1
|
Dang C, Wang Q, Zhuang Y, Li Q, Lu Y, Xiong Y, Feng L. Synergistic effects of neuroprotective drugs with intravenous recombinant tissue plasminogen activator in acute ischemic stroke: A Bayesian network meta-analysis. PLoS One 2024; 19:e0311231. [PMID: 39621713 PMCID: PMC11611160 DOI: 10.1371/journal.pone.0311231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 12/11/2024] Open
Abstract
Neuroprotective drugs as adjunctive therapy for adults with acute ischemic stroke (AIS) remains contentious. This study summarizes the latest evidence regarding the benefits of neuroprotective agents combined with intravenous recombinant tissue plasminogen activator (rt-PA) intravenous thrombolysis. This study conducted a structured search of PubMed, the Cochrane Library, EMBASE, Wanfang Data, and CNKI databases from their inception to March 2024. Grey literature was also searched. The outcomes included efficacy (National Institutes of Health Stroke Scale (NIHSS) score and Barthel Index (BI) score) and safety (rate of adverse reactions). A total of 70 randomized controlled trials were selected for this network meta-analysis (NMA), encompassing 4,140 patients with AIS treated using different neuroprotective agents plus RT-PA, while 4,012 patients with AIS were in control groups. The top three treatments for NIHSS scores at the 2-week follow-up were Edaravone Dexborneo with 0.9 mg/kg rt-PA, Edaravone with 0.9 mg/kg rt-PA, and HUK with 0.9 mg/kg rt-PA. HUK with 0.9 mg/kg rt-PA, Dl-3n-butylphthalide with 0.9 mg/kg rt-PA, and Edaravone Dexborneo with 0.9 mg/kg rt-PA were ranked the top three for BI scores at the 2-week follow-up. The top three treatments with the lowest adverse effect rates were 0.6 mg/kg rt-PA, HUK with 0.9 mg/kg rt-PA, and Edaravone Dexborneo with 0.9 mg/kg rt-PA due to their excellent safety profiles. Compared to rt-PA alone, the combination treatments of Edaravone+rt-PA, Edaravone Dexborneol+rt-PA, HUK+rt-PA, Dl-3n-butylphthalide+rt-PA, and Ganglioside GM1+rt-PA have shown superior efficacy. This NMA suggest that combination therapies of neuroprotective agents and rt-PA can offer better outcomes for patients with AIS. The results support the potential integration of these combination therapies into standard AIS treatment, aiming for improved patient outcomes and personalized therapeutic approaches.
Collapse
Affiliation(s)
- Chun Dang
- Department of Periodical Press/Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qinxuan Wang
- West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Yijia Zhuang
- West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Qian Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yaoheng Lu
- Department of General Surgery, Chengdu Integrated Traditional Chinese Medicine and Western Medicine Hospital, Chengdu, China
| | - Ying Xiong
- Department of Periodical Press/Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Feng
- Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
曾 静, 花 雷, 阳 勇, 张 小, 魏 江, 李 利. [ Yigong San improves learning and memory functions of APP/PS1 transgenic mice by regulating brain fluid metabolism]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:2015-2023. [PMID: 39523102 PMCID: PMC11526469 DOI: 10.12122/j.issn.1673-4254.2024.10.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To explore the mechanism by which Yigong San (YGS) improves learning and memory abilities of APP/PS1 transgenic mice in light of cerebral fluid metabolism regulation. METHODS Three-month-old male APP/PS1 transgenic mice and wild-type C57BL/6 mice were both randomized into control group, model group, donepezil (1.67 mg/kg) group, and YGS (7.5 g/kg) group and received the corresponding treatments via gavage once daily for one month. After the treatments, the mice were assessed for learning and memory functions using Morris water maze test and examined for hippocampal and cortical pathologies and amyloid plaques using HE, immunohistochemical and thioflavin S staining; ELISA and Evans blue method were used for detecting Aβ1-40 and Aβ1-42 levels in the brain tissue and serum and assessing blood-brain barrier (BBB) integrity. Immunofluorescence colocalization was used to investigate AQP4 polarization on astrocytes. Western blotting was performed to detect the expressions of VE-cadherin, ZO-1, occludin, β-amyloid precursor protein (APP), BACE1, insulin-degrading enzyme (IDE), LRP1, RAGE, and AQP4 proteins. RESULTS Compared with the control mice, APP/PS1 mice showed significant impairment of learning and memory abilities, increased degeneration or necrosis of hippocampal and cortical neurons, pathological scores, Aβ-positive plaques, elevated Aβ1-40 and Aβ1-42 levels in the brain tissue and serum, increased BBB permeability, upregulated RAGE expression, lowered expressions of VE-cadherin, LRP1, ZO-1, occludin, and AQP4 proteins, and reduced AQP4- expressing GFAP-positive cells. YGS treatment significantly improved the performance of the transgenic mice in Morris water maze test, reduced hippocampal and cortical pathologies and Aβ-positive plaques, and ameliorated the abnormal changes in Aβ1-40 and Aβ1-42 levels, BBB permeability, protein expressions of RAGE, VE-cadherin, LRP1, ZO-1, occludin and AQP4, and the number of AQP4-expressing GFAP-positive cells. CONCLUSION YGS improves learning and memory changes in APP/PS1 mice by ameliorating neuronal damage and Aβ pathology in the brain and regulating brain fluid metabolism.
Collapse
|
3
|
Sun M, Chen J, Liu F, Li P, Lu J, Ge S, Wang L, Zhang X, Wang X. Butylphthalide inhibits ferroptosis and ameliorates cerebral Ischaemia-Reperfusion injury in rats by activating the Nrf2/HO-1 signalling pathway. Neurotherapeutics 2024; 21:e00444. [PMID: 39353831 PMCID: PMC11579876 DOI: 10.1016/j.neurot.2024.e00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 10/04/2024] Open
Abstract
This study aims to investigate whether butylphthalide can inhibit ferroptosis and ameliorate cerebral ischaemia-reperfusion (I/R) injury in rats by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) / heme oxygenase-1 (HO-1) signalling pathway, known for its antioxidative and cytoprotective properties. Middle cerebral artery occlusion reperfusion (MCAO/R) rat models were established. Male rats were randomly divided into five groups: a sham-operated group (sham), MCAO/R group, MCAO/R + ML385 (Nrf2-specific inhibitor) group, MCAO/R + NBP (butylphthalide) group and MCAO/R + ML385 + NBP group. The effect of butylphthalide on cerebral I/R injury was evaluated using neurological deficit scores. The expression levels of Nrf2, HO-1, glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long-chain family member 4 (ACSL4) and transferrin receptor 1 (TfR1) protein were detected using Western blot. Moreover, the expression levels of GPX4, HO-1 and TfR1 mRNA were determined through real-time fluorescence quantitative reverse transcription polymerase chain reaction. The distribution of Nrf2, HO-1, GPX4 and TfR1 was detected using immunohistochemical staining. The levels of iron and related lipid peroxidation indexes, such as reduced glutathione, reactive oxygen species, malondialdehyde and nitric oxide, were measured using a kit. The changes in mitochondria were observed through transmission electron microscopy. Butylphthalide treatment significantly improved neurological dysfunction, reduced cerebral infarction volume and mitigated histopathological damage in MCAO/R rats. It induced the nuclear translocation of Nrf2 and upregulated HO-1 expression, which was attenuated by ML385. Butylphthalide also attenuated lipid peroxidation, iron accumulation and mitochondrial damage induced by MCAO/R. The expression of GPX4, ACSL4 and TfR1 proteins, as well as their mRNA levels, was modulated through butylphthalide treatment, with improvements observed in mitochondrial morphology. Butylphthalide exerts neuroprotective effects by attenuating neurological dysfunction and ferroptosis in MCAO/R rats through the activation of the Nrf2/HO-1 pathway and inhibition of lipid peroxidation and iron accumulation.
Collapse
Affiliation(s)
- Meilin Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China; Department of Neurology, Xingtai People's Hospital, Xingtai 054001, Hebei, China
| | - Junmin Chen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Fan Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Pei Li
- Department of Neurology, Tangshan Gongren Hospital, Tangshan 063000, Hebei, China
| | - Jundong Lu
- Department of Neurology, Baoding First Central Hospital, Baoding 071000, Hebei, China
| | - Shihao Ge
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Lele Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Xin Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Xiaopeng Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China.
| |
Collapse
|
4
|
Kumari S, Dhapola R, Sharma P, Nagar P, Medhi B, HariKrishnaReddy D. The impact of cytokines in neuroinflammation-mediated stroke. Cytokine Growth Factor Rev 2024; 78:105-119. [PMID: 39004599 DOI: 10.1016/j.cytogfr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Cerebral stroke is ranked as the third most common contributor to global mortality and disability. The involvement of inflammatory mechanisms, both peripherally and within the CNS, holds significance in the pathophysiological cascades following the initiation of stroke. After the onset of acute stroke, predominantly ischemic, a subsequent phase of neuroinflammation ensues. It is a dual-effect process that not only exacerbates injury, leading to cell death, but paradoxically, it also serves a shielding role in facilitating recovery. Cytokines serve as pivotal mediators within the inflammatory cascade, actively contributing to the progression of ischemic damage. Stroke is followed by increased expression of pro-inflammatory cytokines including TNF-α, IL-1β, IL-6, etc. leading to the recruitment and stimulation of glial cells and peripheral leukocytes at the site of injury, promoting neuroinflammation. Cytokines can directly induce neuronal injury and death through various mechanisms, including excitotoxicity, oxidative stress, HPA-axis activation, secretion of matrix metalloproteinase and apoptosis. They can also amplify the inflammatory response, leading to further neuronal damage. Therapeutic strategies aimed at modulating cytokine release, immune response and cytokine signalling or activity are being explored as potential interventions to mitigate neuroinflammation and its detrimental effects in stroke. In this review, we have given a concise summary of our current knowledge of the function of various cytokines, brain inflammation and various signalling and molecular pathways including JAK/STAT3, TGF-β/Smad, MAPK, HMGB1/TLR and NF-κB modulated cytokines regulation in stroke. Therapeutic agents such as MCC950, genistein, edaravone, minocycline, etc. targeting various cytokines-associated signalling pathways have shown efficacy in preclinical and clinical trials reducing the pathophysiology of the illness were also addressed in this study.
Collapse
Affiliation(s)
- Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Pushank Nagar
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
5
|
Zheng ZJ, Zhu LZ, Qiu H, Zheng WYX, You PT, Chen SH, Hu CL, Huang JR, Zhou YJ. Neferine inhibits BMECs pyroptosis and maintains blood-brain barrier integrity in ischemic stroke by triggering a cascade reaction of PGC-1α. Sci Rep 2024; 14:14438. [PMID: 38910141 PMCID: PMC11194274 DOI: 10.1038/s41598-024-64815-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024] Open
Abstract
Blood-brain barrier disruption is a critical pathological event in the progression of ischemic stroke (IS). Most studies regarding the therapeutic potential of neferine (Nef) on IS have focused on neuroprotective effect. However, whether Nef attenuates BBB disruption during IS is unclear. We here used mice underwent transient middle cerebral artery occlusion (tMCAO) in vivo and bEnd.3 cells exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) injury in vitro to simulate cerebral ischemia. We showed that Nef reduced neurobehavioral dysfunction and protected brain microvascular endothelial cells and BBB integrity. Molecular docking, short interfering (Si) RNA and plasmid transfection results showed us that PGC-1α was the most binding affinity of biological activity protein for Nef. And verification experiments were showed that Nef upregulated PGC-1α expression to reduce mitochondrial oxidative stress and promote TJ proteins expression, further improves the integrity of BBB in mice. Intriguingly, our study showed that neferine is a natural PGC-1α activator and illustrated the mechanism of specific binding site. Furthermore, we have demonstrated Nef reduced mitochondria oxidative damage and ameliorates endothelial inflammation by inhibiting pyroptosis to improve BBB permeability through triggering a cascade reaction of PGC-1α via regulation of PGC-1α/NLRP3/GSDMD signaling pathway to maintain the integrity of BBB in ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Zi-Jian Zheng
- Department of Pharmacy, Gongan Hospital of Traditional Chinese Medicine, Jingzhou, 434300, China
- Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Li-Zhi Zhu
- Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, 518055, China
| | - Han Qiu
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 3002 West Sungang Rd, Shenzhen, 518020, China
| | - Wu-Yin-Xiao Zheng
- Department of Pharmacy, Gongan Hospital of Traditional Chinese Medicine, Jingzhou, 434300, China
- Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Peng-Tao You
- Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Shu-He Chen
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Hubei Shizhen Laboratory, Wuhan, 430061, China
| | - Chun-Ling Hu
- Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Jun-Rong Huang
- Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, 518055, China
| | - Ya-Jun Zhou
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 3002 West Sungang Rd, Shenzhen, 518020, China.
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.
- Hubei Shizhen Laboratory, Wuhan, 430061, China.
| |
Collapse
|
6
|
Rahman Z, Ghuge S, Dandekar MP. Partial blood replacement ameliorates middle cerebral artery occlusion generated neurological aberrations by intervening TLR4 and NLRP3 cascades in rats. Metab Brain Dis 2023; 38:2339-2354. [PMID: 37402080 DOI: 10.1007/s11011-023-01259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
Acute ischemic stroke is a catastrophic medical condition that causes severe disability and mortality if the sufferer escapes treatment within a stipulated timeframe. While timely intervention with clot-bursting agents like tissue-plasminogen activators abrogates some post-stroke neurologic deficits, no neuroprotective therapy is yet promisingly addresses the post-recanalization neuroinflammation in post-stroke survivors. Herein, we investigated the effect of partial blood replacement therapy (BRT), obtained from healthy and treadmill-trained donor rats, on neurological deficits, and peripheral and central inflammatory cascades using the ischemia-reperfusion animal paradigm. The cerebral ischemia-reperfusion was induced in rats by occlusion of the middle cerebral artery (MCAO) for 90 min, followed by reperfusion. Rats underwent MCAO surgery displayed remarkable sensorimotor and motor deficits in rotarod, foot fault, adhesive removal, and paw whisker tests till 5 days post-surgery. These behavior abnormalities were ameliorated in the BRT-recipient MCAO rats. BRT also reduced the infarct volume and neuronal death in the ipsilateral hemisphere revealed by TTC and cresyl violet staining compared to the MCAO group. Rats received BRT infusion exhibited the reduced expression of glial fibrillary acidic protein, ionized calcium-binding adaptor molecule-1 (Iba-1), and MyD88 on day 5 post-MCAO in immunohistochemistry and immunofluorescent assays. Moreover, elevated levels of toll-like receptor 4 (TLR4) and mRNA expression of IL-1β, TNF-α, matrix metalloproteinase-9 and NLRP3, and decreased levels of zonula occludens-1 in MCAO rats, were reversed following BRT. These findings suggest that the partial BRT may rescind MCAO-induced neurological dysfunctions and cerebral injury by intervening in the TLR4 and NLRP3 pathways in rats.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Shubham Ghuge
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
7
|
Che P, Zhang J, Yu M, Tang P, Wang Y, Lin A, Xu J, Zhang N. Dl-3-n-butylphthalide promotes synaptic plasticity by activating the Akt/ERK signaling pathway and reduces the blood-brain barrier leakage by inhibiting the HIF-1α/MMP signaling pathway in vascular dementia model mice. CNS Neurosci Ther 2023; 29:1392-1404. [PMID: 36756709 PMCID: PMC10068471 DOI: 10.1111/cns.14112] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/29/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
AIMS DL-3-n-butylphthalide (NBP) exerts beneficial effects on global cognitive functions, but the underlying molecular mechanisms are still poorly understood. The present study aimed to investigate whether NBP mediates synaptic plasticity and blood-brain barrier (BBB) function, which play a pivotal role in the pathogenesis of vascular dementia (VaD), in a mouse model of bilateral common carotid artery stenosis (BCAS). METHODS NBP was administered to model mice at a dose of 80 mg/kg by gavage for 28 days after surgery. Cognitive function was evaluated by behavioral tests, and hippocampal synaptic plasticity was evaluated by in vivo electrophysiological recording. Cerebral blood flow (CBF), hippocampal volume, and white matter integrity were measured with laser speckle imaging (LSI) and MRI. In addition, BBB leakage and the expression of proteins related to the Akt/ERK and HIF-1α/MMP signaling pathways were assessed by biochemical assays. RESULTS NBP treatment alleviated cognitive impairment, hippocampal atrophy, and synaptic plasticity impairment induced by BCAS. In addition, NBP treatment increased CBF, promoted white matter integrity, and decreased BBB leakage. Regarding the molecular mechanisms, in mice with BCAS, NBP may activate the Akt/ERK signaling pathway, which upregulates the expression of synapse-associated proteins, and it may also inhibit the HIF-1α/MMP signaling pathway, thereby increasing the expression of tight junction (TJ) proteins. CONCLUSION In conclusion, our results demonstrated the therapeutic effects of NBP in improving cognitive function via a wide range of targets in mice subjected to BCAS.
Collapse
Affiliation(s)
- Ping Che
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Juan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurology, Gucheng Hospital in Hebei Province, Hengshui, China
| | - Mingqian Yu
- School of Medicine, Nankai University, Tianjin, China
| | - Ping Tang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanhui Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Aolei Lin
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Xu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Nan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| |
Collapse
|
8
|
Wang H, Ye K, Li D, Liu Y, Wang D. DL-3-n-butylphthalide for acute ischemic stroke: An updated systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 2022; 13:963118. [PMID: 36120291 PMCID: PMC9479342 DOI: 10.3389/fphar.2022.963118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022] Open
Abstract
Background: DL -3-n-butylphthalide (NBP) is widely used as a neuroprotective drug in stroke patients in China. A systematic review in 2010 suggested NBP to be safe and effective at promoting neurological recovery, but could not conclude whether it decreased risk of long-term death or disability. Since numerous randomized controlled trials (RCTs) have been conducted on NBP since 2010, we performed an updated systematic review and meta-analysis of safety and efficacy data. Method: We searched electronic databases and reference lists to identify RCTs that compared patients who received NBP or not (including placebo). Methodological quality of RCTs was assessed using the Revised Cochrane Risk of Bias Tool 2.0, and data were meta-analyzed using Review Manager 5.4 software. Results: Fifty-seven RCTs involving 8,747 participants were included. Twenty trials examined NBP as a capsule, 29 as an injection, and 8 as sequential injection-capsule therapy. Meta-analyses showed that NBP treatment was associated with a reduction in composite outcome of death and dependency (risk ratio 0.59, 95% CI 0.42 to 0.83; 260 participants; 2 studies), death (risk ratio 0.32, 95% CI 0.13 to 0.75; 2,287 participants; 10 studies), modified Rankin Scale score (mean difference -0.80, 95% CI -0.88 to -0.72; 568 participants; 4 studies), and an increase in Barthel Index, which assesses the ability to engage in basic activities of daily living (mean difference 11.08, 95% CI 9.10 to 13.05; 2,968 participants; 22 studies). Meta-analyses found that NBP significantly reduced neurological deficit based on National Institute of Health Stroke Scale (mean difference -3.39, 95% CI -3.76 to -3.03; 7.283 participants; 46 studies) and Chinese Stroke Scale (mean difference -4.16, 95% CI -7.60 to -0.73; 543 participants; 4 studies). Of the adverse events reported in 31 trials, elevated transaminase (incidence, 1.39-17.53%), rash (0-1.96%) and gastrointestinal discomfort (1.09-6.15%) were most frequent and no serious adverse events were reported. Conclusion: This update review confirms that NBP can help acute ischemic stroke patients regain the ability to perform activities of daily living, reduce their neurological deficit and short-term death rates. However, the available evidence on whether NBP reduces risk of long-term death or dependence after ischemic stroke remains insufficient.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Kaili Ye
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Li
- Department of Psychiatry, Dazhou Central Hospital, Dazhou, China
| | - Yuxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yatsen University, Guangzhou, China
| | - Deren Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Deren Wang,
| |
Collapse
|
9
|
Dl-3-n-Butylphthalide Reduced Neuroinflammation by Inhibiting Inflammasome in Microglia in Mice after Middle Cerebral Artery Occlusion. Life (Basel) 2022; 12:life12081244. [PMID: 36013423 PMCID: PMC9410391 DOI: 10.3390/life12081244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
The inflammatory response is one of the key events in cerebral ischemia, causing secondary brain injury and neuronal death. Studies have shown that the NLRP3 inflammasome is a key factor in initiating the inflammatory response and that Dl-3-n-butylphthalide (NBP) can attenuate the inflammatory response and improve neuronal repair during ischemic stroke. However, whether NBP attenuates the inflammatory response via inhibition of NLRP3 remains unclear. A 90 min middle cerebral artery occlusion was induced in 62 2-month-old adult male ICR mice, and NBP was administered by gavage zero, one, or two days after ischemia. Brain infarct volume, neurological deficits, NLRP3, microglia, and neuronal death were examined in sacrificed mice to explore the correction between NBP effects and NLRP3 expression. NBP significantly reduced infarct volume and attenuated neurological deficits after ischemic stroke compared to controls (p < 0.05). Moreover, it inhibited ASC+ microglia activation and NLRP3 and CASP1 expression in ischemic mice. In addition, neuronal apoptosis was reduced in NBP-treated microglia cultures (p < 0.05). Our results indicate that NBP attenuates the inflammatory response in ischemic mouse brains, suggesting that NBP protects against microglia activation via the NLRP3 inflammasome.
Collapse
|
10
|
Qin C, Yang S, Chu YH, Zhang H, Pang XW, Chen L, Zhou LQ, Chen M, Tian DS, Wang W. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:215. [PMID: 35794095 PMCID: PMC9259607 DOI: 10.1038/s41392-022-01064-1] [Citation(s) in RCA: 266] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is caused primarily by an interruption in cerebral blood flow, which induces severe neural injuries, and is one of the leading causes of death and disability worldwide. Thus, it is of great necessity to further detailly elucidate the mechanisms of ischemic stroke and find out new therapies against the disease. In recent years, efforts have been made to understand the pathophysiology of ischemic stroke, including cellular excitotoxicity, oxidative stress, cell death processes, and neuroinflammation. In the meantime, a plethora of signaling pathways, either detrimental or neuroprotective, are also highly involved in the forementioned pathophysiology. These pathways are closely intertwined and form a complex signaling network. Also, these signaling pathways reveal therapeutic potential, as targeting these signaling pathways could possibly serve as therapeutic approaches against ischemic stroke. In this review, we describe the signaling pathways involved in ischemic stroke and categorize them based on the pathophysiological processes they participate in. Therapeutic approaches targeting these signaling pathways, which are associated with the pathophysiology mentioned above, are also discussed. Meanwhile, clinical trials regarding ischemic stroke, which potentially target the pathophysiology and the signaling pathways involved, are summarized in details. Conclusively, this review elucidated potential molecular mechanisms and related signaling pathways underlying ischemic stroke, and summarize the therapeutic approaches targeted various pathophysiology, with particular reference to clinical trials and future prospects for treating ischemic stroke.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lian Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
11
|
Quintin S, Barpujari A, Mehkri Y, Hernandez J, Lucke-Wold B. The glymphatic system and subarachnoid hemorrhage: disruption and recovery. EXPLORATION OF NEUROPROTECTIVE THERAPY 2022; 2:118-130. [PMID: 35756328 PMCID: PMC9221287 DOI: 10.37349/ent.2022.00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 01/01/2023]
Abstract
The glymphatic system, or glial-lymphatic system, is a waste clearance system composed of perivascular channels formed by astrocytes that mediate the clearance of proteins and metabolites from the brain. These channels facilitate the movement of cerebrospinal fluid throughout brain parenchyma and are critical for homeostasis. Disruption of the glymphatic system leads to an accumulation of these waste products as well as increased interstitial fluid in the brain. These phenomena are also seen during and after subarachnoid hemorrhages (SAH), contributing to the brain damage seen after rupture of a major blood vessel. Herein this review provides an overview of the glymphatic system, its disruption during SAH, and its function in recovery following SAH. The review also outlines drugs which target the glymphatic system and may have therapeutic applications following SAH.
Collapse
Affiliation(s)
- Stephan Quintin
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Arnav Barpujari
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Yusuf Mehkri
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Jairo Hernandez
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
12
|
Microglial Activation Damages Dopaminergic Neurons through MMP-2/-9-Mediated Increase of Blood-Brain Barrier Permeability in a Parkinson's Disease Mouse Model. Int J Mol Sci 2022; 23:ijms23052793. [PMID: 35269933 PMCID: PMC8910886 DOI: 10.3390/ijms23052793] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic neuroinflammation has been considered to be involved in the progressive dopaminergic neurodegeneration in Parkinson’s disease (PD). However, the mechanisms remain unknown. Accumulating evidence indicated a key role of the blood–brain barrier (BBB) dysfunction in neurological disorders. This study is designed to elucidate whether chronic neuroinflammation damages dopaminergic neurons through BBB dysfunction by using a rotenone-induced mouse PD model. Results showed that rotenone dose-dependently induced nigral dopaminergic neurodegeneration, which was associated with increased Evans blue content and fibrinogen accumulation as well as reduced expressions of zonula occludens-1 (ZO-1), claudin-5 and occludin, three tight junction proteins for maintaining BBB permeability, in mice, indicating BBB disruption. Rotenone also induced nigral microglial activation. Depletion of microglia or inhibition of microglial activation by PLX3397 or minocycline, respectively, greatly attenuated BBB dysfunction in rotenone-lesioned mice. Mechanistic inquiry revealed that microglia-mediated activation of matrix metalloproteinases-2 and 9 (MMP-2/-9) contributed to rotenone-induced BBB disruption and dopaminergic neurodegeneration. Rotenone-induced activation of MMP-2/-9 was significantly attenuated by microglial depletion and inactivation. Furthermore, inhibition of MMP-2/-9 by a wide-range inhibitor, SB-3CT, abrogated elevation of BBB permeability and simultaneously increased tight junctions expression. Finally, we found that microglial depletion and inactivation as well as inhibition of MMP-2/-9 significantly ameliorated rotenone-elicited nigrostriatal dopaminergic neurodegeneration and motor dysfunction in mice. Altogether, our findings suggested that microglial MMP-2/-9 activation-mediated BBB dysfunction contributed to dopaminergic neurodegeneration in rotenone-induced mouse PD model, providing a novel view for the mechanisms of Parkinsonism.
Collapse
|
13
|
Deng LD, Qi L, Suo Q, Wu SJ, Mamtilahun M, Shi RB, Liu Z, Sun JF, Tang YH, Zhang ZJ, Yang GY, Wang JX. Transcranial focused ultrasound stimulation reduces vasogenic edema after middle cerebral artery occlusion in mice. Neural Regen Res 2022; 17:2058-2063. [PMID: 35142697 PMCID: PMC8848588 DOI: 10.4103/1673-5374.335158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Blood-brain barrier (BBB) disruption underlies the vasogenic edema and neuronal cell death induced by acute ischemic stroke. Reducing this disruption has therapeutic potential. Transcranial focused ultrasound stimulation has shown neuromodulatory and neuroprotective effects in various brain diseases including ischemic stroke. Ultrasound stimulation can reduce inflammation and promote angiogenesis and neural circuit remodeling. However, its effect on the BBB in the acute phase of ischemic stroke is unknown. In this study of mice subjected to middle cerebral artery occlusion for 90 minutes, low-intensity low-frequency (0.5 MHz) transcranial focused ultrasound stimulation was applied 2, 4, and 8 hours after occlusion. Ultrasound stimulation reduced edema volume, improved neurobehavioral outcomes, improved BBB integrity (enhanced tight junction protein ZO-1 expression and reduced IgG leakage), and reduced secretion of the inflammatory factors tumor necrosis factor-α and activation of matrix metalloproteinase-9 in the ischemic brain. Our results show that low-intensity ultrasound stimulation attenuated BBB disruption and edema formation, which suggests it may have therapeutic use in ischemic brain disease as a protector of BBB integrity.
Collapse
Affiliation(s)
- Li-Dong Deng
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, and Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Qi
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, and Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Suo
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, and Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng-Ju Wu
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, and Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Muyassar Mamtilahun
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, and Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ru-Bing Shi
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, and Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ze Liu
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, and Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jun-Feng Sun
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, and Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yao-Hui Tang
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, and Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Jun Zhang
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, and Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, and Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University; Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-Xian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, and Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Shi X, Luo L, Wang J, Shen H, Li Y, Mamtilahun M, Liu C, Shi R, Lee JH, Tian H, Zhang Z, Wang Y, Chung WS, Tang Y, Yang GY. Stroke subtype-dependent synapse elimination by reactive gliosis in mice. Nat Commun 2021; 12:6943. [PMID: 34836962 PMCID: PMC8626497 DOI: 10.1038/s41467-021-27248-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
The pathological role of reactive gliosis in CNS repair remains controversial. In this study, using murine ischemic and hemorrhagic stroke models, we demonstrated that microglia/macrophages and astrocytes are differentially involved in engulfing synapses in the reactive gliosis region. By specifically deleting MEGF10 and MERTK phagocytic receptors, we determined that inhibiting phagocytosis of microglia/macrophages or astrocytes in ischemic stroke improved neurobehavioral outcomes and attenuated brain damage. In hemorrhagic stroke, inhibiting phagocytosis of microglia/macrophages but not astrocytes improved neurobehavioral outcomes. Single-cell RNA sequencing revealed that phagocytosis related biological processes and pathways were downregulated in astrocytes of the hemorrhagic brain compared to the ischemic brain. Together, these findings suggest that reactive microgliosis and astrogliosis play individual roles in mediating synapse engulfment in pathologically distinct murine stroke models and preventing this process could rescue synapse loss.
Collapse
Affiliation(s)
- Xiaojing Shi
- grid.16821.3c0000 0004 0368 8293School of Biomedical Engineering and Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Longlong Luo
- grid.16821.3c0000 0004 0368 8293School of Biomedical Engineering and Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, 200030 China ,grid.4714.60000 0004 1937 0626Present Address: Dermatology and Venerology Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Jixian Wang
- grid.16821.3c0000 0004 0368 8293Department of Rehabilitation, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Hui Shen
- grid.16821.3c0000 0004 0368 8293School of Biomedical Engineering and Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Yongfang Li
- grid.16821.3c0000 0004 0368 8293Department of Rehabilitation, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Muyassar Mamtilahun
- grid.16821.3c0000 0004 0368 8293School of Biomedical Engineering and Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Chang Liu
- grid.16821.3c0000 0004 0368 8293School of Biomedical Engineering and Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Rubing Shi
- grid.16821.3c0000 0004 0368 8293School of Biomedical Engineering and Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Joon-Hyuk Lee
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141 South Korea
| | - Hengli Tian
- grid.16821.3c0000 0004 0368 8293School of Biomedical Engineering and Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Zhijun Zhang
- grid.16821.3c0000 0004 0368 8293School of Biomedical Engineering and Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Yongting Wang
- grid.16821.3c0000 0004 0368 8293School of Biomedical Engineering and Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| | - Yaohui Tang
- School of Biomedical Engineering and Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Guo-Yuan Yang
- School of Biomedical Engineering and Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China. .,Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
15
|
Mamtilahun M, Jiang L, Song Y, Shi X, Liu C, Jiang Y, Deng L, Zheng H, Shen H, Li Y, Zhang Z, Wang Y, Tang Y, Yang GY. Plasma from healthy donors protects blood-brain barrier integrity via FGF21 and improves the recovery in a mouse model of cerebral ischaemia. Stroke Vasc Neurol 2021; 6:561-571. [PMID: 33785536 PMCID: PMC8717795 DOI: 10.1136/svn-2020-000774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 01/14/2023] Open
Abstract
Background Healthy plasma therapy reverses cognitive deficits and promotes neuroplasticity in ageing brain disease. However, whether healthy plasma therapy improve blood–brain barrier integrity after stroke remains unknown. Methods Here, we intravenously injected healthy female mouse plasma into adult female ischaemic stroke C57BL/6 mouse induced by 90 min transient middle cerebral artery occlusion for eight consecutive days. Infarct volume, brain atrophy and neurobehavioural tests were examined to assess the outcomes of plasma treatment. Cell apoptosis, blood–brain barrier integrity and fibroblast growth factor 21 knockout mice were used to explore the underlying mechanism. Results Plasma injection improved neurobehavioural recovery and decreased infarct volume, brain oedema and atrophy after stroke. Immunostaining showed that the number of transferase dUTP nick end labelling+/NeuN+ cells decreased in the plasma-injected group. Meanwhile, plasma injection reduced ZO-1, occluding and claudin-5 tight junction gap formation and IgG extravasation at 3 days after ischaemic stroke. Western blot results showed that the FGF21 expression increased in the plasma-injected mice. However, using FGF21 knockout mouse plasma injecting to the ischaemic wild-type mice diminished the neuroprotective effects. Conclusions Our study demonstrated that healthy adult plasma treatment protected the structural and functional integrity of blood–brain barrier, reduced neuronal apoptosis and improved functional recovery via FGF21, opening a new avenue for ischaemic stroke therapy.
Collapse
Affiliation(s)
- Muyassar Mamtilahun
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Lu Jiang
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Yaying Song
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Xiaojing Shi
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Chang Liu
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Yixu Jiang
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Lidong Deng
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Haoran Zheng
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Hui Shen
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Yongfang Li
- Department of Neurology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Yongting Wang
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Yaohui Tang
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China .,Department of Neurology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| |
Collapse
|