1
|
Wang T, Chen HY, Yang P, Zhang X, Su SY. Electroacupuncture induces analgesia by regulating spinal synaptic plasticity via the AMPA/NMDA receptor in a model of cervical spondylotic radiculopathy: secondary analysis of an experimental study in rats. Acupunct Med 2025; 43:38-51. [PMID: 39895325 DOI: 10.1177/09645284251314189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
OBJECTIVE Cervical spondylotic radiculopathy (CSR) is characterized by neuropathic pain (NP). Although the analgesic effect of electroacupuncture (EA) has been widely recognized in clinical practice, the mechanism of EA in the treatment of CSR remains unknown. We previously reported that 7 days of EA improved behavioral markers of NP, attenuated increases in α-synuclein, synapsin 1 and 2, postsynaptic density (PSD)-95 and growth-associated protein (GAP)-43, and improved ultrastructural changes within synapses in a rat model of CSR. Herein, we present supplemental data from the same cohort of animals examining the timing of behavioral improvement within the first week (through additional measurements at 3 and 5 days into the EA treatment) and new data on the effects of EA on α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and N-methyl-d-aspartic acid receptor (NMDAR) levels. METHODS As previously reported, the rats were divided into four groups at random: normal, sham, CSR and CSR + EA. EA at bilateral LI4 and LR3 was administered once a day for 7 days (20 min each) in the CSR + EA group after the CSR model was established by inserting a fishing line under the laminae. Behavioral assessments were carried out prior to initiation of EA and at 3, 5 and 7 days into the 7-day treatment course. Concentrations ofγ-aminobutyric acid (GABA) and glutamate (Glu) were determined using enzyme-linked immunosorbent assay and ultraviolet colorimetry, respectively, and AMPAR (glutamate receptor (GluR)1 and GluR2 membrane protein) expression was determined using Western blotting. Immunohistochemistry was used to detect the protein expression and average optical density (AOD) of NMDAR1 (NR1), NMDAR2A (NR2A) and NMDAR2B (NR2B). Quantitative reverse transcription-polymerase chain reaction was used to detect the mRNA expression of NR1, NR2A and NR2B. Transmission electron microscopy was used to observe changes in synaptic ultrastructure. RESULTS EA significantly improved the pressure pain threshold (PPT) and mechanical withdrawal threshold (MWT) 5 days into the intervention, although effects were less pronounced than at 7 days (at completion of treatment). However, significant effects on gait scores were not seen prior to 7 days. As previously reported, EA also improved markers of synaptic ultrastructure. In the spinal cord, GluR1 membrane protein expression was decreased, GluR2 membrane protein expression was increased, and the GluR1/GluR2 ratio was decreased. Protein and mRNA expression of NR1, NR2A and NR2B was significantly decreased. GABA concentration was markedly increased, while Glu concentration was markedly decreased. CONCLUSION Evidence of EA analgesia (higher PPT and MWT scores) was seen after 5 days of EA, while positive effects on motor function required 7 days of treatment. The underlying mechanism may be related to inhibition of AMPAR and NMDAR expression, regulation of the concentration of related neurotransmitters and improvement of spinal cord synaptic plasticity. This study establishes a preliminary theoretical foundation for the use of EA in the clinical treatment of CSR.
Collapse
Affiliation(s)
- Tian Wang
- Guangxi Key Laboratory of Molecular Biology of Preventive Medicine of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Hai-Yan Chen
- Department of Nursing, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Pu Yang
- Guangxi Key Laboratory of Molecular Biology of Preventive Medicine of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Xi Zhang
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Sheng-Yong Su
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
2
|
Sadighparvar S, Al-Hamed FS, Sharif-Naeini R, Meloto CB. Preclinical orofacial pain assays and measures and chronic primary orofacial pain research: where we are and where we need to go. FRONTIERS IN PAIN RESEARCH 2023; 4:1150749. [PMID: 37293433 PMCID: PMC10244561 DOI: 10.3389/fpain.2023.1150749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/11/2023] [Indexed: 06/10/2023] Open
Abstract
Chronic primary orofacial pain (OFP) conditions such as painful temporomandibular disorders (pTMDs; i.e., myofascial pain and arthralgia), idiopathic trigeminal neuralgia (TN), and burning mouth syndrome (BMS) are seemingly idiopathic, but evidence support complex and multifactorial etiology and pathophysiology. Important fragments of this complex array of factors have been identified over the years largely with the help of preclinical studies. However, findings have yet to translate into better pain care for chronic OFP patients. The need to develop preclinical assays that better simulate the etiology, pathophysiology, and clinical symptoms of OFP patients and to assess OFP measures consistent with their clinical symptoms is a challenge that needs to be overcome to support this translation process. In this review, we describe rodent assays and OFP pain measures that can be used in support of chronic primary OFP research, in specific pTMDs, TN, and BMS. We discuss their suitability and limitations considering the current knowledge of the etiology and pathophysiology of these conditions and suggest possible future directions. Our goal is to foster the development of innovative animal models with greater translatability and potential to lead to better care for patients living with chronic primary OFP.
Collapse
Affiliation(s)
- Shirin Sadighparvar
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | | | - Reza Sharif-Naeini
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Physiology and Cell Information Systems, McGill University, Montreal, QC, Canada
| | - Carolina Beraldo Meloto
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Alotaibi G, Khan A, Ronan PJ, Lutfy K, Rahman S. Glial Glutamate Transporter Modulation Prevents Development of Complete Freund's Adjuvant-Induced Hyperalgesia and Allodynia in Mice. Brain Sci 2023; 13:807. [PMID: 37239279 PMCID: PMC10216248 DOI: 10.3390/brainsci13050807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Glial glutamate transporter (GLT-1) modulation in the hippocampus and anterior cingulate cortex (ACC) is critically involved in nociceptive pain. The objective of the study was to investigate the effects of 3-[[(2-methylphenyl) methyl] thio]-6-(2-pyridinyl)-pyridazine (LDN-212320), a GLT-1 activator, against microglial activation induced by complete Freund's adjuvant (CFA) in a mouse model of inflammatory pain. Furthermore, the effects of LDN-212320 on the protein expression of glial markers, such as ionized calcium-binding adaptor molecule 1 (Iba1), cluster of differentiation molecule 11b (CD11b), mitogen-activated protein kinases (p38), astroglial GLT-1, and connexin 43 (CX43), were measured in the hippocampus and ACC following CFA injection using the Western blot analysis and immunofluorescence assay. The effects of LDN-212320 on the pro-inflammatory cytokine interleukin-1β (IL-1β) in the hippocampus and ACC were also assessed using an enzyme-linked immunosorbent assay. Pretreatment with LDN-212320 (20 mg/kg) significantly reduced the CFA-induced tactile allodynia and thermal hyperalgesia. The anti-hyperalgesic and anti-allodynic effects of LDN-212320 were reversed by the GLT-1 antagonist DHK (10 mg/kg). Pretreatment with LDN-212320 significantly reduced CFA-induced microglial Iba1, CD11b, and p38 expression in the hippocampus and ACC. LDN-212320 markedly modulated astroglial GLT-1, CX43, and, IL-1β expression in the hippocampus and ACC. Overall, these results suggest that LDN-212320 prevents CFA-induced allodynia and hyperalgesia by upregulating astroglial GLT-1 and CX43 expression and decreasing microglial activation in the hippocampus and ACC. Therefore, LDN-212320 could be developed as a novel therapeutic drug candidate for chronic inflammatory pain.
Collapse
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | - Amna Khan
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | - Patrick J. Ronan
- Research Service, Sioux Falls VA Healthcare System, Sioux Falls, SD 57105, USA
- Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA
| | - Kabirullah Lutfy
- College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
- Research Service, Sioux Falls VA Healthcare System, Sioux Falls, SD 57105, USA
| |
Collapse
|
4
|
Huang X, Li Z, Ma J, Huang D, Yan X, Zhou H. A novel implantable device for sensory and affective assessment of orofacial pain in rats. Front Vet Sci 2022; 9:1028147. [DOI: 10.3389/fvets.2022.1028147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background and objectiveOrofacial pain, in particular, chronic orofacial pain remains a great challenge in clinical practice. To better understand the underlying mechanism of disease, it is essential to apply a feasible and stable preclinical measurement of facial pain. Here, we introduced a novel electrical noxious stimulator in freely behavioral rodents and examined its validation in both naïve and chronic orofacial pain animals.MethodsOne subcutaneous device of electrical stimulator was implanted in the facial region for delivery of the nociceptive input. The sensory component of orofacial pain was assessed by response scoring tool, and conditioned place aversion (CPA) paradigm for pain affect respectively. To confirm its usage in chronic pain state, the chronic constriction injury of the infraorbital nerve (ION-CCI) model was then applied.ResultsWe found that responsive scores increased with stimulation intensity, and acted in a dosage-dependent manner, which can be attenuated by the administration of morphine intraperitoneally. Naïve rats displayed significant aversive reaction to the noxious electrical stimulation (25V) in the CPA testing. In addition, an obvious sensory hypersensitivity to electrical stimulation was confirmed by the increased response scores in ION-CCI rats. Furthermore, ION-CCI animal showed significant avoidance to electrical stimulation at relatively low intensity (10V), which was innoxious to naïve rats.ConclusionOur findings may provide an alternative pre-clinical measurement of orofacial pain, to quantitively assess both sensory and affective component of orofacial pain.
Collapse
|
5
|
Sisignano M, Gribbon P, Geisslinger G. Drug Repurposing to Target Neuroinflammation and Sensory Neuron-Dependent Pain. Drugs 2022; 82:357-373. [PMID: 35254645 PMCID: PMC8899787 DOI: 10.1007/s40265-022-01689-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
Abstract
Around 20% of the American population have chronic pain and estimates in other Western countries report similar numbers. This represents a major challenge for global health care systems. Additional problems for the treatment of chronic and persistent pain are the comparably low efficacy of existing therapies, the failure to translate effects observed in preclinical pain models to human patients and related setbacks in clinical trials from previous attempts to develop novel analgesics. Drug repurposing offers an alternative approach to identify novel analgesics as it can bypass various steps of classical drug development. In recent years, several approved drugs were attributed analgesic properties. Here, we review available data and discuss recent findings suggesting that the approved drugs minocycline, fingolimod, pioglitazone, nilotinib, telmisartan, and others, which were originally developed for the treatment of different pathologies, can have analgesic, antihyperalgesic, or neuroprotective effects in preclinical and clinical models of inflammatory or neuropathic pain. For our analysis, we subdivide the drugs into substances that can target neuroinflammation or substances that can act on peripheral sensory neurons, and highlight the proposed mechanisms. Finally, we discuss the merits and challenges of drug repurposing for the development of novel analgesics.
Collapse
Affiliation(s)
- Marco Sisignano
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany. .,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany. .,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Jonas R, Schmelz M. Sensitization of supra-threshold pain responses-Translational aspects and mechanisms. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:1078890. [PMID: 36926107 PMCID: PMC10013001 DOI: 10.3389/fnetp.2022.1078890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
A substantial translational gap in pain research has been reflected by a mismatch of relevant primary pain assessment endpoints in preclinical vs. clinical trials. Since activity-dependent mechanisms may be neglected during reflexive tests, this may add as a confounding factor during preclinical pain assessment. In this perspective, we consider the evidence for a need for supra-threshold pain assessment in the pain research literature. In addition to that, we focus on previous results that may demonstrate an example mechanism, where the detection of neuron-glial interactions on pain seems to be substantially depending on the assessment of pain intensity beyond threshold levels.
Collapse
Affiliation(s)
- Robin Jonas
- Department of Translational Pharmacology, Medical School EWL, Bielefeld University, Bielefeld, Germany.,UMCG Pain Center, Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Martin Schmelz
- Department of Experimental Pain Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
7
|
Nagakura Y, Nagaoka S, Kurose T. Potential Molecular Targets for Treating Neuropathic Orofacial Pain Based on Current Findings in Animal Models. Int J Mol Sci 2021; 22:ijms22126406. [PMID: 34203854 PMCID: PMC8232571 DOI: 10.3390/ijms22126406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 01/25/2023] Open
Abstract
This review highlights potential molecular targets for treating neuropathic orofacial pain based on current findings in animal models. Preclinical research is currently elucidating the pathophysiology of the disease and identifying the molecular targets for better therapies using animal models that mimic this category of orofacial pain, especially post-traumatic trigeminal neuropathic pain (PTNP) and primary trigeminal neuralgia (PTN). Animal models of PTNP and PTN simulate their etiologies, that is, trauma to the trigeminal nerve branch and compression of the trigeminal root entry zone, respectively. Investigations in these animal models have suggested that biological processes, including inflammation, enhanced neuropeptide-mediated pain signal transmission, axonal ectopic discharges, and enhancement of interactions between neurons and glial cells in the trigeminal pathway, are underlying orofacial pain phenotypes. The molecules associated with biological processes, whose expressions are substantially altered following trigeminal nerve damage or compression of the trigeminal nerve root, are potentially involved in the generation and/or exacerbation of neuropathic orofacial pain and can be potential molecular targets for the discovery of better therapies. Application of therapeutic candidates, which act on the molecular targets and modulate biological processes, attenuates pain-associated behaviors in animal models. Such therapeutic candidates including calcitonin gene-related peptide receptor antagonists that have a reasonable mechanism for ameliorating neuropathic orofacial pain and meet the requirements for safe administration to humans seem worth to be evaluated in clinical trials. Such prospective translation of the efficacy of therapeutic candidates from animal models to human patients would help develop better therapies for neuropathic orofacial pain.
Collapse
Affiliation(s)
- Yukinori Nagakura
- School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa-city, Fukuoka 831-8501, Japan
- Correspondence:
| | - Shogo Nagaoka
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan; (S.N.); (T.K.)
| | - Takahiro Kurose
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan; (S.N.); (T.K.)
| |
Collapse
|