DOI: 10.1002/brb3.70145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Non-invasive brain stimulation (NIBS) has attracted significant attention as it has been proven to be effective in facilitating upper limb motor recovery in patients with stroke. This meta-analysis evaluates the efficacy of dual-site non-invasive brain stimulation (DS-NIBS) in improving upper extremity motor function after stroke. METHODS A PRISMA systematic search was conducted for randomized controlled trials. Two authors independently extracted data, and the quality of included studies was assessed. RESULTS Ten studies were included in the current review. DS-NIBS demonstrated a significant effect on upper extremity motor function impairment. However, only two studies showed no clear effects of DS-tDCS on upper extremity motor function after stroke. Due to the limited number of studies, the effects of DS-NIBS remain inconclusive. FINDING This review found evidence for the relatively higher efficacy of DS-NIBS on post-stroke upper extremity motor function impairment, compared to the sham and SS-NIBS. Additionally, DS-TMS was found to generate better improvement than DS-tDCS.
Collapse
Affiliation(s)
- Meng Ren
- RainbowFish Rehabilitation and Nursing SchoolHangzhou Vocational and Technical CollegeHangzhouChina
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jingjing Xu
- Athletic rehabilitation Teaching and Research Office, School of Exercise and HealthGuangzhou Sport UniversityGuangzhouChina
| | - Wenjing Wang
- Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lexian Shen
- School of Foreign LanguagesShanghai Jiao Tong UniversityShanghaiChina
| | - Chaojie Wang
- Acupuncture and Moxibustion Massage CollegeLiaoning University of Traditional Chinese MedicineShenyangChina
| | - Haoyang Liu
- RainbowFish Rehabilitation and Nursing SchoolHangzhou Vocational and Technical CollegeHangzhouChina
| | - Lu Chen
- RainbowFish Rehabilitation and Nursing SchoolHangzhou Vocational and Technical CollegeHangzhouChina
| | - Chanjing Liu
- RainbowFish Rehabilitation and Nursing SchoolHangzhou Vocational and Technical CollegeHangzhouChina
| | - Yongheng Tang
- RainbowFish Rehabilitation and Nursing SchoolHangzhou Vocational and Technical CollegeHangzhouChina
| | - Jiening Wang
- Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Tiantian Liu
- Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
5
|
朱 俞, 于 洪, 赵 秀, 王 春. [Analysis of nerve excitability in the dentate gyrus of the hippocampus in cerebral ischaemia-reperfusion mice]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:926-934. [PMID: 39462660 PMCID: PMC11527742 DOI: 10.7507/1001-5515.202311055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/11/2024] [Indexed: 10/29/2024]
Abstract
Ischemic stroke often leads to cognitive dysfunction, which delays the recovery process of patients. However, its pathogenesis is not yet clear. In this study, the cerebral ischemia-reperfusion model was built as the experimental object, and the hippocampal dentate gyrus (DG) was the target brain area. TTC staining was used to evaluate the degree of cerebral infarction, and nerve cell membrane potentials and local field potentials (LFPs) signals were collected to explore the mechanism of cognitive impairment in ischemia-reperfusion mice. The results showed that the infarcted area on the right side of the brain of the mice in the model group was white. The resting membrane potential, the number of action potential discharges, the post-hyperpolarization potential and the maximum ascending slope of the hippocampal DG nerve cells in the model mice were significantly lower than those in the control group ( P < 0.01); the peak time, half-wave width, threshold and maximum descending slope of the action potential were significantly higher than those in the control group ( P < 0.01). The time-frequency energy values of LFPs signals in the θ and γ bands of mice in the ischemia and reperfusion groups were significantly reduced ( P < 0.01), and the time-frequency energy values in the reperfusion group were increased compared with the ischemia group ( P < 0.01). The signal complexity of LFPs in the ischemia and reperfusion group was significantly reduced ( P < 0.05), and the signal complexity in the reperfusion group was increased compared with the ischemia group ( P < 0.05). In summary, cerebral ischemia-reperfusion reduced the excitability of nerve cells in the DG area of the mouse hippocampus; cerebral ischemia reduced the discharge activity and signal complexity of nerve cells, and the electrophysiological indicators recovered after reperfusion, but it failed to reach the healthy state during the experiment period.
Collapse
Affiliation(s)
- 俞灿 朱
- 河北工业大学 生命科学与健康工程学院(天津 300130)School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 洪丽 于
- 河北工业大学 生命科学与健康工程学院(天津 300130)School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 秀芝 赵
- 河北工业大学 生命科学与健康工程学院(天津 300130)School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 春方 王
- 河北工业大学 生命科学与健康工程学院(天津 300130)School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
6
|
Zhang W, Dai L, Liu W, Li X, Chen J, Zhang H, Chen W, Duan W. The effect and optimal parameters of repetitive transcranial magnetic stimulation on lower extremity motor function in stroke patient: a systematic review and meta-analysis. Disabil Rehabil 2024; 46:4889-4900. [PMID: 37991330 DOI: 10.1080/09638288.2023.2283605] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
PURPOSE This study aimed to evaluate the efficacy of repetitive transcranial magnetic stimulation (rTMS) in treating lower limb motor dysfunction after stroke and explore the optimal stimulation parameters. METHODS PubMed, Embase, Cochrane Library, and other relevant databases were systematically queried for randomised controlled trials (RCTs) investigating the efficacy of rTMS in addressing lower limb motor dysfunction post-stroke. The search encompassed records from inception to July 2022. The assessed outcomes encompassed parameters such as the Fugl-Meyer motor function score for lower limbs, balance function, and Barthel index (BI). Three independent researchers were responsible for research selection, data extraction, and quality assessment. Study screening, data extraction, and bias evaluation were performed independently by two reviewers. Data synthesis was undertaken using Review Manager 5.3, while Stata version 14.0 software was employed for generating the funnel plot. RESULTS A total of 13 studies and 428 patients were included. The meta-analysis indicated that rTMS had a positive effect on the BI (MD = 5.87, 95% CI [0.99, 10.76], p = 0.02, I2 = 86%, N of studies = 8, N of participants = 248). Subgroup analysis was performed on the stimulation frequency, treatment duration, and different stroke stages (stimulation frequency was low-frequency (LF)-rTMS (MD = 4.45, 95% CI [1.05, 7.85], p = 0.01, I2 = 0%, N of studies = 4, N of participants = 120); treatment time ≤ 15 d: (MD = 4.41, 95% CI [2.63, 6.18], p < 0.00001, I2 = 0%, N of studies = 4, N of participants = 124); post-stroke time ≤6 months: (MD = 4.37, 95% CI [2.42, 6.32], p < 0.0001, I2 = 0%, N of studies = 5, N of participants = 172). CONCLUSION LF-rTMS had a significant improvement effect on BI score, while high-frequency (HF)-rTMS and iTBS had no significant effect. And stroke time ≤6 months in patients with treatment duration ≤15 d had the best treatment effect.
Collapse
Affiliation(s)
- Wanying Zhang
- The Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, PR China
- Rehabilitation Department, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Lei Dai
- The Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, PR China
- Rehabilitation Department, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Wentan Liu
- The Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, PR China
- Rehabilitation Department, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Xiang Li
- The Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, PR China
- Rehabilitation Department, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jianer Chen
- The Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, PR China
- Rehabilitation Department, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
- Geriatric rehabilitation Department, Zhejiang Rehabilitation Medical Center, Hangzhou, PR China
| | - Huihang Zhang
- The Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, PR China
- Rehabilitation Department, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Weihai Chen
- College of Automation Science and Electrical Engineering, Beihang University, Hangzhou, PR China
| | - Wen Duan
- College of Automation Science and Electrical Engineering, Beihang University, Hangzhou, PR China
| |
Collapse
|
7
|
Yang Y, Chang W, Ding J, Xu H, Wu X, Ma L, Xu Y. Effects of different modalities of transcranial magnetic stimulation on post-stroke cognitive impairment: a network meta-analysis. Neurol Sci 2024; 45:4399-4416. [PMID: 38600332 DOI: 10.1007/s10072-024-07504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVE The study aimed to evaluate, using a network meta-analysis, the effects of different transcranial magnetic stimulation (TMS) modalities on improving cognitive function after stroke. METHODS Computer searches of the Cochrane Library, PubMed, Web of Science, Embass, Google Scholar, CNKI, and Wanfang databases were conducted to collect randomized controlled clinical studies on the use of TMS to improve cognitive function in stroke patients, published from the time of database construction to November 2023. RESULTS A total of 29 studies and 2123 patients were included, comprising five interventions: high-frequency rTMS (HF-rTMS), low-frequency rTMS (LF-rTMS), intermittent theta rhythm stimulation (iTBS), sham stimulation (SS), and conventional rehabilitation therapy (CRT). A reticulated meta-analysis showed that the rankings of different TMS intervention modalities in terms of the Montreal Cognitive Assessment (MoCA) scores, Mini-Mental State Examination scores (MMSE), and Modified Barthel Index (MBI) scores were: HF-rTMS > LF-rTMS > iTBS > SS > CRT; the rankings of different TMS intervention modalities in terms of the event-related potential P300. amplitude scores were HF-rTMS > LF-rTMS > iTBS > CRT > SS; the rankings of different TMS intervention modalities in terms of the P300 latency scores were: iTBS > HF-rTMS > LF-rTMS > SS > CRT. Subgroup analyses of secondary outcome indicators showed that HF-rTMS significantly improved Rivermead Behavior Memory Test scores and Functional Independence Measurement-Cognitive scores. CONCLUSIONS High-frequency TMS stimulation has a better overall effect on improving cognitive functions and activities of daily living, such as attention and memory in stroke patients.
Collapse
Affiliation(s)
- Yulin Yang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wanpeng Chang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jiangtao Ding
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hongli Xu
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiao Wu
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lihong Ma
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Yanwen Xu
- Ergonomics and Vocational Rehabilitation Lab, College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Rehabilitation Medicine, Wuxi , 9Th Affiliated Hospital of Soochow University, Wuxi, 214000, Jiangsu, China.
| |
Collapse
|
8
|
Komatsu T, Hada T, Sasaki N, Kida H, Maku T, Nakada R, Kitagawa T, Sato T, Takatsu H, Sakuta K, Sakai K, Umehara T, Mitsumura H, Abo M, Iguchi Y. Effects and safety of high-frequency rTMS in subacute ischemic stroke patients. J Neurol Sci 2024; 462:123069. [PMID: 38824817 DOI: 10.1016/j.jns.2024.123069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
OBJECTIVE Although high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) has shown benefits in chronic stroke, its application in subacute ischemic stroke remains underexplored. This study aims to investigate the effects and safety of lesion-side HF-rTMS in subacute ischemic stroke. METHODS Prospective lesion-side HF-rTMS was conducted on consecutive ischemic stroke patients within 3 days of onset from February 2019 to June 2022. Inclusion criteria required persistent paralysis (NIHSS score ≥ 1 for at least 7 days). Exclusion criteria comprised cortical infarction, disturbance of consciousness, and age over 80 years. A conventional rehabilitation group meeting the same criteria from June 2015 to January 2019 served as a comparison. We compared the two groups regarding clinical background and outcome. We also evaluated incidence of epilepsy and exacerbation of the NIHSS score in the rTMS group. RESULTS Seventy-eight patients participated, with 50% in the HF-rTMS group. Median time from onset to HF-rTMS initiation was 9 (IQR 7-12) days. A favorable outcome (modified Rankin Scale score 0-2) at 3 months was more frequent in the rTMS group (80% vs. 44%, p = 0.002). HF-rTMS was independently associated with a favorable outcome at 3 months (OR = 5.60, 95% CI = 1.53-20.50, p = 0.009). No cases of epilepsy or exacerbation of NIHSS score were observed. CONCLUSIONS HF-rTMS demonstrates potential effectiveness and safety in subacute ischemic stroke patients.
Collapse
Affiliation(s)
- Teppei Komatsu
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Takuya Hada
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Nobuyuki Sasaki
- Department of Rehabilitation Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Hiroyuki Kida
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Maku
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryoji Nakada
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomomichi Kitagawa
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takeo Sato
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroki Takatsu
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenichi Sakuta
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenichiro Sakai
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Umehara
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hidetaka Mitsumura
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Abo
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Chen Y, Xu Z, Liu T, Li D, Tian X, Zheng R, Ma Y, Zheng S, Xing J, Wang W, Sun F. Application of deep brain stimulation and transcranial magnetic stimulation in stroke neurorestoration: A review. JOURNAL OF NEURORESTORATOLOGY 2024; 12:100120. [DOI: 10.1016/j.jnrt.2024.100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
10
|
Choi M, Kim HC, Youn I, Lee SJ, Lee JH. Use of functional magnetic resonance imaging to identify cortical loci for lower limb movements and their efficacy for individuals after stroke. J Neuroeng Rehabil 2024; 21:58. [PMID: 38627779 PMCID: PMC11020805 DOI: 10.1186/s12984-024-01319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/29/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Identification of cortical loci for lower limb movements for stroke rehabilitation is crucial for better rehabilitation outcomes via noninvasive brain stimulation by targeting the fine-grained cortical loci of the movements. However, identification of the cortical loci for lower limb movements using functional MRI (fMRI) is challenging due to head motion and difficulty in isolating different types of movement. Therefore, we developed a custom-made MR-compatible footplate and leg cushion to identify the cortical loci for lower limb movements and conducted multivariate analysis on the fMRI data. We evaluated the validity of the identified loci using both fMRI and behavioral data, obtained from healthy participants as well as individuals after stroke. METHODS We recruited 33 healthy participants who performed four different lower limb movements (ankle dorsiflexion, ankle rotation, knee extension, and toe flexion) using our custom-built equipment while fMRI data were acquired. A subgroup of these participants (Dataset 1; n = 21) was used to identify the cortical loci associated with each lower limb movement in the paracentral lobule (PCL) using multivoxel pattern analysis and representational similarity analysis. The identified cortical loci were then evaluated using the remaining healthy participants (Dataset 2; n = 11), for whom the laterality index (LI) was calculated for each lower limb movement using the cortical loci identified for the left and right lower limbs. In addition, we acquired a dataset from 15 individuals with chronic stroke for regression analysis using the LI and the Fugl-Meyer Assessment (FMA) scale. RESULTS The cortical loci associated with the lower limb movements were hierarchically organized in the medial wall of the PCL following the cortical homunculus. The LI was clearer using the identified cortical loci than using the PCL. The healthy participants (mean ± standard deviation: 0.12 ± 0.30; range: - 0.63 to 0.91) exhibited a higher contralateral LI than the individuals after stroke (0.07 ± 0.47; - 0.83 to 0.97). The corresponding LI scores for individuals after stroke showed a significant positive correlation with the FMA scale for paretic side movement in ankle dorsiflexion (R2 = 0.33, p = 0.025) and toe flexion (R2 = 0.37, p = 0.016). CONCLUSIONS The cortical loci associated with lower limb movements in the PCL identified in healthy participants were validated using independent groups of healthy participants and individuals after stroke. Our findings suggest that these cortical loci may be beneficial for the neurorehabilitation of lower limb movement in individuals after stroke, such as in developing effective rehabilitation interventions guided by the LI scores obtained for neuronal activations calculated from the identified cortical loci across the paretic and non-paretic sides of the brain.
Collapse
Affiliation(s)
- Minseok Choi
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Hyun-Chul Kim
- Department of Artificial Intelligence, Kyungpook National University, Daegu, South Korea
| | - Inchan Youn
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, South Korea
| | - Song Joo Lee
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, South Korea.
| | - Jong-Hwan Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea.
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, South Korea.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Boston, Massachusetts, USA.
| |
Collapse
|
11
|
Mensah-Brown KG, Naylor RM, Graepel S, Brinjikji W. Neuromodulation: What the neurointerventionalist needs to know. Interv Neuroradiol 2024:15910199231224554. [PMID: 38454831 PMCID: PMC11569746 DOI: 10.1177/15910199231224554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 03/09/2024] Open
Abstract
Neuromodulation is the alteration of neural activity in the central, peripheral, or autonomic nervous systems. Consequently, this term lends itself to a variety of organ systems including but not limited to the cardiac, nervous, and even gastrointestinal systems. In this review, we provide a primer on neuromodulation, examining the various technological systems employed and neurological disorders targeted with this technology. Ultimately, we undergo a historical analysis of the field's development, pivotal discoveries and inventions gearing this review to neuro-adjacent subspecialties with a specific focus on neurointerventionalists.
Collapse
Affiliation(s)
| | - Ryan M. Naylor
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
12
|
Sun B, Luo J, Li Z, Chen D, Wang Q, Si W. Muscone alleviates neuronal injury via increasing stress granules formation and reducing apoptosis in acute ischemic stroke. Exp Neurol 2024; 373:114678. [PMID: 38185313 DOI: 10.1016/j.expneurol.2024.114678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
As the main bioactive component of musk, muscone has been reported to have marked protective effects in treating acute ischemic stroke (AIS). However, the specific anti-stroke mechanism of muscone still needs further research. In the current investigation, the PC12 cells OGD/R and the rat transient MCAO/R models were utilized as the AIS models. Serum hepatic and renal functional indexes (ALT, AST, BUN, and Cr) and cell viability were determined to select the appropriate muscone concentrations for in vitro and in vivo experiments. TTC, Hematoxylin and eosin (H&E), and Live/Dead staining were utilized to evaluate the protective effects of muscone in injured tissues and cells. Western blotting analysis, TUNEL staining, propidium iodide, and annexin V staining were applied to detect the anti-apoptotic effect of muscone. Double-label immunofluorescence staining of T-cell intracellular antigen-1 (TIA1) and Ras-GAP SH3 domain-binding protein 1 (G3BP1) was performed to observe whether muscone regulated the SG formation level. Molecular docking, TIA1 silencing and TIA1 overexpression experiments were employed to investigate the molecular mechanism underlying the regulation of SG formation by muscone. The 2, 3, 5-Triphenyl-tetrazolium chloride (TTC) staining and live/dead staining showed the AIS injury level of MCAO/R rat and the OGD/R PC12 cells were attenuated by muscone administration. The muscone significantly minimized the apoptosis rate in MCAO/R rats and OGD/R PC12 cells following flow cytometry analysis, western blotting analysis, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The double-label immunofluorescence staining data revealed that muscone promoted the SG formation level in OGD/R PC12 cells and the cortex MCAO/R rats. The results of molecular docking, TIA1 silencing and TIA1 overexpression experiments revealed that muscone could bind to TIA1 protein and regulate its expression level, thereby promoting the formation of stress granules and exerting a protective effect against AIS injury. This study indicated that the significant protective effect of muscone in reducing apoptosis levels might be via promoting SG formation under AIS conditions. This study further explores the therapeutic effect and anti-apoptosis mechanism of muscone in AIS, which may provide a potential candidate drug for the clinical treatment of AIS injury.
Collapse
Affiliation(s)
- Bin Sun
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Jing Luo
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Zhen Li
- Department of Neurology, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, PR China
| | - Dongfeng Chen
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Qizhang Wang
- Department of Neurology, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, PR China
| | - Wenwen Si
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China.
| |
Collapse
|
13
|
Rodríguez A, Amaya-Pascasio L, Gutiérrez-Fernández M, García-Pinteño J, Moreno M, Martínez-Sánchez P. Non-invasive brain stimulation for functional recovery in animal models of stroke: A systematic review. Neurosci Biobehav Rev 2024; 156:105485. [PMID: 38042359 DOI: 10.1016/j.neubiorev.2023.105485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Motor and cognitive dysfunction occur frequently after stroke, severely affecting a patient´s quality of life. Recently, non-invasive brain stimulation (NIBS) has emerged as a promising treatment option for improving stroke recovery. In this context, animal models are needed to improve the therapeutic use of NIBS after stroke. A systematic review was conducted based on the PRISMA statement. Data from 26 studies comprising rodent models of ischemic stroke treated with different NIBS techniques were included. The SYRCLE tool was used to assess study bias. The results suggest that both repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) improved overall neurological, motor, and cognitive functions and reduced infarct size both in the short- and long-term. For tDCS, it was observed that either ipsilesional inhibition or contralesional stimulation consistently led to functional recovery. Additionally, the application of early tDCS appeared to be more effective than late stimulation, and tDCS may be slightly superior to rTMS. The optimal stimulation protocol and the ideal time window for intervention remain unresolved. Future directions are discussed for improving study quality and increasing their translational potential.
Collapse
Affiliation(s)
- Antonio Rodríguez
- Fundación para la Investigación Biosanitaria de Andalucía Oriental (FIBAO), Torrecárdenas University Hospital, Almería, Spain; Stroke Unit, Department of Neurology, Torrecárdenas University Hospital, Almería, Spain
| | - Laura Amaya-Pascasio
- Stroke Unit, Department of Neurology, Torrecárdenas University Hospital, Almería, Spain
| | - María Gutiérrez-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain
| | - José García-Pinteño
- Fundación para la Investigación Biosanitaria de Andalucía Oriental (FIBAO), Torrecárdenas University Hospital, Almería, Spain; Stroke Unit, Department of Neurology, Torrecárdenas University Hospital, Almería, Spain
| | - Margarita Moreno
- Department of Psychology, Faculty of Health Science, University of Almería, Spain; Health Research Center (CEINSA), University of Almería, Spain.
| | - Patricia Martínez-Sánchez
- Stroke Unit, Department of Neurology, Torrecárdenas University Hospital, Almería, Spain; Health Research Center (CEINSA), University of Almería, Spain; Department of Nursing, Physiotherapy and Medicine, Faculty of Health Science, University of Almería, Spain.
| |
Collapse
|
14
|
Ferreira SA, Pinto N, Serrenho I, Pato MV, Baltazar G. Contribution of glial cells to the neuroprotective effects triggered by repetitive magnetic stimulation: a systematic review. Neural Regen Res 2024; 19:116-123. [PMID: 37488852 PMCID: PMC10479834 DOI: 10.4103/1673-5374.374140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 07/26/2023] Open
Abstract
Repetitive transcranial magnetic stimulation has been increasingly studied in different neurological diseases, and although most studies focus on its effects on neuronal cells, the contribution of non-neuronal cells to the improvement triggered by repetitive transcranial magnetic stimulation in these diseases has been increasingly suggested. To systematically review the effects of repetitive magnetic stimulation on non-neuronal cells two online databases, Web of Science and PubMed were searched for the effects of high-frequency-repetitive transcranial magnetic stimulation, low-frequency-repetitive transcranial magnetic stimulation, intermittent theta-burst stimulation, continuous theta-burst stimulation, or repetitive magnetic stimulation on non-neuronal cells in models of disease and in unlesioned animals or cells. A total of 52 studies were included. The protocol more frequently used was high-frequency-repetitive magnetic stimulation, and in models of disease, most studies report that high-frequency-repetitive magnetic stimulation led to a decrease in astrocyte and microglial reactivity, a decrease in the release of pro-inflammatory cytokines, and an increase of oligodendrocyte proliferation. The trend towards decreased microglial and astrocyte reactivity as well as increased oligodendrocyte proliferation occurred with intermittent theta-burst stimulation and continuous theta-burst stimulation. Few papers analyzed the low-frequency-repetitive transcranial magnetic stimulation protocol, and the parameters evaluated were restricted to the study of astrocyte reactivity and release of pro-inflammatory cytokines, reporting the absence of effects on these parameters. In what concerns the use of magnetic stimulation in unlesioned animals or cells, most articles on all four types of stimulation reported a lack of effects. It is also important to point out that the studies were developed mostly in male rodents, not evaluating possible differential effects of repetitive transcranial magnetic stimulation between sexes. This systematic review supports that through modulation of glial cells repetitive magnetic stimulation contributes to the neuroprotection or repair in various neurological disease models. However, it should be noted that there are still few articles focusing on the impact of repetitive magnetic stimulation on non-neuronal cells and most studies did not perform in-depth analyses of the effects, emphasizing the need for more studies in this field.
Collapse
Affiliation(s)
- Susana A. Ferreira
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Nuno Pinto
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
- GRUBI-Systematic Reviews Group, University of Beira Interior, Covilhã, Portugal
| | - Inês Serrenho
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Maria Vaz Pato
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
- GRUBI-Systematic Reviews Group, University of Beira Interior, Covilhã, Portugal
| | - Graça Baltazar
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
15
|
Li Y, Schappell LE, Polizu C, DiPersio J, Tsirka SE, Halterman MW, Nadkarni NA. Evolving Clinical-Translational Investigations of Cerebroprotection in Ischemic Stroke. J Clin Med 2023; 12:6715. [PMID: 37959180 PMCID: PMC10649331 DOI: 10.3390/jcm12216715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Ischemic stroke is a highly morbid disease, with over 50% of large vessel stroke (middle cerebral artery or internal carotid artery terminus occlusion) patients suffering disability despite maximal acute reperfusion therapy with thrombolysis and thrombectomy. The discovery of the ischemic penumbra in the 1980s laid the foundation for a salvageable territory in ischemic stroke. Since then, the concept of neuroprotection has been a focus of post-stroke care to (1) minimize the conversion from penumbra to core irreversible infarct, (2) limit secondary damage from ischemia-reperfusion injury, inflammation, and excitotoxicity and (3) to encourage tissue repair. However, despite multiple studies, the preclinical-clinical research enterprise has not yet created an agent that mitigates post-stroke outcomes beyond thrombolysis and mechanical clot retrieval. These translational gaps have not deterred the scientific community as agents are under continuous investigation. The NIH has recently promoted the concept of cerebroprotection to consider the whole brain post-stroke rather than just the neurons. This review will briefly outline the translational science of past, current, and emerging breakthroughs in cerebroprotection and use of these foundational ideas to develop a novel paradigm for optimizing stroke outcomes.
Collapse
Affiliation(s)
- Yinghui Li
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA; (Y.L.); (L.E.S.); (C.P.); (J.D.); (M.W.H.)
| | - Laurel E. Schappell
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA; (Y.L.); (L.E.S.); (C.P.); (J.D.); (M.W.H.)
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA;
| | - Claire Polizu
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA; (Y.L.); (L.E.S.); (C.P.); (J.D.); (M.W.H.)
| | - James DiPersio
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA; (Y.L.); (L.E.S.); (C.P.); (J.D.); (M.W.H.)
| | - Stella E. Tsirka
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA;
| | - Marc W. Halterman
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA; (Y.L.); (L.E.S.); (C.P.); (J.D.); (M.W.H.)
| | - Neil A. Nadkarni
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA; (Y.L.); (L.E.S.); (C.P.); (J.D.); (M.W.H.)
| |
Collapse
|
16
|
Huang Y, Lin R, Li H, Xu Y, Tian F, Ma L, Liu X, Ma S, Li X, Lai Z, Bai C, He W, Ma Q, Wang J, Zhu N. Protocol for a single-blind randomized clinical trial to test the efficacy of bilateral transcranial magnetic stimulation on upper extremity motor function in patients recovering from stroke. Trials 2023; 24:601. [PMID: 37735708 PMCID: PMC10515042 DOI: 10.1186/s13063-023-07584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/14/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND No consensus currently exists regarding the optimal protocol for repetitive transcranial magnetic stimulation (rTMS) treatment of upper-extremity motor dysfunction after stroke. Studies have shown that combined low- and high-frequency stimulation (LF-HF-rTMS) of the bilateral cerebral hemispheres is more effective than sham stimulation or stimulation of one cerebral hemisphere alone in treating motor dysfunction in the subacute stage of stroke. The efficacy of this protocol in the convalescence phase of stroke has rarely been reported, and its mechanism of action has not been clarified. In this study, we designed a prospective, single-blind, randomized controlled trial to investigate the efficacy and safety of different stimulation regimens for the treatment of upper extremity motor disorders in patients with convalescent stage stroke and aimed to explore the underlying mechanisms based on biomarkers such as brain-derived neurotrophic factor (BDNF). METHODS Seventy-six subjects will be randomly divided into combined, low-frequency, high-frequency, and control groups based on the proportion of 1:1:1:1, with 19 cases in each group. All groups will have conventional rehabilitation, on top of which the combined group will receive 1 Hz rTMS in the unaffected hemisphere and 10 Hz rTMS in the affected hemisphere. The low-frequency group will be administered 1 Hz rTMS in the unaffected hemisphere and sham stimulation in the contralateral hemisphere. The high-frequency group will be administered 10 Hz rTMS in the affected hemisphere and contralateral sham stimulation. The control group will receive bilateral sham stimulation. Assessments will be performed at baseline, after 2 weeks of treatment, and at post-treatment follow-up at week 6. The primary outcomes are FMA-UE (Fugl-Meyer assessment-upper extremity), latency, and serum BDNF levels. The secondary outcomes are the National Institute of Health Stroke Scale (NIHSS), Brunnstrom staging (BS), modified Ashworth scale (MAS), Modified Barthel Index (MBI), central motor conduction time (CMCT), precursor proteins of mature BDNF (proBDNF), and matrix metalloproteinase-9 (MMP-9) levels. Adverse events, such as headaches and seizures, will be recorded throughout the study. DISCUSSION The findings of this study will help develop optimal stimulation protocols for motor recovery in stroke patients and identify biomarkers that respond to post-stroke motor rehabilitation, for better guidance of clinical treatment. TRIAL REGISTRATION The study protocol was passed by the Medical Research Ethics Committee of the General Hospital of Ningxia Medical University on January 1, 2022 (no. KYLL-2021-1082). It was registered into the Chinese Clinical Trials Registry on May 22, 2022 (no. ChiCTR2200060201). This study is currently in progress.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Rehabilitation Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ruizhu Lin
- Department of Rehabilitation Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hongyu Li
- Department of Rehabilitation Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yujuan Xu
- Department of Rehabilitation Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Fubao Tian
- Department of Rehabilitation Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Liangchen Ma
- Department of Rehabilitation Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiaoli Liu
- Department of Rehabilitation Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shuming Ma
- Department of Rehabilitation Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiaolong Li
- Department of Rehabilitation Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zheying Lai
- Department of Rehabilitation Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Chuanping Bai
- Department of Rehabilitation Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Weichun He
- Department of Rehabilitation Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qi Ma
- Department of Rehabilitation Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jingkai Wang
- Department of Rehabilitation Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ning Zhu
- Department of Rehabilitation Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
17
|
Cheng S, Xin R, Zhao Y, Wang P, Feng W, Liu P. Evaluation of fMRI activation in post-stroke patients with movement disorders after repetitive transcranial magnetic stimulation: a scoping review. Front Neurol 2023; 14:1192545. [PMID: 37404941 PMCID: PMC10315664 DOI: 10.3389/fneur.2023.1192545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
Background Movement disorders are one of the most common stroke residual effects, which cause a major stress on their families and society. Repetitive transcranial magnetic stimulation (rTMS) could change neuroplasticity, which has been suggested as an alternative rehabilitative treatment for enhancing stroke recovery. Functional magnetic resonance imaging (fMRI) is a promising tool to explore neural mechanisms underlying rTMS intervention. Object Our primary goal is to better understand the neuroplastic mechanisms of rTMS in stroke rehabilitation, this paper provides a scoping review of recent studies, which investigate the alteration of brain activity using fMRI after the application of rTMS over the primary motor area (M1) in movement disorders patients after stroke. Method The database PubMed, Embase, Web of Science, WanFang Chinese database, ZhiWang Chinese database from establishment of each database until December 2022 were included. Two researchers reviewed the study, collected the information and the relevant characteristic extracted to a summary table. Two researchers also assessed the quality of literature with the Downs and Black criteria. When the two researchers unable to reach an agreement, a third researcher would have been consulted. Results Seven hundred and eleven studies in all were discovered in the databases, and nine were finally enrolled. They were of good quality or fair quality. The literature mainly involved the therapeutic effect and imaging mechanisms of rTMS on improving movement disorders after stroke. In all of them, there was improvement of the motor function post-rTMS treatment. Both high-frequency rTMS (HF-rTMS) and low-frequency rTMS (LF-rTMS) can induce increased functional connectivity, which may not directly correspond to the impact of rTMS on the activation of the stimulated brain areas. Comparing real rTMS with sham group, the neuroplastic effect of real rTMS can lead to better functional connectivity in the brain network in assisting stroke recovery. Conclusion rTMS allows the excitation and synchronization of neural activity, promotes the reorganization of brain function, and achieves the motor function recovery. fMRI can observe the influence of rTMS on brain networks and reveal the neuroplasticity mechanism of post-stroke rehabilitation. The scoping review helps us to put forward a series of recommendations that might guide future researchers exploring the effect of motor stroke treatments on brain connectivity.
Collapse
Affiliation(s)
- Siman Cheng
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Rong Xin
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yan Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pu Wang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wuwei Feng
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Beker MC, Aydinli FI, Caglayan AB, Beker M, Baygul O, Caglayan A, Popa-Wagner A, Doeppner TR, Hermann DM, Kilic E. Age-Associated Resilience Against Ischemic Injury in Mice Exposed to Transient Middle Cerebral Artery Occlusion. Mol Neurobiol 2023:10.1007/s12035-023-03353-4. [PMID: 37093494 DOI: 10.1007/s12035-023-03353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Ischemic stroke is the leading cause of death and disability. Although stroke mainly affects aged individuals, animal research is mostly one on young rodents. Here, we examined the development of ischemic injury in young (9-12-week-old) and adult (72-week-old) C57BL/6 and BALB/c mice exposed to 30 min of intraluminal middle cerebral artery occlusion (MCAo). Post-ischemic reperfusion did not differ between young and adult mice. Ischemic injury assessed by infarct area and blood-brain barrier (BBB) integrity assessed by IgG extravasation analysis was smaller in adult compared with young mice. Microvascular viability and neuronal survival assessed by CD31 and NeuN immunohistochemistry were higher in adult than young mice. Tissue protection was associated with stronger activation of cell survival pathways in adult than young mice. Microglial/macrophage accumulation and activation assessed by F4/80 immunohistochemistry were more restricted in adult than young mice, and pro- and anti-inflammatory cytokine and chemokine responses were reduced by aging. By means of liquid chromatography-mass spectrometry, we identified a hitherto unknown proteome profile comprising the upregulation of glycogen degradation-related pathways and the downregulation of mitochondrial dysfunction-related pathways, which distinguished post-ischemic responses of the aged compared with the young brain. Our study suggests that aging increases the brain's resilience against ischemic injury.
Collapse
Affiliation(s)
- Mustafa C Beker
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Fatmagul I Aydinli
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Medical Biology, School of Medicine, Nisantasi University, Istanbul, Turkey
| | - Ahmet B Caglayan
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Merve Beker
- Department of Medical Biology, International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Oguzhan Baygul
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Aysun Caglayan
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Aurel Popa-Wagner
- Experimental Research Center for Normal and Pathological Aging, ARES, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | | | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ertugrul Kilic
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Unalan, TR-34700, Istanbul, Turkey.
| |
Collapse
|
19
|
Yüksel MM, Sun S, Latchoumane C, Bloch J, Courtine G, Raffin EE, Hummel FC. Low-Intensity Focused Ultrasound Neuromodulation for Stroke Recovery: A Novel Deep Brain Stimulation Approach for Neurorehabilitation? IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 4:300-318. [PMID: 38196977 PMCID: PMC10776095 DOI: 10.1109/ojemb.2023.3263690] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 01/11/2024] Open
Abstract
Stroke as the leading cause of adult long-term disability and has a significant impact on patients, society and socio-economics. Non-invasive brain stimulation (NIBS) approaches such as transcranial magnetic stimulation (TMS) or transcranial electrical stimulation (tES) are considered as potential therapeutic options to enhance functional reorganization and augment the effects of neurorehabilitation. However, non-invasive electrical and magnetic stimulation paradigms are limited by their depth focality trade-off function that does not allow to target deep key brain structures critically important for recovery processes. Transcranial ultrasound stimulation (TUS) is an emerging approach for non-invasive deep brain neuromodulation. Using non-ionizing, ultrasonic waves with millimeter-accuracy spatial resolution, excellent steering capacity and long penetration depth, TUS has the potential to serve as a novel non-invasive deep brain stimulation method to establish unprecedented neuromodulation and novel neurorehabilitation protocols. The purpose of the present review is to provide an overview on the current knowledge about the neuromodulatory effects of TUS while discussing the potential of TUS in the field of stroke recovery, with respect to existing NIBS methods. We will address and discuss critically crucial open questions and remaining challenges that need to be addressed before establishing TUS as a new clinical neurorehabilitation approach for motor stroke recovery.
Collapse
Affiliation(s)
- Mahmut Martin Yüksel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de LausanneGeneva1201Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de Lausanne Valais, Clinique Romande de Réadaptation Sion1951Switzerland
| | - Shiqi Sun
- Neuro-X Institute and Brain Mind Institute, School of Life SciencesSwiss Federal Institute of Technology (EPFL)Lausanne1015Switzerland
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1011Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1011Switzerland
| | - Charles Latchoumane
- Neuro-X Institute and Brain Mind Institute, School of Life SciencesSwiss Federal Institute of Technology (EPFL)Lausanne1015Switzerland
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1011Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1011Switzerland
| | - Jocelyne Bloch
- Neuro-X Institute and Brain Mind Institute, School of Life SciencesSwiss Federal Institute of Technology (EPFL)Lausanne1015Switzerland
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1015Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1015Switzerland
- Department of NeurosurgeryLausanne University HospitalLausanne1011Switzerland
| | - Gregoire Courtine
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1015Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1015Switzerland
- Department of NeurosurgeryLausanne University HospitalLausanne1011Switzerland
| | - Estelle Emeline Raffin
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de LausanneGeneva1201Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de Lausanne Valais, Clinique Romande de Réadaptation Sion1951Switzerland
| | - Friedhelm Christoph Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de LausanneGeneva1202Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de Lausanne Valais, Clinique Romande de Réadaptation Sion1951Switzerland
- Clinical NeuroscienceUniversity of Geneva Medical SchoolGeneva1211Switzerland
| |
Collapse
|
20
|
Chen X, Liu F, Lyu Z, Xiu H, Hou Y, Tu S. High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) impacts activities of daily living of patients with post-stroke cognitive impairment: a systematic review and meta-analysis. Neurol Sci 2023:10.1007/s10072-023-06779-9. [PMID: 37012519 DOI: 10.1007/s10072-023-06779-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023]
Abstract
OBJECTIVE To systematically evaluate the impact of high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) on activities of daily living (ADLs) of patients with post-stroke cognitive impairment (PSCI). DATA SOURCES Relevant studies published as of November 2022 (English and Chinese) were searched in Web of Science, PubMed, Embase, Cochrane Library, OVID, China Science and Technology Journal Database (VIP), Wanfang, Chinese National Knowledge Infrastructure (CNKI), and SinoMed databases. REVIEW METHODS Randomized controlled trials (RCTs) that used HF-rTMS for the treatment of ADLs in patients with PSCI were included in this meta-analysis. Two reviewers independently screened literature, extracted the data, evaluated the risk of bias using the Cochrane Risk of Bias Tool, and cross-checked. RESULTS Forty-one RCTs involving 2855 patients with PSCI were included. In 30 RCTs, the experimental group received HF-rTMS in addition to the interventions used in the control group. In 11 RCTs, the experimental group received HF-rTMS while the control group received sham-rTMS. Barthel Index (BI), Modified Barthel Index (MBI), and Functional Independence Measure (FIM) were higher in the HF-rTMS group than in the control group, whereas scores of Blessed Behavior Scale was lower in the HF-rTMS group than in the control group. All P < 0.05. In 36 studies, the stimulation sites were on the dorsolateral prefrontal cortex (DLPFC). CONCLUSION HF-rTMS can ameliorate ADLs of patients with PSCI and has a better rehabilitation effect on PSCI.
Collapse
Affiliation(s)
- Xin Chen
- Nursing College, Fujian University of Traditional Chinese Medicine, No.1 Qiu Yang Road, Shangjie, Minhou, Fuzhou, Fujian, 350122, People's Republic of China
| | - Fang Liu
- Nursing College, Fujian University of Traditional Chinese Medicine, No.1 Qiu Yang Road, Shangjie, Minhou, Fuzhou, Fujian, 350122, People's Republic of China.
| | - Zecai Lyu
- Nursing College, Fujian University of Traditional Chinese Medicine, No.1 Qiu Yang Road, Shangjie, Minhou, Fuzhou, Fujian, 350122, People's Republic of China
| | - Huoqin Xiu
- Nursing College, Fujian University of Traditional Chinese Medicine, No.1 Qiu Yang Road, Shangjie, Minhou, Fuzhou, Fujian, 350122, People's Republic of China
| | - Yufei Hou
- Nursing College, Fujian University of Traditional Chinese Medicine, No.1 Qiu Yang Road, Shangjie, Minhou, Fuzhou, Fujian, 350122, People's Republic of China
| | - Shuzhen Tu
- Nursing College, Fujian University of Traditional Chinese Medicine, No.1 Qiu Yang Road, Shangjie, Minhou, Fuzhou, Fujian, 350122, People's Republic of China
| |
Collapse
|
21
|
Caglayan AB, Beker MC, Sertel Evren E, Caglayan B, Kilic Ü, Ates N, Caglayan A, Dasdelen MF, Doeppner TR, Saarma M, Hermann DM, Kilic E. The Unconventional Growth Factors Cerebral Dopamine Neurotrophic Factor and Mesencephalic Astrocyte-Derived Neurotrophic Factor Promote Post-ischemic Neurological Recovery, Perilesional Brain Remodeling, and Lesion-Remote Axonal Plasticity. Transl Stroke Res 2023; 14:263-277. [PMID: 35583716 DOI: 10.1007/s12975-022-01035-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 12/22/2022]
Abstract
Considerable efforts are currently made to develop strategies that boost endogenous recovery once a stroke has occurred. Owing to their restorative properties, neurotrophic factors are attractive candidates that capitalize on endogenous response mechanisms. Non-conventional growth factors cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF) promote neuronal survival and reduce neurological deficits in the acute phase of ischemic stroke in mice. Their effects on endogenous repair and recovery mechanisms in the stroke recovery phase were so far unknown. By intracerebroventricular delivery of CDNF or MANF starting 3 days post-stroke (1 µg/day for 28 days via miniosmotic pumps), we show that delayed CDNF and MANF administration promoted functional neurological recovery assessed by a battery of behavioral tests, increased long-term neuronal survival, reduced delayed brain atrophy, glial scar formation, and, in case of CDNF but not MANF, increased endogenous neurogenesis in the perilesional brain tissue. Besides, CDNF and MANF administration increased long-distance outgrowth of terminal axons emanating from the contralesional pyramidal tract, which crossed the midline to innervate ipsilesional facial nucleus. This plasticity promoting effect was accompanied by downregulation of the axonal growth inhibitor versican and the guidance molecules ephrin B1 and B2 in the previously ischemic hemisphere at 14 dpi, which represents a sensitive time-point for axonal growth. CDNF and MANF reduced the expression of the proinflammatory cytokines IL1β and TNFα in both hemispheres. The effects of non-conventional growth factors in the ischemic brain should further be examined since they might help to identify targets for restorative stroke therapy.
Collapse
Affiliation(s)
- Ahmet Burak Caglayan
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- International School of Medicine, Department of Physiology, Istanbul Medipol University, Istanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Mustafa Caglar Beker
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- School of Medicine, Dept. of Physiology, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Ekinciler Cad. 19, TR-34810, Istanbul, Turkey
| | - Elif Sertel Evren
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- School of Medicine, Dept. of Physiology, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Ekinciler Cad. 19, TR-34810, Istanbul, Turkey
| | - Berrak Caglayan
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- International School of Medicine, Dept. of Medical Biology, Istanbul Medipol University, Istanbul, Turkey
| | - Ülkan Kilic
- Hamidiye School of Medicine, Department of Medical Biology, University of Health Sciences Turkey, Istanbul, Turkey
| | - Nilay Ates
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Faculty of Medicine, Department of Pharmacology, Istanbul Medipol University, Istanbul, Turkey
| | - Aysun Caglayan
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- School of Medicine, Dept. of Physiology, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Ekinciler Cad. 19, TR-34810, Istanbul, Turkey
| | - Muhammed Furkan Dasdelen
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- School of Medicine, Dept. of Physiology, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Ekinciler Cad. 19, TR-34810, Istanbul, Turkey
| | - Thorsten Roland Doeppner
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Department of Neurology, University Hospital Giessen, Giessen, Germany
| | - Mart Saarma
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Dirk Matthias Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ertugrul Kilic
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.
- School of Medicine, Dept. of Physiology, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Ekinciler Cad. 19, TR-34810, Istanbul, Turkey.
| |
Collapse
|
22
|
Wu X, Wang R, Wu Q, Liao C, Zhang J, Jiao H, Chen B, Wang S, Liu R. The effects of combined high-frequency repetitive transcranial magnetic stimulation and cervical nerve root magnetic stimulation on upper extremity motor recovery following stroke. Front Neurosci 2023; 17:1100464. [PMID: 36845428 PMCID: PMC9951778 DOI: 10.3389/fnins.2023.1100464] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Upper limb motor impairments after stroke cause patients partial or total loss of the capability of performing daily living, working, and social activities, which significantly affects the quality of life (QoL) of patients and brings a heavy burden to their families and society. As a non-invasive neuromodulation technique, transcranial magnetic stimulation (TMS) can act not only on the cerebral cortex, but also on peripheral nerves, nerve roots, and muscle tissues. Previous studies have shown that magnetic stimulation on the cerebral cortex and peripheral tissues has a positive effect on the recovery of upper limb motor function after stroke, however, few studies have reported the combination of the two. Objective This study was to investigate whether high frequency repetitive transcranial magnetic stimulation (HF-rTMS) combined with cervical nerve root magnetic stimulation more effectively ameliorates upper limb motor function in stroke patients. We hypothesized that the combination of the two can achieve a synergistic effect and further promotes functional recovery. Methods Sixty patients with stroke were randomly divided into four groups and received real or sham rTMS stimulation and cervical nerve root magnetic stimulation consecutively before other therapies, once daily over five fractions per week for a total of 15 times. We evaluated the upper limb motor function and activities of daily living of the patients at the time of pre-treatment, post-treatment, and 3-month follow up. Results All patients completed study procedures without any adverse effects. The upper limb motor function and activities of daily living improved in patients of each group were improved after treatment (post 1) and 3 months after treatment (post 2). Combination treatment was significantly better than single treatments alone or sham. Conclusion Both rTMS and cervical nerve root magnetic stimulation effectively promoted upper limb motor recovery in patients with stroke. The protocol combining the two is more beneficial for motor improvement and patients can easily tolerate it. Clinical trial registration https://www.chictr.org.cn/, identifier ChiCTR2100048558.
Collapse
Affiliation(s)
- Xiaofang Wu
- Department of Rehabilitation, Tangdu Hospital, Air Force Medical University, Xi’an, China,Graduate School of Xi’an Medical College, Xi’an, China
| | - Rui Wang
- Medical Department of Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Qunqiang Wu
- Department of Rehabilitation, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Chunhua Liao
- Department of Rehabilitation, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Jianshe Zhang
- Department of Rehabilitation, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Huiduo Jiao
- Department of Rehabilitation, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Baolin Chen
- Department of Rehabilitation, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Shuyan Wang
- Department of Rehabilitation, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Rui Liu
- Department of Rehabilitation, Tangdu Hospital, Air Force Medical University, Xi’an, China,*Correspondence: Rui Liu,
| |
Collapse
|
23
|
From Molecule to Patient Rehabilitation: The Impact of Transcranial Direct Current Stimulation and Magnetic Stimulation on Stroke-A Narrative Review. Neural Plast 2023; 2023:5044065. [PMID: 36895285 PMCID: PMC9991485 DOI: 10.1155/2023/5044065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 03/04/2023] Open
Abstract
Stroke is a major health problem worldwide, with numerous health, social, and economic implications for survivors and their families. One simple answer to this problem would be to ensure the best rehabilitation with full social reintegration. As such, a plethora of rehabilitation programs was developed and used by healthcare professionals. Among them, modern techniques such as transcranial magnetic stimulation and transcranial direct current stimulation are being used and seem to bring improvements to poststroke rehabilitation. This success is attributed to their capacity to enhance cellular neuromodulation. This modulation includes the reduction of the inflammatory response, autophagy suppression, antiapoptotic effects, angiogenesis enhancement, alterations in the blood-brain barrier permeability, attenuation of oxidative stress, influence on neurotransmitter metabolism, neurogenesis, and enhanced structural neuroplasticity. The favorable effects have been demonstrated at the cellular level in animal models and are supported by clinical studies. Thus, these methods proved to reduce infarct volumes and to improve motor performance, deglutition, functional independence, and high-order cerebral functions (i.e., aphasia and heminegligence). However, as with every therapeutic method, these techniques can also have limitations. Their regimen of administration, the phase of the stroke at which they are applied, and the patients' characteristics (i.e., genotype and corticospinal integrity) seem to influence the outcome. Thus, no response or even worsening effects were obtained under certain circumstances both in animal stroke model studies and in clinical trials. Overall, weighing up risks and benefits, the new transcranial electrical and magnetic stimulation techniques can represent effective tools with which to improve the patients' recovery after stroke, with minimal to no adverse effects. Here, we discuss their effects and the molecular and cellular events underlying their effects as well as their clinical implications.
Collapse
|
24
|
Hanoglu L, Velioglu HA, Hanoglu T, Yulug B. Neuroimaging-Guided Transcranial Magnetic and Direct Current Stimulation in MCI: Toward an Individual, Effective and Disease-Modifying Treatment. Clin EEG Neurosci 2023; 54:82-90. [PMID: 34751037 DOI: 10.1177/15500594211052815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The therapeutic approaches currently applied in Alzheimer's disease (AD) and similar neurodegenerative diseases are essentially based on pharmacological strategies. However, despite intensive research, the effectiveness of these treatments is limited to transient symptomatic effects, and they are still far from exhibiting a true therapeutic effect capable of altering prognosis. The lack of success of such pharmacotherapy-based protocols may be derived from the cases in the majority of trials being too advanced to benefit significantly in therapeutic terms at the clinical level. For neurodegenerative diseases, mild cognitive impairment (MCI) may be an early stage of the disease continuum, including Alzheimer's. Noninvasive brain stimulation (NIBS) techniques have been developed to modulate plasticity in the human cortex in the last few decades. NIBS techniques have made it possible to obtain unique findings concerning brain functions, and design novel approaches to treat various neurological and psychiatric conditions. In addition, its synaptic and cellular neurobiological effects, NIBS is an attractive treatment option in the early phases of neurodegenerative diseases, such as MCI, with its beneficial modifying effects on cellular neuroplasticity. However, there is still insufficient evidence about the potential positive clinical effects of NIBS on MCI. Furthermore, the huge variability of the clinical effects of NIBS limits its use. In this article, we reviewed the combined approach of NIBS with various neuroimaging and electrophysiological methods. Such methodologies may provide a new horizon to the path for personalized treatment, including a more individualized pathophysiology approach which might even define new specific targets for specific symptoms of neurodegenerations.
Collapse
Affiliation(s)
- Lutfu Hanoglu
- 218502Istanbul Medipol University School of Medicine, Istanbul, Turkey
| | - Halil Aziz Velioglu
- 218502Istanbul Medipol University, Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul, Turkey
| | - Taha Hanoglu
- 218502Istanbul Medipol University, Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul, Turkey
| | - Burak Yulug
- 450199Alanya Alaaddin Keykubat University School of Medicine, Alanya/Antalya, Turkey
| |
Collapse
|
25
|
Komatsu T, Hada T, Sasaki N, Kida H, Takahashi J, Maku T, Nakada R, Shiraishi T, Akiyama S, Kitagawa T, Sato T, Takatsu H, Sakuta K, Sakai K, Umehara T, Omoto S, Murakami H, Mitsumura H, Abo M, Iguchi Y. Effects and safety of high-frequency rTMS in acute intracerebral hemorrhage patients: A pilot study. J Neurol Sci 2022; 443:120473. [PMID: 36343585 DOI: 10.1016/j.jns.2022.120473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Although high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) in chronic intracerebral hemorrhage (ICH) is beneficial, it has been poorly investigated in rTMS for acute ICH. Our aim is to investigate the effects and safety of rTMS in acute spontaneous ICH. METHODS We prospectively performed HF-rTMS on consecutive patients with ICH within 24 h from onset between April 2019 and August 2021. The inclusion criterion was (1) persistent paralysis, with an NIHSS scale of 1 or higher for at least 3 days after onset. The exclusion criteria were (1) cortical, subcortical, and cerebellar ICH, (2) disturbance of consciousness, and (3) over 80 years of age. For the purpose of comparison, we used a conventional rehabilitation group whose patients met the same criteria between April 2016 and March 2019. We evaluated incidence of epilepsy and exacerbation of the NIHSS score in the rTMS group. We also compared the two groups regarding clinical background and outcome. RESULTS Enrolled in the study were a total of 44 patients. Of the patients, 22 (50%) were in the rTMS group. The median (IQR) time from onset to the start of rTMS was 9 (6-12) days. There were no cases of epilepsy or exacerbation of NIHSS after the start of rTMS. Favorable outcome (modified Rankin Scale score of between 0 and 2) at 3 months was frequently observed in the rTMS group (73% vs 27%, p = 0.006). HF-rTMS was independently associated with favorable outcome at 3 months (OR = 11.5, 95% CI = 2.194-60.447, p = 0.004). CONCLUSIONS HF-rTMS may be safe and effective in acute ICH patients.
Collapse
Affiliation(s)
- Teppei Komatsu
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan.
| | - Takuya Hada
- Department of Rehabilitation Medicine, the Jikei University School of Medicine, Tokyo, Japan
| | - Nobuyuki Sasaki
- Department of Rehabilitation Medicine, the Jikei University School of Medicine, Tokyo, Japan
| | - Hiroyuki Kida
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Junichiro Takahashi
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Maku
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Ryoji Nakada
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Tomotaka Shiraishi
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Shiho Akiyama
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Tomomichi Kitagawa
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Takeo Sato
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Hiroki Takatsu
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Kenichi Sakuta
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Kenichiro Sakai
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Umehara
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan.
| | - Shusaku Omoto
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan.
| | - Hidetomo Murakami
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Hidetaka Mitsumura
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Abo
- Department of Rehabilitation Medicine, the Jikei University School of Medicine, Tokyo, Japan.
| | - Yasuyuki Iguchi
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
26
|
Balçıkanlı Z, Culha I, Dilsiz P, Aydin MS, Ates N, Beker MC, Baltaci SB, Koc HI, Yigitbasi A, Gündogar M, Doeppner TR, Hermann DM, Kilic E. Lithium promotes long-term neurological recovery after spinal cord injury in mice by enhancing neuronal survival, gray and white matter remodeling, and long-distance axonal regeneration. Front Cell Neurosci 2022; 16:1012523. [PMID: 36439202 PMCID: PMC9693752 DOI: 10.3389/fncel.2022.1012523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/25/2022] [Indexed: 09/20/2023] Open
Abstract
Spinal cord injury (SCI) induces neurological deficits associated with long-term functional impairments. Since the current treatments remain ineffective, novel therapeutic options are needed. Besides its effect on bipolar mood disorder, lithium was reported to have neuroprotective activity in different neurodegenerative conditions, including SCI. In SCI, the effects of lithium on long-term neurological recovery and neuroplasticity have not been assessed. We herein investigated the effects of intraperitoneally administered lithium chloride (LiCl) on motor coordination recovery, electromyography (EMG) responses, histopathological injury and remodeling, and axonal plasticity in mice exposed to spinal cord transection. At a dose of 0.2, but not 2.0 mmol/kg, LiCl enhanced motor coordination and locomotor activity starting at 28 days post-injury (dpi), as assessed by a set of behavioral tests. Following electrical stimulation proximal to the hemitransection, LiCl at 0.2 mmol/kg decreased the latency and increased the amplitude of EMG responses in the denervated hindlimb at 56 dpi. Functional recovery was associated with reduced gray and white matter atrophy rostral and caudal to the hemitransection, increased neuronal survival and reduced astrogliosis in the dorsal and ventral horns caudal to the hemitransection, and increased regeneration of long-distance axons proximal and distal to the lesion site in mice receiving 0.2 mmol/kg, but not 2 mmol/kg LiCl, as assessed by histochemical and immunohistochemical studies combined with anterograde tract tracing. Our results indicate that LiCl induces long-term neurological recovery and neuroplasticity following SCI.
Collapse
Affiliation(s)
- Zeynep Balçıkanlı
- Department of Physiology, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Irem Culha
- Department of Physiology, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Pelin Dilsiz
- Department of Physiology, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Mehmet Serif Aydin
- Department of Physiology, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Nilay Ates
- Department of Physiology, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
- Department of Pharmacology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Mustafa Caglar Beker
- Department of Physiology, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Saltuk Bugra Baltaci
- Department of Physiology, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Halil I. Koc
- Department of Physiology, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ahmet Yigitbasi
- Department of Hematology, Medical Faculty, Trakya University, Edirne, Turkey
| | - Mustafa Gündogar
- Department of Physiology, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
- Department of Endodontics, Faculty of Dentistry, Istanbul Medipol University, Istanbul, Turkey
| | - Thorsten R. Doeppner
- Department of Physiology, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
- Department of Neurology, University Hospital Gießen, Göttingen, Germany
| | - Dirk M. Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ertugrul Kilic
- Department of Physiology, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
27
|
Chen YF, Zhu GY, Mao MC, Zheng Y, Huang H, Liu LL, Chen SY, Cao LY, Xu DS. Study protocol of a randomized controlled trial for the synergizing effects of rTMS and Tui Na on upper limb motor function and cortical activity in ischemic stroke. Front Neurol 2022; 13:993227. [PMID: 36438962 PMCID: PMC9691988 DOI: 10.3389/fneur.2022.993227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/27/2022] [Indexed: 09/23/2023] Open
Abstract
Upper limb motor dysfunction after stroke is a serious threat to the living quality of patients and their families. Recovery of upper limb motor function after stroke largely relies on the activation and remodeling of neural circuits. rTMS (repetitive transcranial magnetic stimulation) has been proved to promote the reconstruction of neural synapses and neural circuits. However, there are still a large number of patients who cannot fully recover and leave behind varying degrees of dysfunction. Considering the systemic pathology after stroke, in addition to focal brain injury, stroke can also cause extensive dysfunction of peripheral organs. The rehabilitation strategy for stroke should combine the treatment of primary brain lesions with the intervention of secondary systemic damage. The aim of this trial is to verify the efficacy of rTMS synergize with Tui Na (Chinese Massage) on upper limb motor function after ischemic stroke, and to explore the mechanism of activation and remodeling of sensorimotor neural circuits with functional near-infrared spectroscopy. Ninety patients will be randomly assigned to either rTMS + Tui Na + conventional rehabilitation group (the experimental group) or rTMS + conventional rehabilitation group (the control group) in 1:1 ratio. Intervention is conducted five sessions a week, with a total of twenty sessions. The primary outcome is Fugl-Meyer Assessment, and the secondary outcomes include Muscle Strength, Modified Ashworth Assessment, Modified Barthel Index Assessment, motor evoked potentials and functional near-infrared spectroscopy. There are four time points for the evaluation, including baseline, 2 weeks and 4 weeks after the start of treatment, and 4 weeks after the end of treatment. This study is a randomized controlled trial. This study was approved by Institutional Ethics Committee of Shanghai Third Rehabilitation Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (approval No. SH3RH-2021-EC-012) on December, 16th, 2021. The protocol was registered with Chinese Clinical Trial Registry (ChiCTR2200056266), on February 3th, 2022. Patient recruitment was initiated on February 10th, 2022, and the study will be continued until December 2023.
Collapse
Affiliation(s)
- Yu-Feng Chen
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Tui Na, Hangzhou Dingqiao's Hospital, Hangzhou, China
| | - Guang-Yue Zhu
- Rehabilitation Medical Center, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Meng-Chai Mao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Ya Zheng
- Rehabilitation Medical Center, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Hao Huang
- Department of Rehabilitation Medicine, Shanghai Third Rehabilitation Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lan-Lan Liu
- Department of Rehabilitation Medicine, Shanghai Third Rehabilitation Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Si-Yun Chen
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling-Yun Cao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong-Sheng Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| |
Collapse
|
28
|
Lee Y, Oh BM, Park SH, Han TR. Low-Frequency Repetitive Transcranial Magnetic Stimulation in the Early Subacute Phase of Stroke Enhances Angiogenic Mechanisms in Rats. Ann Rehabil Med 2022; 46:228-236. [DOI: 10.5535/arm.22040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/19/2022] [Indexed: 11/07/2022] Open
Abstract
Objective To characterize the repetitive transcranial magnetic stimulation (rTMS) induced changes in angiogenic mechanisms across different brain regions.Methods Seventy-nine adult male Sprague-Dawley rats were subjected to a middle cerebral artery occlusion (day 0) and then treated with 1-Hz, 20-Hz, or sham stimulation of their lesioned hemispheres for 2 weeks. The stimulation intensity was set to 100% of the motor threshold. The neurological function was assessed on days 3, 10, and 17. The infarct volume and angiogenesis were measured by histology, immunohistochemistry, Western blot, and real-time polymerase chain reaction (PCR) assays. Brain tissue was harvested from the ischemic core (IC), ischemic border zone (BZ), and contralateral homologous cortex (CH).Results Optical density of angiopoietin1 and synaptophysin in the IC was significantly greater in the low-frequency group than in the sham group (p=0.03 and p=0.03, respectively). The 1-Hz rTMS significantly increased the level of Akt phosphorylation in the BZ (p<0.05 vs. 20 Hz). Endothelial nitric oxide synthase phosphorylation was increased in the IC (p<0.05 vs. 20 Hz), BZ (p<0.05 vs. 20 Hz), and CH (p<0.05 vs. 20 Hz and p<0.05 vs. sham). Real-time PCR demonstrated that low-frequency stimulation significantly increased the transcriptional activity of the TIE2 gene in the IC (p<0.05).Conclusion Low-frequency rTMS of the ipsilesional hemisphere in the early subacute phase of stroke promotes the expression of angiogenic factors and related genes in the brain, particularly in the injured area.
Collapse
|
29
|
Wu C, Yang L, Feng S, Zhu L, Yang L, Liu TCY, Duan R. Therapeutic non-invasive brain treatments in Alzheimer's disease: recent advances and challenges. Inflamm Regen 2022; 42:31. [PMID: 36184623 PMCID: PMC9527145 DOI: 10.1186/s41232-022-00216-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative diseases and the most common form of dementia. Characterized by the loss of learning, memory, problem-solving, language, and other thinking abilities, AD exerts a detrimental effect on both patients' and families' quality of life. Although there have been significant advances in understanding the mechanism underlying the pathogenesis and progression of AD, there is no cure for AD. The failure of numerous molecular targeted pharmacologic clinical trials leads to an emerging research shift toward non-invasive therapies, especially multiple targeted non-invasive treatments. In this paper, we reviewed the advances of the most widely studied non-invasive therapies, including photobiomodulation (PBM), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and exercise therapy. Firstly, we reviewed the pathological changes of AD and the challenges for AD studies. We then introduced these non-invasive therapies and discussed the factors that may affect the effects of these therapies. Additionally, we review the effects of these therapies and the possible mechanisms underlying these effects. Finally, we summarized the challenges of the non-invasive treatments in future AD studies and clinical applications. We concluded that it would be critical to understand the exact underlying mechanisms and find the optimal treatment parameters to improve the translational value of these non-invasive therapies. Moreover, the combined use of non-invasive treatments is also a promising research direction for future studies and sheds light on the future treatment or prevention of AD.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luoman Yang
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing, 100083, China
| | - Shu Feng
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Ling Zhu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
30
|
Wen X, Yang Q, Liu Z, Peng Y, Wang J, Liu X, Hu H, Liu H, Wang M. The Effect of Repetitive Transcranial Magnetic Stimulation in Synchronization with Effortful Swallowing on Post-stroke Dysphagia. Dysphagia 2022; 38:912-922. [PMID: 36087120 DOI: 10.1007/s00455-022-10515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022]
Abstract
Either effortful swallowing exercise or repetitive transcranial magnetic stimulation (rTMS) is considered as an effective method to treat dysphagia after stroke. Thus, synchronizing these two interventions may improve the efficiency of treatment. This trial intended to explore the effects of rTMS and effortful swallowing exercise on the recovery of swallowing function in patients after stroke. A total of 56 patients with post-stroke dysphagia who were able to actively cooperate with the training were analyzed in this study. We experimented with different intervention effects of rTMS synchronization with effortful swallowing training (group 1), rTMS (group 2), and traditional swallowing training alone (group 3). Every patient completed conventional swallowing training 5 days a week for 2 weeks. Patients in group 1 and group 2 underwent 10 consecutive sessions of 5 Hz rTMS over the affected mylohyoid cortical region. Fiberoptic endoscopic dysphagia severity scale (FEDSS), penetration/aspiration scale (PAS), standardized swallowing assessment (SSA), and functional oral intake scale (FOIS) were assessed and compared across the groups. No significant difference in FEDSS, PAS, SSA, or FOIS scores was found at baseline among the three groups. The mean change values of the FEDSS score, PAS score, SSA score, and FOIS score between baseline and post-intervention of the three groups (H = 16.05, P < 0.001; H = 21.70, P < 0.001; F (2, 53) = 9.68, P < 0.001; H = 18.26, P < 0.001; respectively) were statistically significant. In addition, the mean change values of FEDSS, PAS, SSA, and FOIS scores in participants in group 1 (all P < 0.001) and group 2 (P = 0.046; P = 0.045; P = 0.028; P = 0.032; respectively) were significantly higher than in group 3. Similarly, the mean change values of FEDSS, PAS, SSA, and FOIS scores were significantly higher in participants in group 1 than in group 2 (P = 0.046; P = 0.038; P = 0.042; P = 0.044; respectively). The results revealed that the conjunction of rTMS and effortful swallowing training was an effective method to facilitate the recovery of swallowing function in stroke patients. The present clinical trial provided a new treatment method for the functional restoration of swallowing in stroke patients, which may further facilitate the recovery of swallowing function in stroke patients with swallowing disorders.
Collapse
|
31
|
Beker MC, Pence ME, Yagmur S, Caglayan B, Caglayan A, Kilic U, Yelkenci HE, Altintas MO, Caglayan AB, Doeppner TR, Hermann DM, Kilic E. Phosphodiesterase 10A deactivation induces long-term neurological recovery, Peri-infarct remodeling and pyramidal tract plasticity after transient focal cerebral ischemia in mice. Exp Neurol 2022; 358:114221. [PMID: 36075453 DOI: 10.1016/j.expneurol.2022.114221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 11/04/2022]
Abstract
The phosphodiesterase (PDE) superfamily comprises enzymes responsible for the cAMP and cGMP degradation to AMP and GMP. PDEs are abundant in the brain, where they are involved in several neuronal functions. High PDE10A abundance was previously observed in the striatum; however its consequences for stroke recovery were unknown. Herein, we evaluated the effects of PDE10A deactivation by TAK-063 (0.3 or 3 mg/kg, initiated 72 h post-stroke) in mice exposed to intraluminal middle cerebral artery occlusion. We found that PDE10A deactivation over up to eight weeks dose-dependently increased long-term neuronal survival, angiogenesis, and neurogenesis in the peri-infarct striatum, which represents the core of the middle cerebral artery territory, and reduced astroglial scar formation, whole brain atrophy and, more specifically, striatal atrophy. Functional motor-coordination recovery and the long-distance plasticity of pyramidal tract axons, which originate from the contralesional motor cortex and descend through the contralesional striatum to innervate the ipsilesional facial nucleus, were enhanced by PDE10A deactivation. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed a set of dopamine receptor-related and neuronal plasticity-related PDE10A targets, which were elevated (e.g., protein phosphatase-1 regulatory subunit 1B) or reduced (e.g., serine/threonine protein phosphatase 1α, β-synuclein, proteasome subunit α2) by PDE10A deactivation. Our results identify PDE10A as a therapeutic target that critically controls post-ischemic brain tissue remodeling and plasticity.
Collapse
Affiliation(s)
- Mustafa C Beker
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.
| | - Mahmud E Pence
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Sumeyya Yagmur
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Berrak Caglayan
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey; Department of Medical Genetics, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Aysun Caglayan
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Ulkan Kilic
- Department of Medical Biology, International School of Medicine, University of Health Sciences Turkey, Istanbul, Turkey
| | - Hayriye E Yelkenci
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Mehmet O Altintas
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Ahmet B Caglayan
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey; Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Thorsten R Doeppner
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey; Department of Neurology, University Medicine Göttingen, University of Göttingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Ertugrul Kilic
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
32
|
Sasaki N, Sato T, Yamatoku M, Yamano Y. Efficacy of repetitive transcranial magnetic stimulation for gait disturbance in HTLV-1 associated myelopathy. NeuroRehabilitation 2022; 51:519-526. [DOI: 10.3233/nre-220105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Human T-cell leukemia virus type 1 (HTLV-1) associated myelopathy (HAM) can damage the spinal cord, causing paraplegia, spasticity, and gait disturbance. Currently, there are few effective treatments. OBJECTIVE: We investigated the efficacy of repetitive transcranial magnetic stimulation (rTMS) on gait disturbance in patients with HAM. METHODS: rTMS at 10 Hz was applied to HAM patients aged 30–80 years with an Osame’s Motor Disability Score between 3 and 6. The stimulation site on the skull was the position where motor evoked potentials were most evidently elicited and leg motor areas were stimulated. Resting motor thresholds (minimum stimulation to induce motor evoked potential) were also determined. Each participant underwent 10 sessions of 2400 stimuli. Clinical measurements, including walking speed and stride length, were obtained. RESULTS: From 119 patients with HAM recruited, 12 were included in the rTMS group and 18 who did not undergo rTMS comprised the control group. rTMS significantly improved walking speed and stride length compared to controls. Particularly, resting motor thresholds decreased after 10 sessions of rTMS. CONCLUSIONS: rTMS improves walking speed in patients with HAM and may be an effective alternative for treating gait disturbance in patients with HAM.
Collapse
Affiliation(s)
- Nobuyuki Sasaki
- Department of Rehabilitation Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Tomoo Sato
- Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Masato Yamatoku
- Department of Rehabilitation Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yoshihisa Yamano
- Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
33
|
Xing Y, Zhang Y, Li C, Luo L, Hua Y, Hu J, Bai Y. Repetitive Transcranial Magnetic Stimulation of the Brain After Ischemic Stroke: Mechanisms from Animal Models. Cell Mol Neurobiol 2022; 43:1487-1497. [PMID: 35917043 DOI: 10.1007/s10571-022-01264-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022]
Abstract
Stroke is a common cerebrovascular disease with high morbidity, mortality, and disability worldwide. Post-stroke dysfunction is related to the death of neurons and impairment of synaptic structure, which results from cerebral ischemic damage. Currently, transcranial magnetic stimulation (TMS) techniques are available to provide clinically effective interventions and quantitative diagnostic and prognostic biomarkers. The development of TMS has been 40 years and a range of repetitive TMS (rTMS) protocols are now available to regulate neuronal plasticity in many neurological disorders, such as stroke, Parkinson disease, psychiatric disorders, Alzheimer disease, and so on. Basic studies in an animal model with ischemic stroke are significant for demonstrating potential mechanisms of neural restoration induced by rTMS. In this review, the mechanisms were summarized, involving synaptic plasticity, neural cell death, neurogenesis, immune response, and blood-brain barrier (BBB) disruption in vitro and vivo experiments with ischemic stroke models. Those findings can contribute to the understanding of how rTMS modulated function recovery and the exploration of novel therapeutic targets. The mechanisms of rTMS in treating ischemic stroke from animal models. rTMS can prompt synaptic plasticity by increasing NMDAR, AMPAR and BDNF expression; rTMS can inhibit pro-inflammatory cytokines TNF and facilitate the expression of anti-inflammatory cytokines IL-10 by shifting astrocytic phenotypes from A1 to A2, and shifting microglial phenotypes from M1 to M2; rTMS facilitated the release of angiogenesis-related factors TGFβ and VEGF in A2 astrocytes, which can contribute to vasculogenesis and angiogenesis; rTMS can suppress apoptosis by increasing Bcl-2 expression and inhibiting Bax, caspase-3 expression; rTMS can also suppress pyroptosis by decreasing caspase-1, IL-1β, ASC, GSDMD and NLRP1 expression. rTMS, repetitive transcranial magnetic stimulation; NMDAR, N-methyl-D-aspartic acid receptors; AMPAR: α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; BDNF, brain-derived neurotrophic factor; VEGF, vascular endothelial growth factor; GSDMD: cleaved Caspase-1 cleaves Gasdermin D; CBF: cerebral blood flow.
Collapse
Affiliation(s)
- Ying Xing
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Yuqian Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Congqin Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Lu Luo
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Jian Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| |
Collapse
|
34
|
Leonardi G, Ciurleo R, Cucinotta F, Fonti B, Borzelli D, Costa L, Tisano A, Portaro S, Alito A. The role of brain oscillations in post-stroke motor recovery: An overview. Front Syst Neurosci 2022; 16:947421. [PMID: 35965998 PMCID: PMC9373799 DOI: 10.3389/fnsys.2022.947421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
Stroke is the second cause of disability and death worldwide, highly impacting patient’s quality of life. Several changes in brain architecture and function led by stroke can be disclosed by neurophysiological techniques. Specifically, electroencephalogram (EEG) can disclose brain oscillatory rhythms, which can be considered as a possible outcome measure for stroke recovery, and potentially shaped by neuromodulation techniques. We performed a review of randomized controlled trials on the role of brain oscillations in patients with post-stroke searching the following databases: Pubmed, Scopus, and the Web of Science, from 2012 to 2022. Thirteen studies involving 346 patients in total were included. Patients in the control groups received various treatments (sham or different stimulation modalities) in different post-stroke phases. This review describes the state of the art in the existing randomized controlled trials evaluating post-stroke motor function recovery after conventional rehabilitation treatment associated with neuromodulation techniques. Moreover, the role of brain pattern rhythms to modulate cortical excitability has been analyzed. To date, neuromodulation approaches could be considered a valid tool to improve stroke rehabilitation outcomes, despite more high-quality, and homogeneous randomized clinical trials are needed to determine to which extent motor functional impairment after stroke can be improved by neuromodulation approaches and which one could provide better functional outcomes. However, the high reproducibility of brain oscillatory rhythms could be considered a promising predictive outcome measure applicable to evaluate patients with stroke recovery after rehabilitation.
Collapse
Affiliation(s)
- Giulia Leonardi
- Department of Physical and Rehabilitation Medicine and Sports Medicine, Policlinico “G. Martino,”Messina, Italy
| | | | | | - Bartolo Fonti
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | - Daniele Borzelli
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Lara Costa
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Adriana Tisano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Simona Portaro
- Department of Physical and Rehabilitation Medicine and Sports Medicine, Policlinico “G. Martino,”Messina, Italy
| | - Angelo Alito
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
- *Correspondence: Angelo Alito,
| |
Collapse
|
35
|
Interhemispheric Facilitatory Effect of High-Frequency rTMS: Perspective from Intracortical Facilitation and Inhibition. Brain Sci 2022; 12:brainsci12080970. [PMID: 35892411 PMCID: PMC9332419 DOI: 10.3390/brainsci12080970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
The activity of excitatory and inhibitory neural circuits in the motor cortex can be probed and modified by transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS), noninvasively. At present, not only has a consensus regarding the interhemispheric effect of high frequency rTMS not been reached, but the attributes of these TMS-related circuits are also poorly understood. To address this question comprehensively, we integrated a single- and paired-pulse TMS evaluation with excitatory 20-Hz rTMS intervention in order to probe the interhemispheric effect on the intracortical circuits by high-frequency rTMS. In the rest state, after 20-Hz rTMS, a significant increase of single-pulse MEP and paired-pulse intracortical facilitation (ICF) in the non-stimulated hemisphere was observed with good test–retest reliability. Intracortical inhibition (measured by the cortical silent period) in the unstimulated hemisphere also increased after rTMS. No significant time–course change was observed in the sham-rTMS group. The results provide the evidence that 20-Hz rTMS induced a reliable interhemispheric facilitatory effect. Findings from the present study suggest that the glutamatergic facilitatory system and the GABAergic inhibitory system may vary synchronously.
Collapse
|
36
|
Luo L, Liu M, Fan Y, Zhang J, Liu L, Li Y, Zhang Q, Xie H, Jiang C, Wu J, Xiao X, Wu Y. Intermittent theta-burst stimulation improves motor function by inhibiting neuronal pyroptosis and regulating microglial polarization via TLR4/NFκB/NLRP3 signaling pathway in cerebral ischemic mice. J Neuroinflammation 2022; 19:141. [PMID: 35690810 PMCID: PMC9188077 DOI: 10.1186/s12974-022-02501-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/01/2022] [Indexed: 01/18/2023] Open
Abstract
Background Neuronal pyroptosis and neuroinflammation with excess microglial activation are widely involved in the early pathological process of ischemic stroke. Repetitive transcranial magnetic stimulation (rTMS), as a non-invasive neuromodulatory technique, has recently been reported to be anti-inflammatory and regulate microglial function. However, few studies have elucidated the role and mechanism of rTMS underlying regulating neuronal pyroptosis and microglial polarization. Methods We evaluated the motor function in middle cerebral artery occlusion/reperfusion (MCAO/r) injury mice after 1-week intermittent theta-burst rTMS (iTBS) treatment in the early phase with or without depletion of microglia by colony-stimulating factor 1 receptor (CSF1R) inhibitor treatment, respectively. We further explored the morphological and molecular biological alterations associated with neuronal pyroptosis and microglial polarization via Nissl, EdU, TTC, TUNEL staining, electron microscopy, multiplex cytokine bioassays, western blot assays, immunofluorescence staining and RNA sequencing. Results ITBS significantly protected against cerebral ischemia/reperfusion (I/R) injury-induced locomotor deficits and neuronal damage, which probably relied on the regulation of innate immune and inflammatory responses, as evidenced by RNA sequencing analysis. The peak of pyroptosis was confirmed to be later than that of apoptosis during the early phase of stroke, and pyroptosis was mainly located and more severe in the peri-infarcted area compared with apoptosis. Multiplex cytokine bioassays showed that iTBS significantly ameliorated the high levels of IL-1β, IL-17A, TNF-α, IFN-γ in MCAO/r group and elevated the level of IL-10. ITBS inhibited the expression of neuronal pyroptosis-associated proteins (i.e., Caspase1, IL-1β, IL-18, ASC, GSDMD, NLRP1) in the peri-infarcted area rather than at the border of infarcted core. KEGG enrichment analysis and further studies demonstrated that iTBS significantly shifted the microglial M1/M2 phenotype balance by curbing proinflammatory M1 activation (Iba1+/CD86+) and enhancing the anti-inflammatory M2 activation (Iba1+/CD206+) in peri-infarcted area via inhibiting TLR4/NFκB/NLRP3 signaling pathway. Depletion of microglia using CSF1R inhibitor (PLX3397) eliminated the motor functional improvements after iTBS treatment. Conclusions rTMS could alleviate cerebral I/R injury induced locomotor deficits and neuronal pyroptosis by modulating the microglial polarization. It is expected that these data will provide novel insights into the mechanisms of rTMS protecting against cerebral I/R injury and potential targets underlying neuronal pyroptosis in the early phase of stroke. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02501-2. rTMS significantly ameliorated cerebral ischemia/reperfusion injury-induced locomotor deficits and neuronal damage in the early phase probably through the anti-inflammatory mechanism. The peak of pyroptosis was later than that of apoptosis during the early phase of stroke, and pyroptosis was mainly located and more severe in the peri-infarcted area compared with apoptosis. rTMS inhibited neuronal pyroptosis in the peri-infarcted area rather than at the border of infarcted core. rTMS modulated microglial polarization in the peri-infarcted area via inhibiting TLR4/NFκB/NLRP3 signaling pathway. Depletion of microglia eliminated the motor functional improvements after rTMS treatment.
Collapse
Affiliation(s)
- Lu Luo
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Meixi Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Yunhui Fan
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Jingjun Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Li Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Yun Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Qiqi Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Hongyu Xie
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Congyu Jiang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Junfa Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Xiao Xiao
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China. .,National Center for Neurological Disorders, Shanghai, 200040, China.
| |
Collapse
|
37
|
Toprak G, Hanoglu L, Cakir T, Guntekin B, Velioglu HA, Yulug B. DLPF Targeted Repetitive Transcranial Magnetic Stimulation Improves Brain Glucose Metabolism Along with the Clinical and Electrophysiological Parameters in CBD Patients. Endocr Metab Immune Disord Drug Targets 2022; 22:415-424. [PMID: 35100961 DOI: 10.2174/1871530322666220131120349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Corticobasal Degeneration (CBD) is a rare neurological disease caused by the pathological accumulation of tau protein. The primary pathological features of CBD include progressive neurodegenerative processes resulting in remarkable frontoparietal and basal ganglia atrophy. OBJECTIVE Like in many other neurodegenerative disorders, there is still no effective disease-modifying drug therapy in CBD. Therefore, the development of new treatment methods is of great importance. In this study, we aimed to assess the stimulating effects of high-frequency DLPFC rTMS on the motor, cognitive and behavioral disturbances in four CBD patients. METHODS Four (three females, one male) CBD patients who had been diagnosed as CBD were enrolled in this study. Patients were evaluated before and after the rTMS procedure regarding the motor, neuropsychometric and behavioral tests. The results of statistical analysis of behavioral and neuropsychometric evaluation were assessed via SPSS 18.0 package program. Data are expressed as mean, standard deviation. Before and after values of the groups were compared with the Wilcoxon sign rank test, and p<0.05 was considered significant. RESULTS We have provided strong preliminary evidence that the improvement in clinical parameters was associated with the normalizations of the theta activity and glucose metabolism. CONCLUSION Our current results are consistent with some previous trials showing a strong association between DLPFC targeted rTMS and electrophysiological normalizations in the left DLPFC.
Collapse
Affiliation(s)
- Guven Toprak
- Department of Clinical Electrophysiology, Neuroimaging and Neuromodulation, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoglu
- Department of Neurology, Istanbul Medipol University School of Medicine, Istanbul, Turkey
| | - Tansel Cakir
- Department of Nuclear Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Bahar Guntekin
- Department of Clinical Electrophysiology, Neuroimaging and Neuromodulation, Istanbul Medipol University, Istanbul, Turkey
| | - Halil Aziz Velioglu
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.,Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul Medipol University, Istanbul, Turkey
| | - Burak Yulug
- Department of Neurology, Alanya Alaaddin Keykubat University School of Medicine, Alanya/Antalya, Turkey
| |
Collapse
|
38
|
Starosta M, Cichoń N, Saluk-Bijak J, Miller E. Benefits from Repetitive Transcranial Magnetic Stimulation in Post-Stroke Rehabilitation. J Clin Med 2022; 11:jcm11082149. [PMID: 35456245 PMCID: PMC9030945 DOI: 10.3390/jcm11082149] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
Stroke is an acute neurovascular central nervous system (CNS) injury and one of the main causes of long-term disability and mortality. Post-stroke rehabilitation as part of recovery is focused on relearning lost skills and regaining independence as much as possible. Many novel strategies in neurorehabilitation have been introduced. This review focuses on current evidence of the effectiveness of repetitive transcranial magnetic stimulation (rTMS), a noninvasive brain stimulation (NIBS), in post-stroke rehabilitation. Moreover, we present the effects of specific interventions, such as low-frequency or high-frequency rTMS therapy, on motor function, cognitive function, depression, and aphasia in post-stroke patients. Collected data suggest that high-frequency stimulation (5 Hz and beyond) produces an increase in cortical excitability, whereas low-frequency stimulation (≤1 Hz) decreases cortical excitability. Accumulated data suggest that rTMS is safe and can be used to modulate cortical excitability, which may improve overall performance. Side effects such as tingling sensation on the skin of the skull or headache are possible. Serious side effects such as epileptic seizures can be avoided by adhering to international safety guidelines. We reviewed clinical studies that present promising results in general recovery and stimulating neuroplasticity. This article is an overview of the current rTMS state of knowledge related to benefits in stroke, as well as its cellular and molecular mechanisms. In the stroke rehabilitation literature, there is a key methodological problem of creating double-blinding studies, which are very often impossible to conduct.
Collapse
Affiliation(s)
- Michał Starosta
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland;
- Correspondence:
| | - Natalia Cichoń
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Elżbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland;
| |
Collapse
|
39
|
Current Status of Neuromodulation-Induced Cortical Prehabilitation and Considerations for Treatment Pathways in Lower-Grade Glioma Surgery. LIFE (BASEL, SWITZERLAND) 2022; 12:life12040466. [PMID: 35454957 PMCID: PMC9024440 DOI: 10.3390/life12040466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 12/15/2022]
Abstract
The infiltrative character of supratentorial lower grade glioma makes it possible for eloquent neural pathways to remain within tumoural tissue, which renders complete surgical resection challenging. Neuromodulation-Induced Cortical Prehabilitation (NICP) is intended to reduce the likelihood of premeditated neurologic sequelae that otherwise would have resulted in extensive rehabilitation or permanent injury following surgery. This review aims to conceptualise current approaches involving Repetitive Transcranial Magnetic Stimulation (rTMS-NICP) and extraoperative Direct Cortical Stimulation (eDCS-NICP) for the purposes of inducing cortical reorganisation prior to surgery, with considerations derived from psychiatric, rehabilitative and electrophysiologic findings related to previous reports of prehabilitation. Despite the promise of reduced risk and incidence of neurologic injury in glioma surgery, the current data indicates a broad but compelling possibility of effective cortical prehabilitation relating to perisylvian cortex, though it remains an under-explored investigational tool. Preliminary findings may prove sufficient for the continued investigation of prehabilitation in small-volume lower-grade tumour or epilepsy patients. However, considering the very low number of peer-reviewed case reports, optimal stimulation parameters and duration of therapy necessary to catalyse functional reorganisation remain equivocal. The non-invasive nature and low risk profile of rTMS-NICP may permit larger sample sizes and control groups until such time that eDCS-NICP protocols can be further elucidated.
Collapse
|
40
|
Seewoo BJ, Chua EG, Arena-Foster Y, Hennessy LA, Gorecki AM, Anderton R, Rodger J. Changes in the rodent gut microbiome following chronic restraint stress and low-intensity rTMS. Neurobiol Stress 2022; 17:100430. [PMID: 35146078 PMCID: PMC8819474 DOI: 10.1016/j.ynstr.2022.100430] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Gut microbiome composition is associated with mood-relating behaviours, including those reflecting depression-like phenotypes. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive neuromodulation technique, is an effective treatment for depression, but its effects on the gut microbiome remain largely unknown. This study assessed microbial changes from rat faecal samples longitudinally following chronic restraint stress (CRS) and 10 Hz low-intensity rTMS treatment. CRS increased abundance within the Proteobacteria (Deltaproteobacteria, Desulfovibrionales) and Firmicutes (Anaerostipes, Frinsingococcus), with decreases in Firmicutes family (Acidaminococcaceae) and genera (Roseburia, Phascolarctobacterium and Fusicatenibacter) persisting for up to 4 weeks post CRS. The decrease in Firmicutes was not observed in the handling control and LI-rTMS groups, suggesting that handling alone may have sustained changes in gut microbiome associated with CRS. Nonetheless, LI-rTMS was specifically associated with an increase in Roseburia genus that developed 2 weeks after treatment, and the abundance of both Roseburia and Fusicatenibacter genera was significantly correlated with rTMS behavioural and MRI outcomes. In addition, LI-rTMS treated rats had a reduction in apoptosis pathways and several indicators of reduced inflammatory processes. These findings provide evidence that the brain can influence the gut microbiome in a "top-down" manner, presumably via stimulation of descending pathways, and/or indirectly via behavioural modification.
Collapse
Affiliation(s)
- Bhedita J. Seewoo
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Perron Institute for Neurological and Translational Science, 8 Verdun St, Nedlands, WA, 6009, Australia
- Centre for Microscopy, Characterisation & Analysis, Research Infrastructure Centres, The University of Western Australia, 6 Verdun St, Nedlands, WA, 6009, Australia
| | - Eng Guan Chua
- The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Yasmin Arena-Foster
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Perron Institute for Neurological and Translational Science, 8 Verdun St, Nedlands, WA, 6009, Australia
| | - Lauren A. Hennessy
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Perron Institute for Neurological and Translational Science, 8 Verdun St, Nedlands, WA, 6009, Australia
| | - Anastazja M. Gorecki
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Perron Institute for Neurological and Translational Science, 8 Verdun St, Nedlands, WA, 6009, Australia
| | - Ryan Anderton
- Institute for Health Research and School of Health Sciences, University of Notre Dame Australia, 33 Phillimore Street, Fremantle, WA, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Perron Institute for Neurological and Translational Science, 8 Verdun St, Nedlands, WA, 6009, Australia
| |
Collapse
|
41
|
Hildesheim FE, Silver AN, Dominguez-Vargas AU, Andrushko JW, Edwards JD, Dancause N, Thiel A. Predicting Individual Treatment Response to rTMS for Motor Recovery After Stroke: A Review and the CanStim Perspective. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:795335. [PMID: 36188894 PMCID: PMC9397689 DOI: 10.3389/fresc.2022.795335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022]
Abstract
Background Rehabilitation is critical for reducing stroke-related disability and improving quality-of-life post-stroke. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive neuromodulation technique used as stand-alone or adjunct treatment to physiotherapy, may be of benefit for motor recovery in subgroups of stroke patients. The Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim) seeks to advance the use of these techniques to improve post-stroke recovery through clinical trials and pre-clinical studies using standardized research protocols. Here, we review existing clinical trials for demographic, clinical, and neurobiological factors which may predict treatment response to identify knowledge gaps which need to be addressed before implementing these parameters for patient stratification in clinical trial protocols. Objective To provide a review of clinical rTMS trials of stroke recovery identifying factors associated with rTMS response in stroke patients with motor deficits and develop research perspectives for pre-clinical and clinical studies. Methods A literature search was performed in PubMed, using the Boolean search terms stroke AND repetitive transcranial magnetic stimulation OR rTMS AND motor for studies investigating the use of rTMS for motor recovery in stroke patients at any recovery phase. A total of 1,676 articles were screened by two blinded raters, with 26 papers identified for inclusion in this review. Results Multiple possible factors associated with rTMS response were identified, including stroke location, cortical thickness, brain-derived neurotrophic factor (BDNF) genotype, initial stroke severity, and several imaging and clinical factors associated with a relatively preserved functional motor network of the ipsilesional hemisphere. Age, sex, and time post-stroke were generally not related to rTMS response. Factors associated with greater response were identified in studies of both excitatory ipsilesional and inhibitory contralesional rTMS. Heterogeneous study designs and contradictory data exemplify the need for greater protocol standardization and high-quality controlled trials. Conclusion Clinical, brain structural and neurobiological factors have been identified as potential predictors for rTMS response in stroke patients with motor impairment. These factors can inform the design of future clinical trials, before being considered for optimization of individual rehabilitation therapy for stroke patients. Pre-clinical models for stroke recovery, specifically developed in a clinical context, may accelerate this process.
Collapse
Affiliation(s)
- Franziska E. Hildesheim
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Alexander N. Silver
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Adan-Ulises Dominguez-Vargas
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Justin W. Andrushko
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jodi D. Edwards
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Numa Dancause
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Alexander Thiel
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- *Correspondence: Alexander Thiel
| |
Collapse
|
42
|
Uzair M, Abualait T, Arshad M, Yoo WK, Mir A, Bunyan RF, Bashir S. Transcranial magnetic stimulation in animal models of neurodegeneration. Neural Regen Res 2022; 17:251-265. [PMID: 34269184 PMCID: PMC8464007 DOI: 10.4103/1673-5374.317962] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/08/2020] [Accepted: 12/24/2020] [Indexed: 11/13/2022] Open
Abstract
Brain stimulation techniques offer powerful means of modulating the physiology of specific neural structures. In recent years, non-invasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation, have emerged as therapeutic tools for neurology and neuroscience. However, the possible repercussions of these techniques remain unclear, and there are few reports on the incisive recovery mechanisms through brain stimulation. Although several studies have recommended the use of non-invasive brain stimulation in clinical neuroscience, with a special emphasis on TMS, the suggested mechanisms of action have not been confirmed directly at the neural level. Insights into the neural mechanisms of non-invasive brain stimulation would unveil the strategies necessary to enhance the safety and efficacy of this progressive approach. Therefore, animal studies investigating the mechanisms of TMS-induced recovery at the neural level are crucial for the elaboration of non-invasive brain stimulation. Translational research done using animal models has several advantages and is able to investigate knowledge gaps by directly targeting neuronal levels. In this review, we have discussed the role of TMS in different animal models, the impact of animal studies on various disease states, and the findings regarding brain function of animal models after TMS in pharmacology research.
Collapse
Affiliation(s)
- Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Turki Abualait
- College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University College of Medicine, Anyang, South Korea
- Hallym Institute for Translational Genomics & Bioinformatics, Hallym University College of Medicine, Anyang, South Korea
| | - Ali Mir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Reem Fahd Bunyan
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
43
|
Onose G, Anghelescu A, Blendea D, Ciobanu V, Daia C, Firan FC, Oprea M, Spinu A, Popescu C, Ionescu A, Busnatu Ș, Munteanu C. Cellular and Molecular Targets for Non-Invasive, Non-Pharmacological Therapeutic/Rehabilitative Interventions in Acute Ischemic Stroke. Int J Mol Sci 2022; 23:907. [PMID: 35055089 PMCID: PMC8846361 DOI: 10.3390/ijms23020907] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cerebral circulation delivers the blood flow to the brain through a dedicated network of sanguine vessels. A healthy human brain can regulate cerebral blood flow (CBF) according to any physiological or pathological challenges. The brain is protected by its self-regulatory mechanisms, which are dependent on neuronal and support cellular populations, including endothelial ones, as well as metabolic, and even myogenic factors. OBJECTIVES Accumulating data suggest that "non-pharmacological" approaches might provide new opportunities for stroke therapy, such as electro-/acupuncture, hyperbaric oxygen therapy, hypothermia/cooling, photobiomodulation, therapeutic gases, transcranial direct current stimulations, or transcranial magnetic stimulations. We reviewed the recent data on the mechanisms and clinical implications of these non-pharmaceutical treatments. METHODS To present the state-of-the-art for currently available non-invasive, non-pharmacological-related interventions in acute ischemic stroke, we accomplished this synthetic and systematic literature review based on the Preferred Reporting Items for Systematic Principles Reviews and Meta-Analyses (PRISMA). RESULTS The initial number of obtained articles was 313. After fulfilling the five steps in the filtering/selection methodology, 54 fully eligible papers were selected for synthetic review. We enhanced our documentation with other bibliographic resources connected to our subject, identified in the literature within a non-standardized search, to fill the knowledge gaps. Fifteen clinical trials were also identified. DISCUSSION Non-invasive, non-pharmacological therapeutic/rehabilitative interventions for acute ischemic stroke are mainly holistic therapies. Therefore, most of them are not yet routinely used in clinical practice, despite some possible beneficial effects, which have yet to be supplementarily proven in more related studies. Moreover, few of the identified clinical trials are already completed and most do not have final results. CONCLUSIONS This review synthesizes the current findings on acute ischemic stroke therapeutic/rehabilitative interventions, described as non-invasive and non-pharmacological.
Collapse
Affiliation(s)
- Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
| | - Aurelian Anghelescu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
- Faculty of Midwives and Nursing, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Dan Blendea
- Faculty of Medicine, University ”Titu Maiorescu”, 0400511 Bucharest, Romania;
- Physical and Rehabilitation Medicine & Balneology Clinic Division, Teaching Emergency Hospital of the Ilfov County, 022113 Bucharest, Romania;
| | - Vlad Ciobanu
- Computer Science Department, Politehnica University of Bucharest, 060042 Bucharest, Romania;
| | - Cristina Daia
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
| | - Florentina Carmen Firan
- Physical and Rehabilitation Medicine & Balneology Clinic Division, Teaching Emergency Hospital of the Ilfov County, 022113 Bucharest, Romania;
| | - Mihaela Oprea
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
| | - Aura Spinu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
| | - Cristina Popescu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
| | - Anca Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
| | - Ștefan Busnatu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
| | - Constantin Munteanu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy” Grigore T. Popa”, 700115 Iași, Romania
| |
Collapse
|
44
|
Stuckey SM, Ong LK, Collins-Praino LE, Turner RJ. Neuroinflammation as a Key Driver of Secondary Neurodegeneration Following Stroke? Int J Mol Sci 2021; 22:ijms222313101. [PMID: 34884906 PMCID: PMC8658328 DOI: 10.3390/ijms222313101] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 01/13/2023] Open
Abstract
Ischaemic stroke involves the rapid onset of focal neurological dysfunction, most commonly due to an arterial blockage in a specific region of the brain. Stroke is a leading cause of death and common cause of disability, with over 17 million people worldwide suffering from a stroke each year. It is now well-documented that neuroinflammation and immune mediators play a key role in acute and long-term neuronal tissue damage and healing, not only in the infarct core but also in distal regions. Importantly, in these distal regions, termed sites of secondary neurodegeneration (SND), spikes in neuroinflammation may be seen sometime after the initial stroke onset, but prior to the presence of the neuronal tissue damage within these regions. However, it is key to acknowledge that, despite the mounting information describing neuroinflammation following ischaemic stroke, the exact mechanisms whereby inflammatory cells and their mediators drive stroke-induced neuroinflammation are still not fully understood. As a result, current anti-inflammatory treatments have failed to show efficacy in clinical trials. In this review we discuss the complexities of post-stroke neuroinflammation, specifically how it affects neuronal tissue and post-stroke outcome acutely, chronically, and in sites of SND. We then discuss current and previously assessed anti-inflammatory therapies, with a particular focus on how failed anti-inflammatories may be repurposed to target SND-associated neuroinflammation.
Collapse
Affiliation(s)
- Shannon M. Stuckey
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
| | - Lin Kooi Ong
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia;
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan 2308, Australia
| | - Lyndsey E. Collins-Praino
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
| | - Renée J. Turner
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
- Correspondence: ; Tel.: +61-8-8313-3114
| |
Collapse
|
45
|
Beker MC, Caglayan AB, Altunay S, Ozbay E, Ates N, Kelestemur T, Caglayan B, Kilic U, Doeppner TR, Hermann DM, Kilic E. Phosphodiesterase 10A Is a Critical Target for Neuroprotection in a Mouse Model of Ischemic Stroke. Mol Neurobiol 2021; 59:574-589. [PMID: 34735672 DOI: 10.1007/s12035-021-02621-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
Phosphodiesterase 10A (PDE10A) hydrolyzes adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP). It is highly expressed in the striatum. Recent evidence implied that PDE10A may be involved in the inflammatory processes following injury, such as ischemic stroke. Its role in ischemic injury was unknown. Herein, we exposed mice to 90 or 30-min middle cerebral artery occlusion, followed by the delivery of the highly selective PDE10A inhibitor TAK-063 (0.3 mg/kg or 3 mg/kg) immediately after reperfusion. Animals were sacrificed after 24 or 72 h, respectively. Both TAK-063 doses enhanced neurological function, reduced infarct volume, increased neuronal survival, reduced brain edema, and increased blood-brain barrier integrity, alongside cerebral microcirculation improvements. Post-ischemic neuroprotection was associated with increased phosphorylation (i.e., activation) of pro-survival Akt, Erk-1/2, GSK-3α/β and anti-apoptotic Bcl-xL abundance, decreased phosphorylation of pro-survival mTOR, and HIF-1α, MMP-9 and pro-apoptotic Bax abundance. Interestingly, PDE10A inhibition reduced inflammatory cytokines/chemokines, including IFN-γ and TNF-α, analyzed by planar surface immunoassay. In addition, liquid chromatography-tandem mass spectrometry revealed 40 proteins were significantly altered by TAK-063. Our study established PDE10A as a target for ischemic stroke therapy.
Collapse
Affiliation(s)
- Mustafa C Beker
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey. .,Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.
| | - Ahmet B Caglayan
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Serdar Altunay
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Elif Ozbay
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Nilay Ates
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Taha Kelestemur
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Berrak Caglayan
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Genetics, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ulkan Kilic
- Department of Medical Biology, International School of Medicine, University of Health Sciences Turkey, Istanbul, Turkey
| | - Thorsten R Doeppner
- Department of Neurology, University Medicine Göttingen, University of Göttingen, Göttingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ertugrul Kilic
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
46
|
Saricaoglu M, Hanoglu L, Toprak G, Yilmaz NH, Yulug B. The Multifactorial Role of Pre-supplementary Motor Area Stimulation in the Freezing of Gait: An Alternative Strategy to the Classical Drug-Target Approach. Endocr Metab Immune Disord Drug Targets 2021; 22:518-524. [PMID: 34649492 DOI: 10.2174/1871530321666211014170107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/12/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The pre-supplementary motor area (Pre-SMA) plays a pivotal role in the control of voluntary motor control and freezing of gait (FOG) pathophysiological mechanism. Here, we aimed to modulate if the pre-SMA would have beneficial effects on motor and behavioural outcomes in freezing of gait. To test this hypothesis, we examined the left pre-SMA stimulating effect of repetitive Transcranial Magnetic Stimulation (rTMS) on motor, cognitive and behavioural parameters in Parkinson's patients with FOG. METHOD The study included 20 Parkinson's patients with FOG (3 females, 17 males) who received the left Pre-SMA rTMS procedure. The clinical assessments were performed on all patients at the baseline and the patients were re-evaluated under the same clinical conditions one week after the end of the sessions. RESULTS & DISCUSSION We found significant improvements in motor, cognitive and behavioural symptoms (p<0.05). The main finding of our study is that Pre-SMA is an attractive stimulation area leading to critical improvement of symptoms of Parkinson' s patients with FOG. CONCLUSION The high-frequency rTMS stimulation over the left preSMA has a restorative effect on the motor, cognitive and behavioural symptoms of Parkinson' s patients with FOG.
Collapse
Affiliation(s)
- Mevhibe Saricaoglu
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul. Turkey
| | - Lutfu Hanoglu
- Neuroimaging and Neuromodulation Lab, Clinical Electrophysiology, REMER, Istanbul, Medipol University, Istanbul. Turkey
| | - Guven Toprak
- Neuroimaging and Neuromodulation Lab, Clinical Electrophysiology, REMER, Istanbul, Medipol University, Istanbul. Turkey
| | - Nesrin Helvaci Yilmaz
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul. Turkey
| | - Burak Yulug
- Department of Neurology, School of Medicine, Alanya Alaaddin Keykubat University, Alanya/Antalya. Turkey
| |
Collapse
|
47
|
Storch S, Samantzis M, Balbi M. Driving Oscillatory Dynamics: Neuromodulation for Recovery After Stroke. Front Syst Neurosci 2021; 15:712664. [PMID: 34366801 PMCID: PMC8339272 DOI: 10.3389/fnsys.2021.712664] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022] Open
Abstract
Stroke is a leading cause of death and disability worldwide, with limited treatments being available. However, advances in optic methods in neuroscience are providing new insights into the damaged brain and potential avenues for recovery. Direct brain stimulation has revealed close associations between mental states and neuroprotective processes in health and disease, and activity-dependent calcium indicators are being used to decode brain dynamics to understand the mechanisms underlying these associations. Evoked neural oscillations have recently shown the ability to restore and maintain intrinsic homeostatic processes in the brain and could be rapidly deployed during emergency care or shortly after admission into the clinic, making them a promising, non-invasive therapeutic option. We present an overview of the most relevant descriptions of brain injury after stroke, with a focus on disruptions to neural oscillations. We discuss the optical technologies that are currently used and lay out a roadmap for future studies needed to inform the next generation of strategies to promote functional recovery after stroke.
Collapse
Affiliation(s)
- Sven Storch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Montana Samantzis
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Matilde Balbi
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
48
|
Quantitative evaluation of brain volumes in drug-free major depressive disorder using MRI-Cloud method. Neuroreport 2021; 32:1027-1034. [PMID: 34075004 DOI: 10.1097/wnr.0000000000001682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Quantitative analysis of the high-resolution T1-weighted images provides useful markers to measure anatomical changes during brain degeneration related to major depressive disorder (MDD). However, there are controversial findings regarding these volume alterations in MDD indicating even to increased volumes in some specific regions in MDD patients. METHODS This study is a case-controlled study including 23 depression patients and 15 healthy subject person and 20-38 years of age, who have been treated at the Neurology and Psychiatry Department here. We compared specific anatomic regions between drug-free MDD patients and control group through MRI-Cloud, which is a novel brain imaging method that enables to analyze multiple brain regions simultaneously. RESULTS We have found that frontal, temporal, and parietal hemispheric volumes and middle frontal gyrus, inferior frontal gyrus, superior parietal gyrus, cingulum-hippocampus, lateral fronto-orbital gyrus, superior temporal gyrus, superior temporal white matter, middle temporal gyrus subanatomic regions were significantly reduced bilaterally in MDD patients compared to the control group, while striatum, amygdala, putamen, and nucleus accumbens bilaterally increased in MDD group compared to the control group suggesting that besides the heterogeneity among studies, also comorbid factors such as anxiety and different personal traits could be responsible for these discrepant results. CONCLUSION Our study gives a strong message that depression is associated with altered structural brain volumes, especially, in drug-free and first-episode MDD patients who present with similar duration and severity of depression while the role of demographic and comorbid risk factors should not be neglected.
Collapse
|
49
|
Yang Y, Pan H, Pan W, Liu Y, Song X, Niu CM, Feng W, Wang J, Xie Q. Repetitive Transcranial Magnetic Stimulation on the Affected Hemisphere Enhances Hand Functional Recovery in Subacute Adult Stroke Patients: A Randomized Trial. Front Aging Neurosci 2021; 13:636184. [PMID: 34093164 PMCID: PMC8171119 DOI: 10.3389/fnagi.2021.636184] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/09/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: Either motor training or repetitive transcranial magnetic stimulation (rTMS) could modulate the neural plasticity after stroke. Therefore, synchronizing the two interventions may optimize the efficiency of recovery. In the present study, we aim to investigate the effect of rTMS along with hand grip training on the neurobehavioral and hand functional recovery in one cohort of subacute stroke patients. Methods: Thirty-nine stroke patients were enrolled in a single-center, single-blinded, randomized clinical trial. We tested different intervention effects of rTMS and hand grip training (group A), rTMS alone (group B), and hand grip training alone (group C). For the rTMS-treated groups, patients received 10 consecutive sessions of 5-Hz stimulation over the affected hemisphere with 750 pulses. Jebsen-Taylor Hand Function Test (JTHFT), Fugl-Meyer assessment of upper extremity (FMA-UE), grip strength, modified Barthel index (mBI), and ipsilesional motor evoked potential (iMEP) latency were assessed and compared across the groups. Results: We found that only rTMS along with hand grip training group all improved in JTHFT, FMA-UE, grip strength, and mBI (p ≤ 0.01) compared with the baseline among the three groups. Furthermore, this study demonstrated that rTMS plus hand grip training had much better results in improvement of neurobehavioral outcomes compared to the rTMS alone- and hand grip training alone-treated patients (p < 0.05). However, no significant differences were detected in neurophysiologic outcome between intra-groups and inter-groups (p > 0.05). Conclusion: These proof-of-concept results suggested that rTMS alone with hand grip training was a unique approach to promote hand functional recovery in stroke patients. It provided important information to design a large-scale multi-center clinical trial to further demonstrate the efficiency of the combination of central and peripheral stimulation. Clinical Trial Registration: http://www.chictr.org.cn (#ChiCTR1900023443).
Collapse
Affiliation(s)
- Yawen Yang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijuan Pan
- Department of Rehabilitation Medicine, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China
| | - Wenxiu Pan
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Liu
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohui Song
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanxin M Niu
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Jixian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Xie
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China
| |
Collapse
|
50
|
Roque C, Pinto N, Vaz Patto M, Baltazar G. Astrocytes contribute to the neuronal recovery promoted by high-frequency repetitive magnetic stimulation in in vitro models of ischemia. J Neurosci Res 2021; 99:1414-1432. [PMID: 33522025 DOI: 10.1002/jnr.24792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/11/2020] [Accepted: 12/23/2020] [Indexed: 11/07/2022]
Abstract
After decades of effort, there are no effective clinical treatments to induce the recovery of ischemia-injured tissues, and among the several strategies that have been explored, repetitive transcranial magnetic stimulation has proven to be one of the most promising, with beneficial effects in limb motor function, aphasia, hemispatial neglect, or dysphagia. Despite the clinical evidences, little is known about the mechanisms underlying those effects. The present study aimed to explore the cellular and molecular effects of high-frequency repetitive magnetic stimulation (HF-rMS) on an in vitro model of ischemia. Using primary cortical cultures exposed to oxygen and glucose deprivation followed by reperfusion, we observed that HF-rMS treatment prevents the ischemia-induced neuronal death by 21.2%, and the neurite degeneration triggered by ischemia. Our results also demonstrate that with this treatment there is an increase of 89.2% on the number cells expressing ERK1/2, of 20.1% on the number of cells expressing c-Fos, and a synaptogenic effect, through an increase of 62.9% in the number of synaptic puncta as well as of 49.4% in their intensity. Interestingly, our results indicate that astrocytes are crucial to the beneficial effects triggered by HF-rMS after ischemia, thus suggesting a direct effect of HF-rMS on these cells. The modulation of astrocytes with this non-invasive brain stimulation technique is a promising approach to promote the recovery of ischemia-induced injured tissues; however, it is essential to understand how these effects can be modulated in order to optimize the protocols and enhance the beneficial outcomes.
Collapse
Affiliation(s)
- Cláudio Roque
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal.,Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Nuno Pinto
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Maria Vaz Patto
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal.,Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Graça Baltazar
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal.,Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|