1
|
Wang N, Lin M, Guo W, Cao Y. Magnetic nanomagnetic nanoparticles combining with Slit2 gene and bone marrow mononuclear cells to improve cognitive dysfunction in rats with chronic cerebral ischemia. Int J Med Sci 2024; 21:2233-2243. [PMID: 39239546 PMCID: PMC11373550 DOI: 10.7150/ijms.97051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/16/2024] [Indexed: 09/07/2024] Open
Abstract
Purpose: Cognitive dysfunction caused by chronic cerebral hypoperfusion (CCH) is the leading cause of vascular dementia. Therefore, it is necessary to explore the mechanism that causes cerebral injury and find an effective therapy. Methods: Bone marrow mononuclear cells (BMMNCs) were extracted to detect the activity by CCK-8 kit and verify the transfection efficiency using reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). A CCH rat model was established. Superparamagnetic iron oxide nanoparticles (BMPs)-PEI-Slit2/BMMNCs were injected into the tail vein and intervened with an external magnetic field. Hematoxylin and eosin staining was used to observe the pathological changes in brain tissue. The Slit/Robo pathway-related proteins Slit2 and Robo4 were detected by RT-qPCR and Western blotting. Results: The neurological score of the CCH group significantly increased compared with that of the sham group (P<0.05). The levels of brain injury markers S-100β and NSE were significantly higher in the CCH group than in the sham group (P<0.05). Neuronal apoptosis in the frontal cortex and hippocampus of CCH rats significantly increased compared with that of the sham group (P<0.05). The expression levels of Slit2 and Robo4 mRNAs and proteins in brain tissue of CCH rats significantly increased (P<0.05). The neurological function scores of CCH rats treated with BMP-PEI-Slit2/BMMNC significantly increased after Robo4 siRNA administration (P<0.05). Conclusion: BMP combination with the CCH-related gene Slit2 can effectively improve the efficiency of BMMNC transplantation in treatment.
Collapse
Affiliation(s)
- Nan Wang
- Department of Neurology Inspection, The First Affiliated Hospital of China Medical University, No. 155 Nanjing Street, Shenyang, Liaoning Province, 110016, China
| | - Muhui Lin
- Department of Neurology Inspection, The People's Hospital of Liaoning Province, No. 33 wenyi Road, Shenyang, Liaoning Province, 110016, China
| | - Wanshu Guo
- Department of Neurology Inspection, The People's Hospital of Liaoning Province, No. 33 wenyi Road, Shenyang, Liaoning Province, 110016, China
| | - Yunpeng Cao
- Department of Neurology Inspection, The First Affiliated Hospital of China Medical University, No. 155 Nanjing Street, Shenyang, Liaoning Province, 110016, China
- Department of Neurology Inspection, The People's Hospital of Liaoning Province, No. 33 wenyi Road, Shenyang, Liaoning Province, 110016, China
| |
Collapse
|
2
|
Wood JA, Chaparala S, Bantang C, Chattopadhyay A, Wesesky MA, Kinchington PR, Nimgaonkar VL, Bloom DC, D'Aiuto L. RNA-Seq time-course analysis of neural precursor cell transcriptome in response to herpes simplex Virus-1 infection. J Neurovirol 2024; 30:131-145. [PMID: 38478163 PMCID: PMC11371869 DOI: 10.1007/s13365-024-01198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 09/04/2024]
Abstract
The neurogenic niches within the central nervous system serve as essential reservoirs for neural precursor cells (NPCs), playing a crucial role in neurogenesis. However, these NPCs are particularly vulnerable to infection by the herpes simplex virus 1 (HSV-1). In the present study, we investigated the changes in the transcriptome of NPCs in response to HSV-1 infection using bulk RNA-Seq, compared to those of uninfected samples, at different time points post infection and in the presence or absence of antivirals. The results showed that NPCs upon HSV-1 infection undergo a significant dysregulation of genes playing a crucial role in aspects of neurogenesis, including genes affecting NPC proliferation, migration, and differentiation. Our analysis revealed that the CREB signaling, which plays a crucial role in the regulation of neurogenesis and memory consolidation, was the most consistantly downregulated pathway, even in the presence of antivirals. Additionally, cholesterol biosynthesis was significantly downregulated in HSV-1-infected NPCs. The findings from this study, for the first time, offer insights into the intricate molecular mechanisms that underlie the neurogenesis impairment associated with HSV-1 infection.
Collapse
Affiliation(s)
- Joel A Wood
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA
| | - Srilakshmi Chaparala
- Molecular Biology Information Service, Health Sciences Library System / Falk Library, University of Pittsburgh, M722 Alan Magee Scaife Hall / 3550 Terrace Street, 15261, Pittsburgh, PA, USA
| | - Cecilia Bantang
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA
| | - Ansuman Chattopadhyay
- Molecular Biology Information Service, Health Sciences Library System / Falk Library, University of Pittsburgh, M722 Alan Magee Scaife Hall / 3550 Terrace Street, 15261, Pittsburgh, PA, USA
| | - Maribeth A Wesesky
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA
| | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh, Suite 820, Eye & Ear Building, 203 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Vishwajit L Nimgaonkar
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA
- VA Pittsburgh Healthcare system at U.S. Department of Veterans Affairs, Pittsburgh, PA, USA
| | - David C Bloom
- Academic Research Building, Department of Molecular Genetics and Microbiology, University of Florida, 1200 Newell Drive, R2-231, 32610, Gainesville, FL, USA
| | - Leonardo D'Aiuto
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Chen Y, Ren P, He X, Yan F, Gu R, Bai J, Zhang X. Olfactory bulb neurogenesis depending on signaling in the subventricular zone. Cereb Cortex 2023; 33:11102-11111. [PMID: 37746807 DOI: 10.1093/cercor/bhad349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023] Open
Abstract
Olfaction is a crucial sense that is essential for the well-being and survival of individuals. Olfactory bulb (OB) is the first olfactory relay station, and its function depends on newly generated neurons from the subventricular zone (SVZ). These newly born neurons constantly migrate through the rostral migratory stream to integrate into existing neural networks within the OB, thereby contributing to olfactory information processing. However, the mechanisms underlying the contribution of SVZ adult neurogenesis to OB neurogenesis remain largely elusive. Adult neurogenesis is a finely regulated multistep process involving the proliferation of adult neural stem cells (aNSCs) and neural precursor cells, as well as the migration and differentiation of neuroblasts, and integration of newly generated neurons into preexisting neuronal circuitries. Recently, extensive studies have explored the mechanism of SVZ and OB neurogenesis. This review focused on elucidating various molecules and signaling pathways associated with OB neurogenesis dependent on the SVZ function. A better understanding of the mechanisms underlying the OB neurogenesis on the adult brain is an attractive prospect to induce aNSCs in SVZ to generate new neurons to ameliorate olfactory dysfunction that is involved in various diseases. It will also contribute to developing new strategies for the human aNSCs-based therapies.
Collapse
Affiliation(s)
- Yali Chen
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Peng Ren
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiongjie He
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Fang Yan
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Rou Gu
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Bai
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Xianwen Zhang
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
4
|
Sumera, Anwer F, Waseem M, Fatima A, Malik N, Ali A, Zahid S. Molecular Docking and Molecular Dynamics Studies Reveal Secretory Proteins as Novel Targets of Temozolomide in Glioblastoma Multiforme. Molecules 2022; 27:7198. [PMID: 36364024 PMCID: PMC9653723 DOI: 10.3390/molecules27217198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 10/13/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a tumor of glial origin and is the most malignant, aggressive and prevalent type, with the highest mortality rate in adult brain cancer. Surgical resection of the tumor followed by Temozolomide (TMZ) therapy is currently available, but the development of resistance to TMZ is a common limiting factor in effective treatment. The present study investigated the potential interactions of TMZ with several secretory proteins involved in various molecular and cellular processes in GBM. Automated docking studies were performed using AutoDock 4.2, which showed an encouraging binding affinity of TMZ towards all targeted proteins, with the strongest interaction and binding affinity with GDF1 and SLIT1, followed by NPTX1, CREG2 and SERPINI, among the selected proteins. Molecular dynamics (MD) simulations of protein-ligand complexes were performed via CABS-flex V2.0 and the iMOD server to evaluate the root-mean-square fluctuations (RMSFs) and measure protein stability, respectively. The results showed that docked models were more flexible and stable with TMZ, suggesting that it may be able to target putative proteins implicated in gliomagenesis that may impact radioresistance. However, additional in vitro and in vivo investigations can ascertain the potential of the selected proteins to serve as novel targets for TMZ for GBM treatment.
Collapse
Affiliation(s)
- Sumera
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Farha Anwer
- Integrative Biology Laboratory, Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Maaz Waseem
- Integrative Biology Laboratory, Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Areeba Fatima
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Nishat Malik
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Amjad Ali
- Integrative Biology Laboratory, Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| |
Collapse
|
5
|
Cayre M, Falque M, Mercier O, Magalon K, Durbec P. Myelin Repair: From Animal Models to Humans. Front Cell Neurosci 2021; 15:604865. [PMID: 33935649 PMCID: PMC8079744 DOI: 10.3389/fncel.2021.604865] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
It is widely thought that brain repair does not occur, but myelin regeneration provides clear evidence to the contrary. Spontaneous remyelination may occur after injury or in multiple sclerosis (MS). However, the efficiency of remyelination varies considerably between MS patients and between the lesions of each patient. Myelin repair is essential for optimal functional recovery, so a profound understanding of the cells and mechanisms involved in this process is required for the development of new therapeutic strategies. In this review, we describe how animal models and modern cell tracing and imaging methods have helped to identify the cell types involved in myelin regeneration. In addition to the oligodendrocyte progenitor cells identified in the 1990s as the principal source of remyelinating cells in the central nervous system (CNS), other cell populations, including subventricular zone-derived neural progenitors, Schwann cells, and even spared mature oligodendrocytes, have more recently emerged as potential contributors to CNS remyelination. We will also highlight the conditions known to limit endogenous repair, such as aging, chronic inflammation, and the production of extracellular matrix proteins, and the role of astrocytes and microglia in these processes. Finally, we will present the discrepancies between observations in humans and in rodents, discussing the relationship of findings in experimental models to myelin repair in humans. These considerations are particularly important from a therapeutic standpoint.
Collapse
Affiliation(s)
- Myriam Cayre
- Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM-UMR 7288), Marseille, France
| | | | | | | | | |
Collapse
|