1
|
Williams OOF, Coppolino M, Micelli CB, McCallum RT, Henry-Duru PT, Manduca JD, Lalonde J, Perreault ML. Prenatal exposure to valproic acid induces sex-specific alterations in rat cortical and hippocampal neuronal structure and function in vitro. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111222. [PMID: 39701172 DOI: 10.1016/j.pnpbp.2024.111222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
There are substantial differences in the characteristics of males and females with an autism spectrum disorder (ASD), yet there is little knowledge surrounding the mechanistic underpinnings of these differences. The valproic acid (VPA) rodent model is based upon the human fetal valproate spectrum disorder, which is associated with increased risk of developing ASD. This model, which displays significant social, learning, and memory alterations, has therefore been widely used to further our understanding of specific biological features of ASD. However, to date, almost all of the studies employing this model have used male rodents. To fill this knowledge gap, we evaluated sex differences for neuronal activity, morphology, and glycogen synthase kinase-3 (GSK-3) signaling in primary cortical (CTX) and hippocampal (HIP) neurons prepared from rats exposed to VPA in utero. In vivo, sex-specific VPA-induced alterations in the frontal CTX transcriptome at birth were also determined. Overall, VPA induced more robust changes in neuronal function and structure in the CTX than in the HIP. Male- and female-derived primary CTX neurons from rats exposed to prenatal VPA had elevated activity and showed more disorganized firing. In the HIP, only the female VPA neurons showed elevated firing, while the male VPA neurons exhibited disorganized activity. Dendritic arborization of CTX neurons from VPA rats was less complex in both sexes, though this was more pronounced in the females. Conversely, both female and male HIP neurons from VPA rats showed elevated complexity distal to the soma. Female VPA CTX neurons also had an elevated number of dendritic spines. The relative activity of the α and β isoforms of GSK-3 were suppressed in both female and male VPA CTX neurons, with no changes in the HIP neurons. On postnatal day 0, alterations in CTX genes associated with neuropeptides (e.g., penk, pdyn) and receptors (e.g., drd1, adora2a) were seen in both sexes, though they were downregulated in females and upregulated in males. Together these findings suggest that substantial sex differences in neuronal structure and function in the VPA model may have relevance to the reported sex differences in idiopathic ASD.
Collapse
Affiliation(s)
- Olivia O F Williams
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada.
| | - Madeleine Coppolino
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Cecilia B Micelli
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Ryan T McCallum
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Paula T Henry-Duru
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada.
| | - Joshua D Manduca
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada.
| | - Jasmin Lalonde
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada.
| | - Melissa L Perreault
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
2
|
Mateus JC, Sousa MM, Burrone J, Aguiar P. Beyond a Transmission Cable-New Technologies to Reveal the Richness in Axonal Electrophysiology. J Neurosci 2024; 44:e1446232023. [PMID: 38479812 PMCID: PMC10941245 DOI: 10.1523/jneurosci.1446-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 03/17/2024] Open
Abstract
The axon is a neuronal structure capable of processing, encoding, and transmitting information. This assessment contrasts with a limiting, but deeply rooted, perspective where the axon functions solely as a transmission cable of somatodendritic activity, sending signals in the form of stereotypical action potentials. This perspective arose, at least partially, because of the technical difficulties in probing axons: their extreme length-to-diameter ratio and intricate growth paths preclude the study of their dynamics through traditional techniques. Recent findings are challenging this view and revealing a much larger repertoire of axonal computations. Axons display complex signaling processes and structure-function relationships, which can be modulated via diverse activity-dependent mechanisms. Additionally, axons can exhibit patterns of activity that are dramatically different from those of their corresponding soma. Not surprisingly, many of these recent discoveries have been driven by novel technology developments, which allow for in vitro axon electrophysiology with unprecedented spatiotemporal resolution and signal-to-noise ratio. In this review, we outline the state-of-the-art in vitro toolset for axonal electrophysiology and summarize the recent discoveries in axon function it has enabled. We also review the increasing repertoire of microtechnologies for controlling axon guidance which, in combination with the available cutting-edge electrophysiology and imaging approaches, have the potential for more controlled and high-throughput in vitro studies. We anticipate that a larger adoption of these new technologies by the neuroscience community will drive a new era of experimental opportunities in the study of axon physiology and consequently, neuronal function.
Collapse
Affiliation(s)
- J C Mateus
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - M M Sousa
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - J Burrone
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
| | - P Aguiar
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
3
|
Roland PE. How far neuroscience is from understanding brains. Front Syst Neurosci 2023; 17:1147896. [PMID: 37867627 PMCID: PMC10585277 DOI: 10.3389/fnsys.2023.1147896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/31/2023] [Indexed: 10/24/2023] Open
Abstract
The cellular biology of brains is relatively well-understood, but neuroscientists have not yet generated a theory explaining how brains work. Explanations of how neurons collectively operate to produce what brains can do are tentative and incomplete. Without prior assumptions about the brain mechanisms, I attempt here to identify major obstacles to progress in neuroscientific understanding of brains and central nervous systems. Most of the obstacles to our understanding are conceptual. Neuroscience lacks concepts and models rooted in experimental results explaining how neurons interact at all scales. The cerebral cortex is thought to control awake activities, which contrasts with recent experimental results. There is ambiguity distinguishing task-related brain activities from spontaneous activities and organized intrinsic activities. Brains are regarded as driven by external and internal stimuli in contrast to their considerable autonomy. Experimental results are explained by sensory inputs, behavior, and psychological concepts. Time and space are regarded as mutually independent variables for spiking, post-synaptic events, and other measured variables, in contrast to experimental results. Dynamical systems theory and models describing evolution of variables with time as the independent variable are insufficient to account for central nervous system activities. Spatial dynamics may be a practical solution. The general hypothesis that measurements of changes in fundamental brain variables, action potentials, transmitter releases, post-synaptic transmembrane currents, etc., propagating in central nervous systems reveal how they work, carries no additional assumptions. Combinations of current techniques could reveal many aspects of spatial dynamics of spiking, post-synaptic processing, and plasticity in insects and rodents to start with. But problems defining baseline and reference conditions hinder interpretations of the results. Furthermore, the facts that pooling and averaging of data destroy their underlying dynamics imply that single-trial designs and statistics are necessary.
Collapse
Affiliation(s)
- Per E. Roland
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Radivojevic M, Rostedt Punga A. Functional imaging of conduction dynamics in cortical and spinal axons. eLife 2023; 12:e86512. [PMID: 37606618 PMCID: PMC10444024 DOI: 10.7554/elife.86512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
Mammalian axons are specialized for transmitting action potentials to targets within the central and peripheral nervous system. A growing body of evidence suggests that, besides signal conduction, axons play essential roles in neural information processing, and their malfunctions are common hallmarks of neurodegenerative diseases. The technologies available to study axonal function and structure integrally limit the comprehension of axon neurobiology. High-density microelectrode arrays (HD-MEAs) allow for accessing axonal action potentials at high spatiotemporal resolution, but provide no insights on axonal morphology. Here, we demonstrate a method for electrical visualization of axonal morphologies based on extracellular action potentials recorded from cortical and motor neurons using HD-MEAs. The method enabled us to reconstruct up to 5-cm-long axonal arbors and directly monitor axonal conduction across thousands of recording sites. We reconstructed 1.86 m of cortical and spinal axons in total and found specific features in their structure and function.
Collapse
|
5
|
Zemel BM, Nevue AA, Tavares LES, Dagostin A, Lovell PV, Jin DZ, Mello CV, von Gersdorff H. Motor cortex analogue neurons in songbirds utilize Kv3 channels to generate ultranarrow spikes. eLife 2023; 12:e81992. [PMID: 37158590 PMCID: PMC10241522 DOI: 10.7554/elife.81992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 05/08/2023] [Indexed: 05/10/2023] Open
Abstract
Complex motor skills in vertebrates require specialized upper motor neurons with precise action potential (AP) firing. To examine how diverse populations of upper motor neurons subserve distinct functions and the specific repertoire of ion channels involved, we conducted a thorough study of the excitability of upper motor neurons controlling somatic motor function in the zebra finch. We found that robustus arcopallialis projection neurons (RAPNs), key command neurons for song production, exhibit ultranarrow spikes and higher firing rates compared to neurons controlling non-vocal somatic motor functions (dorsal intermediate arcopallium [AId] neurons). Pharmacological and molecular data indicate that this striking difference is associated with the higher expression in RAPNs of high threshold, fast-activating voltage-gated Kv3 channels, that likely contain Kv3.1 (KCNC1) subunits. The spike waveform and Kv3.1 expression in RAPNs mirror properties of Betz cells, specialized upper motor neurons involved in fine digit control in humans and other primates but absent in rodents. Our study thus provides evidence that songbirds and primates have convergently evolved the use of Kv3.1 to ensure precise, rapid AP firing in upper motor neurons controlling fast and complex motor skills.
Collapse
Affiliation(s)
- Benjamin M Zemel
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
| | - Alexander A Nevue
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortlandUnited States
| | - Leonardo ES Tavares
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
- Department of Physics, Pennsylvania State UniversityUniversity ParkUnited States
| | - Andre Dagostin
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
| | - Peter V Lovell
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortlandUnited States
| | - Dezhe Z Jin
- Department of Physics, Pennsylvania State UniversityUniversity ParkUnited States
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortlandUnited States
| | - Henrique von Gersdorff
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
- Oregon Hearing Research Center, Oregon Health and Science UniversityPortlandUnited States
| |
Collapse
|
6
|
Systems of axon-like circuits for self-assembled and self-controlled growth of bioelectric networks. Sci Rep 2022; 12:13371. [PMID: 35927304 PMCID: PMC9352688 DOI: 10.1038/s41598-022-17103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
By guiding cell and chemical migration and coupling with genetic mechanisms, bioelectric networks of potentials influence biological pattern formation and are known to have profound effects on growth processes. An abstract model that is amenable to exact analysis has been proposed in the circuit tile assembly model (cTAM) to understand self-assembled and self-controlled growth as an emergent phenomenon that is capable of complex behaviors, like self-replication. In the cTAM, a voltage source represents a finite supply of energy that drives growth until it is unable to overcome randomizing factors in the environment, represented by a threshold. Here, the cTAM is extended to the axon or alternating cTAM model (acTAM) to include a circuit similar to signal propagation in axons, exhibiting time-varying electric signals and a dependence on frequency of the input voltage. The acTAM produces systems of circuits whose electrical properties are coupled to their length as growth proceeds through self-assembly. The exact response is derived for increasingly complex circuit systems as the assembly proceeds. The model exhibits complicated behaviors that elucidate the interactive role of energy, environment, and noise with electric signals in axon-like circuits during biological growth of complex patterns and function.
Collapse
|
7
|
McCullagh EA, Poleg S, Stich D, Moldovan R, Klug A. Coherent Anti-Stokes Raman Spectroscopy (CARS) Application for Imaging Myelination in Brain Slices. J Vis Exp 2022:10.3791/64013. [PMID: 35938838 PMCID: PMC9484306 DOI: 10.3791/64013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Coherent anti-Stokes Raman spectroscopy (CARS) is a technique classically employed by chemists and physicists to produce a coherent signal of signature vibrations of molecules. However, these vibrational signatures are also characteristic of molecules within anatomical tissue such as the brain, making it increasingly useful and applicable for Neuroscience applications. For example, CARS can measure lipids by specifically exciting chemical bonds within these molecules, allowing for quantification of different aspects of tissue, such as myelin involved in neurotransmission. In addition, compared to other techniques typically used to quantify myelin, CARS can also be set up to be compatible with immunofluorescent techniques, allowing for co-labeling with other markers such as sodium channels or other components of synaptic transmission. Myelination changes are an inherently important mechanism in demyelinating diseases such as multiple sclerosis or other neurological conditions such as Fragile X Syndrome or autism spectrum disorders is an emerging area of research. In conclusion, CARS can be utilized in innovative ways to answer pressing questions in Neuroscience and provide evidence for underlying mechanisms related to many different neurological conditions.
Collapse
Affiliation(s)
| | - Shani Poleg
- Department of Physiology and Biophysics, University of Colorado Anschutz
| | - Dominik Stich
- Advanced Light Microscopy Core, University of Colorado Anschutz
| | - Radu Moldovan
- Advanced Light Microscopy Core, University of Colorado Anschutz
| | - Achim Klug
- Department of Physiology and Biophysics, University of Colorado Anschutz
| |
Collapse
|
8
|
Mir Y, Zalányi L, Pálfi E, Ashaber M, Roe AW, Friedman RM, Négyessy L. Modular Organization of Signal Transmission in Primate Somatosensory Cortex. Front Neuroanat 2022; 16:915238. [PMID: 35873660 PMCID: PMC9305200 DOI: 10.3389/fnana.2022.915238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022] Open
Abstract
Axonal patches are known as the major sites of synaptic connections in the cerebral cortex of higher order mammals. However, the functional role of these patches is highly debated. Patches are formed by populations of nearby neurons in a topographic manner and are recognized as the termination fields of long-distance lateral connections within and between cortical areas. In addition, axons form numerous boutons that lie outside the patches, whose function is also unknown. To better understand the functional roles of these two distinct populations of boutons, we compared individual and collective morphological features of axons within and outside the patches of intra-areal, feedforward, and feedback pathways by way of tract tracing in the somatosensory cortex of New World monkeys. We found that, with the exception of tortuosity, which is an invariant property, bouton spacing and axonal convergence properties differ significantly between axons within patch and no-patch domains. Principal component analyses corroborated the clustering of axons according to patch formation without any additional effect by the type of pathway or laminar distribution. Stepwise logistic regression identified convergence and bouton density as the best predictors of patch formation. These findings support that patches are specific sites of axonal convergence that promote the synchronous activity of neuronal populations. On the other hand, no-patch domains could form a neuroanatomical substrate to diversify the responses of cortical neurons.
Collapse
Affiliation(s)
- Yaqub Mir
- Theoretical Neuroscience and Complex Systems Group, Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
- *Correspondence: Yaqub Mir
| | - László Zalányi
- Theoretical Neuroscience and Complex Systems Group, Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary
| | - Emese Pálfi
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Mária Ashaber
- California Institute of Technology, Department of Biology and Biological Engineering, Pasadena, CA, United States
| | - Anna W. Roe
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Robert M. Friedman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - László Négyessy
- Theoretical Neuroscience and Complex Systems Group, Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary
- László Négyessy
| |
Collapse
|
9
|
Alexandris AS, Wang Y, Frangakis CE, Lee Y, Ryu J, Alam Z, Koliatsos VE. Long-Term Changes in Axon Calibers after Injury: Observations on the Mouse Corticospinal Tract. Int J Mol Sci 2022; 23:7391. [PMID: 35806394 PMCID: PMC9266552 DOI: 10.3390/ijms23137391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
White matter pathology is common across a wide spectrum of neurological diseases. Characterizing this pathology is important for both a mechanistic understanding of neurological diseases as well as for the development of neuroimaging biomarkers. Although axonal calibers can vary by orders of magnitude, they are tightly regulated and related to neuronal function, and changes in axon calibers have been reported in several diseases and their models. In this study, we utilize the impact acceleration model of traumatic brain injury (IA-TBI) to assess early and late changes in the axon diameter distribution (ADD) of the mouse corticospinal tract using Airyscan and electron microscopy. We find that axon calibers follow a lognormal distribution whose parameters significantly change after injury. While IA-TBI leads to 30% loss of corticospinal axons by day 7 with a bias for larger axons, at 21 days after injury we find a significant redistribution of axon frequencies that is driven by a reduction in large-caliber axons in the absence of detectable degeneration. We postulate that changes in ADD features may reflect a functional adaptation of injured neural systems. Moreover, we find that ADD features offer an accurate way to discriminate between injured and non-injured mice. Exploring injury-related ADD signatures by histology or new emerging neuroimaging modalities may offer a more nuanced and comprehensive way to characterize white matter pathology and may also have the potential to generate novel biomarkers of injury.
Collapse
Affiliation(s)
- Athanasios S. Alexandris
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (Y.W.); (Y.L.); (J.R.); (Z.A.)
| | - Yiqing Wang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (Y.W.); (Y.L.); (J.R.); (Z.A.)
| | | | - Youngrim Lee
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (Y.W.); (Y.L.); (J.R.); (Z.A.)
| | - Jiwon Ryu
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (Y.W.); (Y.L.); (J.R.); (Z.A.)
| | - Zahra Alam
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (Y.W.); (Y.L.); (J.R.); (Z.A.)
| | - Vassilis E. Koliatsos
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (Y.W.); (Y.L.); (J.R.); (Z.A.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Mateus JC, Lopes C, Aroso M, Costa AR, Gerós A, Meneses J, Faria P, Neto E, Lamghari M, Sousa MM, Aguiar P. Bidirectional flow of action potentials in axons drives activity dynamics in neuronal cultures. J Neural Eng 2021; 18. [PMID: 34891149 DOI: 10.1088/1741-2552/ac41db] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
Objective. Recent technological advances are revealing the complex physiology of the axon and challenging long-standing assumptions. Namely, while most action potential (AP) initiation occurs at the axon initial segment in central nervous system neurons, initiation in distal parts of the axon has been reported to occur in both physiological and pathological conditions. The functional role of these ectopic APs, if exists, is still not clear, nor its impact on network activity dynamics.Approach. Using an electrophysiology platform specifically designed for assessing axonal conduction we show here for the first time regular and effective bidirectional axonal conduction in hippocampal and dorsal root ganglia cultures. We investigate and characterize this bidirectional propagation both in physiological conditions and after distal axotomy.Main results.A significant fraction of APs are not coming from the canonical synapse-dendrite-soma signal flow, but instead from signals originating at the distal axon. Importantly, antidromic APs may carry information and can have a functional impact on the neuron, as they consistently depolarize the soma. Thus, plasticity or gene transduction mechanisms triggered by soma depolarization can also be affected by these antidromic APs. Conduction velocity is asymmetrical, with antidromic conduction being slower than orthodromic.Significance.Altogether these findings have important implications for the study of neuronal functionin vitro, reshaping our understanding on how information flows in neuronal cultures.
Collapse
Affiliation(s)
- J C Mateus
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Cdf Lopes
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - M Aroso
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - A R Costa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - A Gerós
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,FEUP-Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - J Meneses
- CDRSP-IPL-Centre for Rapid and Sustainable Product Development-Instituto Politécnico de Leiria, Marinha Grande, Portugal.,IBEB-Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - P Faria
- CDRSP-IPL-Centre for Rapid and Sustainable Product Development-Instituto Politécnico de Leiria, Marinha Grande, Portugal
| | - E Neto
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - M Lamghari
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - M M Sousa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - P Aguiar
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Bonetto G, Belin D, Káradóttir RT. Myelin: A gatekeeper of activity-dependent circuit plasticity? Science 2021; 374:eaba6905. [PMID: 34618550 DOI: 10.1126/science.aba6905] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Giulia Bonetto
- Wellcome-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - David Belin
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Ragnhildur Thóra Káradóttir
- Wellcome-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.,Department of Physiology, Biomedical Centre, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
12
|
Periods of synchronized myelin changes shape brain function and plasticity. Nat Neurosci 2021; 24:1508-1521. [PMID: 34711959 DOI: 10.1038/s41593-021-00917-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
Myelin, a lipid membrane that wraps axons, enabling fast neurotransmission and metabolic support to axons, is conventionally thought of as a static structure that is set early in development. However, recent evidence indicates that in the central nervous system (CNS), myelination is a protracted and plastic process, ongoing throughout adulthood. Importantly, myelin is emerging as a potential modulator of neuronal networks, and evidence from human studies has highlighted myelin as a major player in shaping human behavior and learning. Here we review how myelin changes throughout life and with learning. We discuss potential mechanisms of myelination at different life stages, explore whether myelin plasticity provides the regenerative potential of the CNS white matter, and question whether changes in myelin may underlie neurological disorders.
Collapse
|
13
|
Prolegomena to an Operator Theory of Computation. INFORMATION 2020. [DOI: 10.3390/info11070349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Defining computation as information processing (information dynamics) with information as a relational property of data structures (the difference in one system that makes a difference in another system) makes it very suitable to use operator formulation, with similarities to category theory. The concept of the operator is exceedingly important in many knowledge areas as a tool of theoretical studies and practical applications. Here we introduce the operator theory of computing, opening new opportunities for the exploration of computing devices, processes, and their networks.
Collapse
|
14
|
Ofer N, Shefi O, Yaari G. Axonal Tree Morphology and Signal Propagation Dynamics Improve Interneuron Classification. Neuroinformatics 2020; 18:581-590. [PMID: 32346847 DOI: 10.1007/s12021-020-09466-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Neurons are diverse and can be differentiated by their morphological, electrophysiological, and molecular properties. Current morphology-based classification approaches largely rely on the dendritic tree structure or on the overall axonal projection layout. Here, we use data from public databases of neuronal reconstructions and membrane properties to study the characteristics of the axonal and dendritic trees for interneuron classification. We show that combining signal propagation patterns observed by biophysical simulations of the activity along ramified axonal trees with morphological parameters of the axonal and dendritic trees, significantly improve classification results compared to previous approaches. The classification schemes introduced here can be utilized for robust neuronal classification. Our work paves the way for understanding and utilizing form-function principles in realistic neuronal reconstructions.
Collapse
Affiliation(s)
- Netanel Ofer
- Faculty of Engineering, Bar Ilan University, Ramat Gan, 5290002, Israel.,Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Orit Shefi
- Faculty of Engineering, Bar Ilan University, Ramat Gan, 5290002, Israel. .,Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel.
| | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, Ramat Gan, 5290002, Israel.
| |
Collapse
|
15
|
Zbili M, Debanne D. Myelination Increases the Spatial Extent of Analog-Digital Modulation of Synaptic Transmission: A Modeling Study. Front Cell Neurosci 2020; 14:40. [PMID: 32194377 PMCID: PMC7063086 DOI: 10.3389/fncel.2020.00040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/10/2020] [Indexed: 12/31/2022] Open
Abstract
Analog-digital facilitations (ADFs) have been described in local excitatory brain circuits and correspond to a class of phenomena describing how subthreshold variations of the presynaptic membrane potential influence spike-evoked synaptic transmission. In many brain circuits, ADFs rely on the propagation of somatic membrane potential fluctuations to the presynaptic bouton where they modulate ion channels availability, inducing modifications of the presynaptic spike waveform, the spike-evoked Ca2+ entry, and the transmitter release. Therefore, one major requirement for ADFs to occur is the propagation of subthreshold membrane potential variations from the soma to the presynaptic bouton. To date, reported ADFs space constants are relatively short (250–500 μm) which limits their action to proximal synapses. However, ADFs have been studied either in unmyelinated axons or in juvenile animals in which myelination is incomplete. We examined here the potential gain of ADFs spatial extent caused by myelination using a realistic model of L5 pyramidal cell. Myelination of the axon was found to induce a 3-fold increase in the axonal length constant. As a result, the different forms of ADF were found to display a much longer spatial extent (up to 3,000 μm). In addition, while the internodal length displayed a mild effect, the number of myelin wraps ensheathing the internodes was found to play a critical role in the ADFs spatial extents. We conclude that axonal myelination induces an increase in ADFs spatial extent in our model, thus making ADFs plausible in long-distance connections.
Collapse
Affiliation(s)
- Mickaël Zbili
- Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292-Université Claude Bernard Lyon1, Lyon, France.,UNIS UMR 1072 INSERM, AMU, Marseille, France
| | | |
Collapse
|