1
|
Hosoda K, Nishida K, Seno S, Mashita T, Kashioka H, Ohzawa I. A single fast Hebbian-like process enabling one-shot class addition in deep neural networks without backbone modification. Front Neurosci 2024; 18:1344114. [PMID: 38933813 PMCID: PMC11202076 DOI: 10.3389/fnins.2024.1344114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
One-shot learning, the ability to learn a new concept from a single instance, is a distinctive brain function that has garnered substantial interest in machine learning. While modeling physiological mechanisms poses challenges, advancements in artificial neural networks have led to performances in specific tasks that rival human capabilities. Proposing one-shot learning methods with these advancements, especially those involving simple mechanisms, not only enhance technological development but also contribute to neuroscience by proposing functionally valid hypotheses. Among the simplest methods for one-shot class addition with deep learning image classifiers is "weight imprinting," which uses neural activity from a new class image data as the corresponding new synaptic weights. Despite its simplicity, its relevance to neuroscience is ambiguous, and it often interferes with original image classification, which is a significant drawback in practical applications. This study introduces a novel interpretation where a part of the weight imprinting process aligns with the Hebbian rule. We show that a single Hebbian-like process enables pre-trained deep learning image classifiers to perform one-shot class addition without any modification to the original classifier's backbone. Using non-parametric normalization to mimic brain's fast Hebbian plasticity significantly reduces the interference observed in previous methods. Our method is one of the simplest and most practical for one-shot class addition tasks, and its reliance on a single fast Hebbian-like process contributes valuable insights to neuroscience hypotheses.
Collapse
Affiliation(s)
- Kazufumi Hosoda
- Center for Information and Neural Networks, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan
- Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Kobe, Japan
| | - Keigo Nishida
- Laboratory for Computational Molecular Design, RIKEN Center for Biosystems Dynamics Research, Suita, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Japan
| | | | - Hideki Kashioka
- Center for Information and Neural Networks, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan
| | - Izumi Ohzawa
- Center for Information and Neural Networks, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan
| |
Collapse
|
2
|
Piette C, Gervasi N, Venance L. Synaptic plasticity through a naturalistic lens. Front Synaptic Neurosci 2023; 15:1250753. [PMID: 38145207 PMCID: PMC10744866 DOI: 10.3389/fnsyn.2023.1250753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
From the myriad of studies on neuronal plasticity, investigating its underlying molecular mechanisms up to its behavioral relevance, a very complex landscape has emerged. Recent efforts have been achieved toward more naturalistic investigations as an attempt to better capture the synaptic plasticity underpinning of learning and memory, which has been fostered by the development of in vivo electrophysiological and imaging tools. In this review, we examine these naturalistic investigations, by devoting a first part to synaptic plasticity rules issued from naturalistic in vivo-like activity patterns. We next give an overview of the novel tools, which enable an increased spatio-temporal specificity for detecting and manipulating plasticity expressed at individual spines up to neuronal circuit level during behavior. Finally, we put particular emphasis on works considering brain-body communication loops and macroscale contributors to synaptic plasticity, such as body internal states and brain energy metabolism.
Collapse
Affiliation(s)
- Charlotte Piette
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | | | - Laurent Venance
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
3
|
Bergoin R, Torcini A, Deco G, Quoy M, Zamora-López G. Inhibitory neurons control the consolidation of neural assemblies via adaptation to selective stimuli. Sci Rep 2023; 13:6949. [PMID: 37117236 PMCID: PMC10147639 DOI: 10.1038/s41598-023-34165-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/25/2023] [Indexed: 04/30/2023] Open
Abstract
Brain circuits display modular architecture at different scales of organization. Such neural assemblies are typically associated to functional specialization but the mechanisms leading to their emergence and consolidation still remain elusive. In this paper we investigate the role of inhibition in structuring new neural assemblies driven by the entrainment to various inputs. In particular, we focus on the role of partially synchronized dynamics for the creation and maintenance of structural modules in neural circuits by considering a network of excitatory and inhibitory [Formula: see text]-neurons with plastic Hebbian synapses. The learning process consists of an entrainment to temporally alternating stimuli that are applied to separate regions of the network. This entrainment leads to the emergence of modular structures. Contrary to common practice in artificial neural networks-where the acquired weights are typically frozen after the learning session-we allow for synaptic adaptation even after the learning phase. We find that the presence of inhibitory neurons in the network is crucial for the emergence and the post-learning consolidation of the modular structures. Indeed networks made of purely excitatory neurons or of neurons not respecting Dale's principle are unable to form or to maintain the modular architecture induced by the stimuli. We also demonstrate that the number of inhibitory neurons in the network is directly related to the maximal number of neural assemblies that can be consolidated, supporting the idea that inhibition has a direct impact on the memory capacity of the neural network.
Collapse
Affiliation(s)
- Raphaël Bergoin
- ETIS, UMR 8051, ENSEA, CY Cergy Paris Université, CNRS, 6 Av. du Ponceau, 95000, Cergy-Pontoise, France.
- Center for Brain and Cognition, Department of Information and Communications Technologies, Pompeu Fabra University, Carrer Ramón Trias i Fargas 25-27, 08005, Barcelona, Spain.
| | - Alessandro Torcini
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CY Cergy Paris Université, CNRS, 2 Av. Adolphe Chauvin, 95032, Cergy-Pontoise, France
| | - Gustavo Deco
- Center for Brain and Cognition, Department of Information and Communications Technologies, Pompeu Fabra University, Carrer Ramón Trias i Fargas 25-27, 08005, Barcelona, Spain
- Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010, Barcelona, Spain
| | - Mathias Quoy
- ETIS, UMR 8051, ENSEA, CY Cergy Paris Université, CNRS, 6 Av. du Ponceau, 95000, Cergy-Pontoise, France
- IPAL, CNRS, 1 Fusionopolis Way #21-01 Connexis (South Tower), Singapore, 138632, Singapore
| | - Gorka Zamora-López
- Center for Brain and Cognition, Department of Information and Communications Technologies, Pompeu Fabra University, Carrer Ramón Trias i Fargas 25-27, 08005, Barcelona, Spain
| |
Collapse
|
4
|
Dembitskaya Y, Piette C, Perez S, Berry H, Magistretti PJ, Venance L. Lactate supply overtakes glucose when neural computational and cognitive loads scale up. Proc Natl Acad Sci U S A 2022; 119:e2212004119. [PMID: 36375086 PMCID: PMC9704697 DOI: 10.1073/pnas.2212004119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/10/2022] [Indexed: 07/23/2023] Open
Abstract
Neural computational power is determined by neuroenergetics, but how and which energy substrates are allocated to various forms of memory engram is unclear. To solve this question, we asked whether neuronal fueling by glucose or lactate scales differently upon increasing neural computation and cognitive loads. Here, using electrophysiology, two-photon imaging, cognitive tasks, and mathematical modeling, we show that both glucose and lactate are involved in engram formation, with lactate supporting long-term synaptic plasticity evoked by high-stimulation load activity patterns and high attentional load in cognitive tasks and glucose being sufficient for less demanding neural computation and learning tasks. Indeed, we show that lactate is mandatory for demanding neural computation, such as theta-burst stimulation, while glucose is sufficient for lighter forms of activity-dependent long-term potentiation (LTP), such as spike timing-dependent plasticity (STDP). We find that subtle variations of spike number or frequency in STDP are sufficient to shift the on-demand fueling from glucose to lactate. Finally, we demonstrate that lactate is necessary for a cognitive task requiring high attentional load, such as the object-in-place task, and for the corresponding in vivo hippocampal LTP expression but is not needed for a less demanding task, such as a simple novel object recognition. Overall, these results demonstrate that glucose and lactate metabolism are differentially engaged in neuronal fueling depending on the complexity of the activity-dependent plasticity and behavior.
Collapse
Affiliation(s)
- Yulia Dembitskaya
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Charlotte Piette
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Sylvie Perez
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Hugues Berry
- AIStroSight Lab, INRIA, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69603 Villeurbanne, France
- University of Lyon, LIRIS UMR5205, 69622 Villeurbanne, France
| | - Pierre J. Magistretti
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Brain Mind Institute, EPFL, 1015 Lausanne, Switzerland
| | - Laurent Venance
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75005 Paris, France
| |
Collapse
|
5
|
Wu XL, Yan QJ, Zhu F. Abnormal synaptic plasticity and impaired cognition in schizophrenia. World J Psychiatry 2022; 12:541-557. [PMID: 35582335 PMCID: PMC9048451 DOI: 10.5498/wjp.v12.i4.541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/28/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia (SCZ) is a severe mental illness that affects several brain domains with relation to cognition and behaviour. SCZ symptoms are typically classified into three categories, namely, positive, negative, and cognitive. The etiology of SCZ is thought to be multifactorial and poorly understood. Accumulating evidence has indicated abnormal synaptic plasticity and cognitive impairments in SCZ. Synaptic plasticity is thought to be induced at appropriate synapses during memory formation and has a critical role in the cognitive symptoms of SCZ. Many factors, including synaptic structure changes, aberrant expression of plasticity-related genes, and abnormal synaptic transmission, may influence synaptic plasticity and play vital roles in SCZ. In this article, we briefly summarize the morphology of the synapse, the neurobiology of synaptic plasticity, and the role of synaptic plasticity, and review potential mechanisms underlying abnormal synaptic plasticity in SCZ. These abnormalities involve dendritic spines, postsynaptic density, and long-term potentiation-like plasticity. We also focus on cognitive dysfunction, which reflects impaired connectivity in SCZ. Additionally, the potential targets for the treatment of SCZ are discussed in this article. Therefore, understanding abnormal synaptic plasticity and impaired cognition in SCZ has an essential role in drug therapy.
Collapse
Affiliation(s)
- Xiu-Lin Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Qiu-Jin Yan
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Fan Zhu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
6
|
Muñoz-López L, López-Torrecillas F, Martín I, Sánchez-Barrera MB, López-Torrecillas MDC, Serrano F. Writing Abilities in Compulsive Prisoners. Front Psychol 2021; 12:701941. [PMID: 34408713 PMCID: PMC8365834 DOI: 10.3389/fpsyg.2021.701941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
Research has found links between academic failure and criminal offending and suggest that many incarcerated young people have experienced significant behavioral and learning problems in school, which could result in criminal outcomes and poor academic performance. The objective of this study was to analyse writing disorders in impulsive and compulsive prisoners. The sample was composed of 194 male prisoners, of which 81 had been diagnosed with Antisocial Personality Disorder and 113 with Obsessive Compulsive Personality Disorder. Male participants were recruited at the Granada Prison Center. They completed the Demographic, Crime, and Institutional Behavior Interview; the International Personality Disorder Examination (IPDE); The Symptom Checklist (SCL-90-R) and Assessment Battery of Writing Processes (PROESC in its Spanish acronym). We found that prisoners with writing disorders generally have difficulties in the skills necessary to write properly due to impulsive and compulsive behavior.
Collapse
Affiliation(s)
- Lucas Muñoz-López
- Consejería de Igualdad, Política Sociales y Conciliación de la Junta de Andalucía, University of Granada, Granada, Spain
| | | | - Ignacio Martín
- Departamento de Metodología de las Ciencias del Comportamiento, University of Granada, Granada, Spain
| | | | | | - Francisca Serrano
- Centro de Investigación Mente, Cerebro y Comportamiento, University of Granada, Granada, Spain
| |
Collapse
|