1
|
Mathias K, Machado RS, Cardoso T, Tiscoski ADB, Kursancew ACDS, Prophiro JS, Generoso J, Petronilho F. Innate lymphoid cells in the brain: Focus on ischemic stroke. Microvasc Res 2025; 157:104755. [PMID: 39427988 DOI: 10.1016/j.mvr.2024.104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
The innate immune system consists of a diverse set of immune cells, including innate lymphoid cells (ILCs), which are grouped into subsets based on their transcription factors and cytokine profiles. Among these are natural killer (NK) cells, group 1 ILCs, group 2 ILCs, group 3 ILCs, and lymphoid tissue inducers (LTi). Unlike T and B cells, ILCs do not express the diverse antigen receptors typically found on those cells. Although ILCs function in various systems, further research is needed to understand their role in the brain and their involvement in neurological diseases such as stroke. This review explores the general immunological aspects of ILCs, with a particular focus on their role in the central nervous system and the pathophysiology of ischemic stroke.
Collapse
Affiliation(s)
- Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Taise Cardoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Anita Dal Bó Tiscoski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Amanda Christine da Silva Kursancew
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Josiane Somariva Prophiro
- Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Jaqueline Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil.
| |
Collapse
|
2
|
Mallard C, Ferriero DM, Vexler ZS. Immune-Neurovascular Interactions in Experimental Perinatal and Childhood Arterial Ischemic Stroke. Stroke 2024; 55:506-518. [PMID: 38252757 DOI: 10.1161/strokeaha.123.043399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Emerging clinical and preclinical data have demonstrated that the pathophysiology of arterial ischemic stroke in the adult, neonates, and children share similar mechanisms that regulate brain damage but also have distinct molecular signatures and involved cellular pathways due to the maturational stage of the central nervous system and the immune system at the time of the insult. In this review, we discuss similarities and differences identified thus far in rodent models of 2 different diseases-neonatal (perinatal) and childhood arterial ischemic stroke. In particular, we review acquired knowledge of the role of resident and peripheral immune populations in modulating outcomes in models of perinatal and childhood arterial ischemic stroke and the most recent and relevant findings in relation to the immune-neurovascular crosstalk, and how the influence of inflammatory mediators is dependent on specific brain maturation stages. Finally, we discuss the current state of treatments geared toward age-appropriate therapies that signal via the immune-neurovascular interaction and consider sex differences to achieve successful translation.
Collapse
Affiliation(s)
- Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Sweden (C.M.)
| | - Donna M Ferriero
- Department of Pediatrics, UCSF, San Francisco, CA (D.M.F.)
- Department of Neurology, UCSF, Weill Institute for Neurosciences, San Francisco, CA (D.M.F., Z.S.V.)
| | - Zinaida S Vexler
- Department of Neurology, UCSF, Weill Institute for Neurosciences, San Francisco, CA (D.M.F., Z.S.V.)
| |
Collapse
|
3
|
Zheng P, Xiu Y, Chen Z, Yuan M, Li Y, Wang N, Zhang B, Zhao X, Li M, Liu Q, Shi FD, Jin WN. Group 2 innate lymphoid cells resolve neuroinflammation following cerebral ischaemia. Stroke Vasc Neurol 2023; 8:424-434. [PMID: 37072337 PMCID: PMC10647866 DOI: 10.1136/svn-2022-001919] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/02/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Acute brain ischaemia elicits pronounced inflammation, which aggravates neural injury. However, the mechanisms governing the resolution of acute neuroinflammation remain poorly understood. In contrast to regulatory T and B cells, group 2 innate lymphoid cells (ILC2s) are immunoregulatory cells that can be swiftly mobilised without antigen presentation; whether and how these ILC2s participate in central nervous system inflammation following brain ischaemia is still unknown. METHODS Leveraging brain tissues from patients who had an ischaemic stroke and a mouse model of focal ischaemia, we characterised the presence and cytokine release of brain-infiltrating ILC2s. The impact of ILC2s on neural injury was evaluated through antibody depletion and ILC2 adoptive transfer experiments. Using Rag2-/-γc-/- mice receiving passive transfer of IL-4-/- ILC2s, we further assessed the contribution of interleukin (IL)-4, produced by ILC2s, in ischaemic brain injury. RESULTS We demonstrate that ILC2s accumulate in the areas surrounding the infarct in brain tissues of patients with cerebral ischaemia, as well as in mice subjected to focal cerebral ischaemia. Oligodendrocytes were a major source of IL-33, which contributed to ILC2s mobilisation. Adoptive transfer and expansion of ILC2s reduced brain infarction. Importantly, brain-infiltrating ILC2s reduced the magnitude of stroke injury severity through the production of IL-4. CONCLUSIONS Our findings revealed that brain ischaemia mobilises ILC2s to curb neuroinflammation and brain injury, expanding the current understanding of inflammatory networks following stroke.
Collapse
Affiliation(s)
- Pei Zheng
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuwhen Xiu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhili Chen
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Yuan
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan Li
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ningning Wang
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bohao Zhang
- Department of Neurology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Zhao
- Department of Neurology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Minshu Li
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Fu-Dong Shi
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei-Na Jin
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Si Y, Zhang Y, Zuloaga K, Yang Q. The role of innate lymphocytes in regulating brain and cognitive function. Neurobiol Dis 2023; 179:106061. [PMID: 36870457 PMCID: PMC11194859 DOI: 10.1016/j.nbd.2023.106061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Mounting evidence indicates complex interaction between the immune system and the nervous system, challenging the traditional view about the immune privilege of the brain. Innate lymphoid cells (ILCs) and innate-like T cells are unique families of immune cells that functionally mirror traditional T cells but may function via antigen- and T cell antigen receptor (TCR)-independent mechanisms. Recent work indicates that various ILCs and innate-like T cell subsets are present in the brain barrier tissue, where they play important roles in regulating brain barrier integrity, brain homeostasis and cognitive function. In this review, we discuss recent advances in understanding the intricate roles for innate and innate-like lymphocytes in regulating brain and cognitive function.
Collapse
Affiliation(s)
- Youwen Si
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Yuanyue Zhang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Kristen Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - Qi Yang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; Rutgers Institute for Translational Medicine and Science, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| |
Collapse
|
5
|
Crosstalk between macrophages and innate lymphoid cells (ILCs) in diseases. Int Immunopharmacol 2022; 110:108937. [PMID: 35779490 DOI: 10.1016/j.intimp.2022.108937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
Innate lymphoid cells (ILCs) and macrophages are tissue-resident cells that play important roles in tissue-immune homeostasis and immune regulation. ILCs are mainly distributed on the barrier surfaces of mammals to ensure immunity or tissue homeostasis following host, microbial, or environmental stimulation. Their complex relationships with different organs enable them to respond quickly to disturbances in environmental conditions and organ homeostasis, such as during infections and tissue damage. Gradually emerging evidence suggests that ILCs also play complex and diverse roles in macrophage development, homeostasis, polarization, inflammation, and viral infection. In turn, macrophages also determine the fate of ILCs to some extent, which indicates that network crossover between these interactions is a key determinant of the immune response. More work is needed to better define the crosstalk of ILCs with macrophages in different tissues and demonstrate how it is affected during inflammation and other diseases. Here, we summarize current research on the functional interactions between ILCs and macrophages and consider the potential therapeutic utility of these interactions for the benefit of human health.
Collapse
|
6
|
Steffen J, Ehrentraut S, Bank U, Biswas A, Figueiredo CA, Hölsken O, Düsedau HP, Dovhan V, Knop L, Thode J, Romero-Suárez S, Duarte CI, Gigley J, Romagnani C, Diefenbach A, Klose CSN, Schüler T, Dunay IR. Type 1 innate lymphoid cells regulate the onset of Toxoplasma gondii-induced neuroinflammation. Cell Rep 2022; 38:110564. [PMID: 35354032 DOI: 10.1016/j.celrep.2022.110564] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 12/21/2021] [Accepted: 03/03/2022] [Indexed: 12/31/2022] Open
Abstract
Cerebral infections are restrained by a complex interplay of tissue-resident and recruited peripheral immune cells. Whether innate lymphoid cells (ILCs) are involved in the orchestration of the neuroinflammatory dynamics is not fully understood. Here, we demonstrate that ILCs accumulate in the cerebral parenchyma, the choroid plexus, and the meninges in the onset of cerebral Toxoplasma gondii infection. Antibody-mediated depletion of conventional natural killer (cNK) cells and ILC1s in the early stage of infection results in diminished cytokine and chemokine expression and increased cerebral parasite burden. Using cNK- and ILC1-deficient murine models, we demonstrate that exclusively the lack of ILC1s affects cerebral immune responses. In summary, our results provide evidence that ILC1s are an early source of IFN-γ and TNF in response to cerebral T. gondii infection, thereby inducing host defense factors and initiating the development of a neuroinflammatory response.
Collapse
Affiliation(s)
- Johannes Steffen
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology, and Inflammation (GC-I(3)), Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Stefanie Ehrentraut
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology, and Inflammation (GC-I(3)), Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Ute Bank
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology, and Inflammation (GC-I(3)), Otto-von-Guericke University, Magdeburg, Germany
| | - Aindrila Biswas
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology, and Inflammation (GC-I(3)), Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Caio Andreeta Figueiredo
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology, and Inflammation (GC-I(3)), Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Oliver Hölsken
- Mucosal and Developmental Immunology, German Rheuma Research Center Berlin (DRFZ), Berlin, Germany; Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases, and Immunology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Henning Peter Düsedau
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology, and Inflammation (GC-I(3)), Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Vladyslava Dovhan
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology, and Inflammation (GC-I(3)), Otto-von-Guericke University, Magdeburg, Germany
| | - Laura Knop
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology, and Inflammation (GC-I(3)), Otto-von-Guericke University, Magdeburg, Germany
| | - Jacqueline Thode
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology, and Inflammation (GC-I(3)), Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Silvina Romero-Suárez
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Infante Duarte
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jason Gigley
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany; Medical Department I, Charité - Universitätsmedizin, Berlin, Germany
| | - Andreas Diefenbach
- Mucosal and Developmental Immunology, German Rheuma Research Center Berlin (DRFZ), Berlin, Germany; Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases, and Immunology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Christoph S N Klose
- Neuro-immune Interactions, Institute of Microbiology, Infectious Diseases, and Immunology, Charité - Universitätsmedizin, Berlin, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology, and Inflammation (GC-I(3)), Otto-von-Guericke University, Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology, and Inflammation (GC-I(3)), Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
7
|
Zhang Y, Grazda R, Yang Q. Interaction Between Innate Lymphoid Cells and the Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:135-148. [DOI: 10.1007/978-981-16-8387-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Zelco A, Börjesson V, de Kanter JK, Lebrero-Fernandez C, Lauschke VM, Rocha-Ferreira E, Nilsson G, Nair S, Svedin P, Bemark M, Hagberg H, Mallard C, Holstege FCP, Wang X. Single-cell atlas reveals meningeal leukocyte heterogeneity in the developing mouse brain. Genes Dev 2021; 35:1190-1207. [PMID: 34301765 PMCID: PMC8336895 DOI: 10.1101/gad.348190.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/28/2021] [Indexed: 12/19/2022]
Abstract
Here, Zelco et al. used single-cell RNA sequencing to generate the first comprehensive transcriptional atlas of neonatal mouse meningeal leukocytes under normal conditions and after perinatal brain injury. They found that early after hypoxic–ischemic insult, neutrophil numbers increased and exhibited increased granulopoiesis, suggesting that the meninges are an important site of immune cell expansion with implications for the initiation of inflammatory cascades after neonatal brain injury. The meninges are important for brain development and pathology. Using single-cell RNA sequencing, we have generated the first comprehensive transcriptional atlas of neonatal mouse meningeal leukocytes under normal conditions and after perinatal brain injury. We identified almost all known leukocyte subtypes and found differences between neonatal and adult border-associated macrophages, thus highlighting that neonatal border-associated macrophages are functionally immature with regards to immune responses compared with their adult counterparts. We also identified novel meningeal microglia-like cell populations that may participate in white matter development. Early after the hypoxic–ischemic insult, neutrophil numbers increased and they exhibited increased granulopoiesis, suggesting that the meninges are an important site of immune cell expansion with implications for the initiation of inflammatory cascades after neonatal brain injury. Our study provides a single-cell resolution view of the importance of meningeal leukocytes at the early stage of development in health and disease.
Collapse
Affiliation(s)
- Aura Zelco
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Vanja Börjesson
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 90, Sweden
| | - Jurrian K de Kanter
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Cristina Lebrero-Fernandez
- Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm 17177, Sweden.,Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart 70 376, Germany
| | - Eridan Rocha-Ferreira
- Centre of Perinatal Medicine and Health, Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, Gothenburg 40530, Sweden
| | - Gisela Nilsson
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Syam Nair
- Centre of Perinatal Medicine and Health, Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, Gothenburg 40530, Sweden
| | - Pernilla Svedin
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Mats Bemark
- Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, Gothenburg 40530, Sweden
| | - Carina Mallard
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Frank C P Holstege
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Xiaoyang Wang
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden.,Centre of Perinatal Medicine and Health, Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, Gothenburg 40530, Sweden.,Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience, Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
9
|
Xu L, Li G, Tang X, Feng C, Li M, Jiang X, Gu Y, Yun Y, Lu L, Feng X, Ding X, Sun B. MiR-375-3p mediates reduced pineal function in hypoxia-ischemia brain damage. Exp Neurol 2021; 344:113814. [PMID: 34280452 DOI: 10.1016/j.expneurol.2021.113814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/21/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
The functional roles of microRNAs (miRNAs) have been studied in various diseases, including hypoxic-ischemic brain damage (HIBD). However, changes in the expression of miRNAs and the underlying mechanisms in the pineal gland during HIBD remain unknown. Based on the previous study by microRNA array, hundreds of miRNAs showed altered expression patterns in the pineal gland in a rat model of HIBD. MiR-375-3p was found to be significantly upregulated and abundant in the pineal gland. Further investigation in an in vitro HI model of pinealocytes showed that miRNA-375 exacerbated the damage to pineal function. After oxygen-glucose deprivation / reoxygenation (OGD/R), miR-375-3p expression increased, while aralkylamine N-acetyltransferase (AANAT) expression and melatonin (MT) secretion decreased. Overexpression of miRNA-375 in pinealocytes aggravated the influence of OGD/R on AANAT expression and MT secretion. Because miRNA-375 overexpression in pinealocytes induced decreased rasd1 mRNA and protein expression, rasd1 may mediate the effect of miR-375-3p on pineal function. Furthermore, miR-375-3p aggravated the cognitive impairment caused by HIBD in rats, as observed by Morris water maze test, and also affected emotion and circadian rhythm in HIBD-treated rats. Thus, miR-375-3p may be a key regulatory molecule in the pineal gland following HIBD, and targeting of miR-375-3p may represent a new strategy for the treatment of HIBD.
Collapse
Affiliation(s)
- Lixiao Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Xiaojuan Tang
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Chenxi Feng
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Mei Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Xiaolu Jiang
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Yan Gu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Yajing Yun
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Lianghua Lu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Xing Feng
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Xin Ding
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, China.
| | - Bin Sun
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, China.
| |
Collapse
|