1
|
Bullert AJ, Wang H, Valenzuela AE, Neier K, Wilson RJ, Badley JR, LaSalle JM, Hu X, Lein PJ, Lehmler HJ. Interactions of Polychlorinated Biphenyls and Their Metabolites with the Brain and Liver Transcriptome of Female Mice. ACS Chem Neurosci 2024. [PMID: 39392776 DOI: 10.1021/acschemneuro.4c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024] Open
Abstract
Exposure to polychlorinated biphenyls (PCBs) is linked to neurotoxic effects. This study aims to close knowledge gaps regarding the specific modes of action of PCBs in female C57BL/6J mice (>6 weeks) orally exposed for 7 weeks to a human-relevant PCB mixture (MARBLES mix) at 0, 0.1, 1, and 6 mg/kg body weight/day. PCB and hydroxylated PCB (OH-PCBs) levels were quantified in the brain, liver, and serum; RNA sequencing was performed in the striatum, prefrontal cortex, and liver, and metabolomic analyses were performed in the striatum. Profiles of PCBs but not their hydroxylated metabolites were similar in all tissues. In the prefrontal cortex, PCB exposure activated the oxidative phosphorylation respiration pathways, while suppressing the axon guidance pathway. PCB exposure significantly changed the expression of genes associated with neurodevelopmental and neurodegenerative diseases in the striatum, impacting pathways like growth hormone synthesis and dendrite development. PCBs did not affect the striatal metabolome. In contrast to the liver, which showed activation of metabolic processes following PCB exposure and the induction of cytochrome P450 enzymes, the expression of xenobiotic processing genes was not altered by PCB exposure in either brain region. Network analysis revealed complex interactions between individual PCBs (e.g., PCB28 [2,4,4'-trichlorobiphenyl]) and their hydroxylated metabolites and specific differentially expressed genes (DEGs), underscoring the need to characterize the association between specific PCBs and DEGs. These findings enhance the understanding of PCB neurotoxic mechanisms and their potential implications for human health.
Collapse
Affiliation(s)
- Amanda J Bullert
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa 52242, United States
| | - Hui Wang
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Anthony E Valenzuela
- Department of Molecular Biosciences, University of California, Davis, California 95616, United States
| | - Kari Neier
- Department of Medical Microbiology and Immunology, University of California, Davis, California 95616, United States
| | - Rebecca J Wilson
- Department of Molecular Biosciences, University of California, Davis, California 95616, United States
| | - Jessie R Badley
- Department of Molecular Biosciences, University of California, Davis, California 95616, United States
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, University of California, Davis, California 95616, United States
| | - Xin Hu
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia 30329, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, California 95616, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
2
|
Niu W, Yu S, Li X, Wang Z, Chen R, Michalski C, Jahangiri A, Zohdy Y, Chern JJ, Whitworth TJ, Wang J, Xu J, Zhou Y, Qin Z, Li B, Gambello MJ, Peng J, Wen Z. Longitudinal multi-omics reveals pathogenic TSC2 variants disrupt developmental trajectories of human cortical organoids derived from Tuberous Sclerosis Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617121. [PMID: 39416123 PMCID: PMC11482767 DOI: 10.1101/2024.10.07.617121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Tuberous Sclerosis Complex (TSC), an autosomal dominant condition, is caused by heterozygous mutations in either the TSC1 or TSC2 genes, manifesting in systemic growth of benign tumors. In addition to brain lesions, neurologic sequelae represent the greatest morbidity in TSC patients. Investigations utilizing TSC1/2-knockout animal or human stem cell models suggest that TSC deficiency-causing hyper-activation of mTOR signaling might precipitate anomalous neurodevelopmental processes. However, how the pathogenic variants of TSC1/2 genes affect the longitudinal trajectory of human brain development remains largely unexplored. Here, we employed 3-dimensional cortical organoids derived from induced pluripotent stem cells (iPSCs) from TSC patients harboring TSC2 variants, alongside organoids from age- and sex-matched healthy individuals as controls. Through comprehensively longitudinal molecular and cellular analyses of TSC organoids, we found that TSC2 pathogenic variants dysregulate neurogenesis, synaptogenesis, and gliogenesis, particularly for reactive astrogliosis. The altered developmental trajectory of TSC organoids significantly resembles the molecular signatures of neuropsychiatric disorders, including autism spectrum disorders, epilepsy, and intellectual disability. Intriguingly, single cell transcriptomic analyses on TSC organoids revealed that TSC2 pathogenic variants disrupt the neuron/reactive astrocyte crosstalk within the NLGN-NRXN signaling network. Furthermore, cellular and electrophysiological assessments of TSC cortical organoids, along with proteomic analyses of synaptosomes, demonstrated that the TSC2 variants precipitate perturbations in synaptic transmission, neuronal network activity, mitochondrial translational integrity, and neurofilament formation. Notably, similar perturbations were observed in surgically resected cortical specimens from TSC patients. Collectively, our study illustrates that disease-associated TSC2 variants disrupt the neurodevelopmental trajectories through perturbations of gene regulatory networks during early cortical development, leading to mitochondrial dysfunction, aberrant neurofilament formation, impaired synaptic formation and neuronal network activity.
Collapse
Affiliation(s)
- Weibo Niu
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- These authors contributed equally
| | - Shaojun Yu
- Department of Computer Science, Emory University, Atlanta, GA 30322, USA
- These authors contributed equally
| | - Xiangru Li
- College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Zhen Wang
- Department of Structural Biology, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Rui Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Christina Michalski
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Arman Jahangiri
- Department of Neurological Surgery, Emory University, Atlanta, GA 30322, USA
- Pediatric Neurosurgery Associates at Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA
| | - Youssef Zohdy
- Department of Neurological Surgery, Emory University, Atlanta, GA 30322, USA
- Pediatric Neurosurgery Associates at Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA
| | - Joshua J Chern
- Department of Neurological Surgery, Emory University, Atlanta, GA 30322, USA
- Pediatric Neurosurgery Associates at Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA
| | - Ted J Whitworth
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, GA 30322, USA
| | - Jianjun Wang
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jie Xu
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ying Zhou
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael J Gambello
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Junmin Peng
- Department of Structural Biology, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Alhazmi S, Alharthi M, Alzahrani M, Alrofaidi A, Basingab F, Almuhammadi A, Alkhatabi H, Ashi A, Chaudhary A, Elaimi A. Copy number variations in autistic children. Biomed Rep 2024; 21:107. [PMID: 38868529 PMCID: PMC11168027 DOI: 10.3892/br.2024.1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/30/2024] [Indexed: 06/14/2024] Open
Abstract
Autism spectrum disorder (ASD) manifests as a neurodevelopmental condition marked by challenges in social communication, interaction and the performing of repetitive behaviors. The prevalence of autism increases markedly on an annual basis; however, the etiology remains incompletely understood. Cytogenetically visible chromosomal abnormalities, including copy number variations (CNVs), have been shown to contribute to the pathogenesis of ASD. More than 1% of ASD conditions can be explained based on a known genetic locus, whereas CNVs account for 5-10% of cases. However, there are no studies on the Saudi Arabian population for the detection of CNVs linked to ASD, to the best of our knowledge. Therefore, the aim of the present study was to explore the prevalence of CNVs in autistic Saudi Arabian children. Genomic DNA was extracted from the peripheral blood of 14 autistic children along with four healthy control children and then array-based comparative genomic hybridization (aCGH) was used to detect CNVs. Bioinformatics analysis of the aCGH results showed the presence of recurrent and non-recurrent deletion/duplication CNVs in several regions of the genome of autistic children. The most frequent CNVs were 1q21.2, 3p26.3, 4q13.2, 6p25.3, 6q24.2, 7p21.1, 7q34, 7q11.1, 8p23.2, 13q32.3, 14q11.1-q11.2 and 15q11.1-q11.2. In the present study, CNVs in autistic Saudi Arabian children were identified to improve the understanding of the etiology of autism and facilitate its diagnosis. Additionally, the present study identified certain possible pathogenic genes in the CNV region associated with several developmental and neurogenetic diseases.
Collapse
Affiliation(s)
- Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Central Laboratory of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maram Alharthi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maryam Alzahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aisha Alrofaidi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatemah Basingab
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Asma Almuhammadi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba Alkhatabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Hematology Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Abrar Ashi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Adeel Chaudhary
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Aisha Elaimi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
4
|
Bamford RA, Zuko A, Eve M, Sprengers JJ, Post H, Taggenbrock RLRE, Fäβler D, Mehr A, Jones OJR, Kudzinskas A, Gandawijaya J, Müller UC, Kas MJH, Burbach JPH, Oguro-Ando A. CNTN4 modulates neural elongation through interplay with APP. Open Biol 2024; 14:240018. [PMID: 38745463 PMCID: PMC11293442 DOI: 10.1098/rsob.240018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 05/16/2024] Open
Abstract
The neuronal cell adhesion molecule contactin-4 (CNTN4) is genetically associated with autism spectrum disorder (ASD) and other psychiatric disorders. Cntn4-deficient mouse models have previously shown that CNTN4 plays important roles in axon guidance and synaptic plasticity in the hippocampus. However, the pathogenesis and functional role of CNTN4 in the cortex has not yet been investigated. Our study found a reduction in cortical thickness in the motor cortex of Cntn4 -/- mice, but cortical cell migration and differentiation were unaffected. Significant morphological changes were observed in neurons in the M1 region of the motor cortex, indicating that CNTN4 is also involved in the morphology and spine density of neurons in the motor cortex. Furthermore, mass spectrometry analysis identified an interaction partner for CNTN4, confirming an interaction between CNTN4 and amyloid-precursor protein (APP). Knockout human cells for CNTN4 and/or APP revealed a relationship between CNTN4 and APP. This study demonstrates that CNTN4 contributes to cortical development and that binding and interplay with APP controls neural elongation. This is an important finding for understanding the physiological function of APP, a key protein for Alzheimer's disease. The binding between CNTN4 and APP, which is involved in neurodevelopment, is essential for healthy nerve outgrowth.
Collapse
Affiliation(s)
- Rosemary A. Bamford
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Amila Zuko
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Madeline Eve
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Jan J. Sprengers
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht, Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Renske L. R. E. Taggenbrock
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
| | - Dominique Fäβler
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Functional Genomics, University of Heidelberg, Heidelberg69120, Germany
| | - Annika Mehr
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Functional Genomics, University of Heidelberg, Heidelberg69120, Germany
| | - Owen J. R. Jones
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Aurimas Kudzinskas
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Ulrike C. Müller
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Functional Genomics, University of Heidelberg, Heidelberg69120, Germany
| | - Martien J. H. Kas
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - J. Peter H. Burbach
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
5
|
Song Y, Lou B, Wang H, Zhang G, Xia Y, Ban R, Zhao X, Sun H, Wang J, Lin J, Guo T, Zhou J, Xia Z. Screening and validation of atherosclerosis PAN-apoptotic immune-related genes based on single-cell sequencing. Front Immunol 2024; 15:1297298. [PMID: 38736872 PMCID: PMC11082397 DOI: 10.3389/fimmu.2024.1297298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Background Carotid atherosclerosis (CAS) is a complication of atherosclerosis (AS). PAN-optosome is an inflammatory programmed cell death pathway event regulated by the PAN-optosome complex. CAS's PAN-optosome-related genes (PORGs) have yet to be studied. Hence, screening the PAN-optosome-related diagnostic genes for treating CAS was vital. Methods We introduced transcriptome data to screen out differentially expressed genes (DEGs) in CAS. Subsequently, WGCNA analysis was utilized to mine module genes about PANoptosis score. We performed differential expression analysis (CAS samples vs. standard samples) to obtain CAS-related differentially expressed genes at the single-cell level. Venn diagram was executed to identify PAN-optosome-related differential genes (POR-DEGs) associated with CAS. Further, LASSO regression and RF algorithm were implemented to were executed to build a diagnostic model. We additionally performed immune infiltration and gene set enrichment analysis (GSEA) based on diagnostic genes. We verified the accuracy of the model genes by single-cell nuclear sequencing and RT-qPCR validation of clinical samples, as well as in vitro cellular experiments. Results We identified 785 DEGs associated with CAS. Then, 4296 module genes about PANoptosis score were obtained. We obtained the 7365 and 1631 CAS-related DEGs at the single-cell level, respectively. 67 POR-DEGs were retained Venn diagram. Subsequently, 4 PAN-optosome-related diagnostic genes (CNTN4, FILIP1, PHGDH, and TFPI2) were identified via machine learning. Cellular function tests on four genes showed that these genes have essential roles in maintaining arterial cell viability and resisting cellular senescence. Conclusion We obtained four PANoptosis-related diagnostic genes (CNTN4, FILIP1, PHGDH, and TFPI2) associated with CAS, laying a theoretical foundation for treating CAS.
Collapse
Affiliation(s)
- Yamin Song
- Department of Neurology, Liaocheng People’s Hospital, Shandong University, Jinan, China
- Department of Neurology, Liaocheng People’s Hospital, Liaocheng, China
| | - Bo Lou
- Department of Neurology, The Third People’s Hospital of Liaocheng, Liaocheng, China
| | - Huiting Wang
- Department of Neurology, Liaocheng People’s Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Guifeng Zhang
- Department of Neurology, Liaocheng People’s Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Yitong Xia
- School of Rehabilitation Medicine, Jining Medical University, Jining, China
| | - Ru Ban
- Department of Neurology, Liaocheng People’s Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Xin Zhao
- Department of Neurology, Liaocheng People’s Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Hao Sun
- Department of Neurology, Liaocheng People’s Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Jingru Wang
- Department of Neurology, Liaocheng People’s Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Jie Lin
- Department of Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, China
| | - Tingting Guo
- Department of Neurology, Liaocheng People’s Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Jing Zhou
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhangyong Xia
- Department of Neurology, Liaocheng People’s Hospital, Shandong University, Jinan, China
- Department of Neurology, Liaocheng People’s Hospital, Liaocheng, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Shandong Sub-centre, Liaocheng, China
- Department of Neurology, The Second People’s Hospital of Liaocheng, Liaocheng, China
| |
Collapse
|
6
|
Zadok N, Ast G, Sharan R. A network-based method for associating genes with autism spectrum disorder. FRONTIERS IN BIOINFORMATICS 2024; 4:1295600. [PMID: 38525240 PMCID: PMC10960359 DOI: 10.3389/fbinf.2024.1295600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Autism spectrum disorder (ASD) is a highly heritable complex disease that affects 1% of the population, yet its underlying molecular mechanisms are largely unknown. Here we study the problem of predicting causal genes for ASD by combining genome-scale data with a network propagation approach. We construct a predictor that integrates multiple omic data sets that assess genomic, transcriptomic, proteomic, and phosphoproteomic associations with ASD. In cross validation our predictor yields mean area under the ROC curve of 0.87 and area under the precision-recall curve of 0.89. We further show that it outperforms previous gene-level predictors of autism association. Finally, we show that we can use the model to predict genes associated with Schizophrenia which is known to share genetic components with ASD.
Collapse
Affiliation(s)
- Neta Zadok
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roded Sharan
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Thanseem I, Banerjee M, Melempatt N, Prakash A, Iype M, Anitha A. Comprehensive Genetic Study of a Monozygotic Triplet Discordant for Autism Spectrum Disorder. Neurol India 2024; 72:384-387. [PMID: 38817175 DOI: 10.4103/ni.ni_349_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/08/2022] [Indexed: 06/01/2024]
Abstract
There are a few comprehensive genetic studies on autism spectrum disorders (ASD) in India. Children of multiple births are valuable for genomics studies of complex disorders such as ASD. We report whole-exome sequencing (WES) in a triplet family in which only one among the triplet has ASD. The objective of this study was to identify potential candidate genes for ASD. Exome DNA was enriched using a twist human customized core exome kit, and paired-end sequencing was performed. Proband-specific de novo variants included 150 single nucleotide polymorphisms (SNPs) and 74 indels. Thirteen SNPs were in exonic regions, 7 of them being missense variations. Seventeen variants were previously reported in ASD. Genes harboring variants have functions in the development and maintenance of the central nervous system and are enriched in biological processes involving cell adhesion. This is the first comprehensive genetic study of a monozygotic triplet in ASD.
Collapse
Affiliation(s)
- Ismail Thanseem
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad, Kerala, India
| | - Moinak Banerjee
- Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Nisha Melempatt
- Department of Audiology and Speech Language Pathology (ASLP), ICCONS, Shoranur, Palakkad, Kerala, India
| | - Anil Prakash
- Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Mary Iype
- Department of Neurology, ICCONS, Thiruvananthapuram, Kerala, India
| | - Ayyappan Anitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad, Kerala, India
| |
Collapse
|
8
|
Kostic M, Raymond JJ, Freyre CAC, Henry B, Tumkaya T, Khlghatyan J, Dvornik J, Li J, Hsiao JS, Cheon SH, Chung J, Sun Y, Dolmetsch RE, Worringer KA, Ihry RJ. Patient Brain Organoids Identify a Link between the 16p11.2 Copy Number Variant and the RBFOX1 Gene. ACS Chem Neurosci 2023; 14:3993-4012. [PMID: 37903506 PMCID: PMC10655044 DOI: 10.1021/acschemneuro.3c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/14/2023] [Indexed: 11/01/2023] Open
Abstract
Copy number variants (CNVs) that delete or duplicate 30 genes within the 16p11.2 genomic region give rise to a range of neurodevelopmental phenotypes with high penetrance in humans. Despite the identification of this small region, the mechanisms by which 16p11.2 CNVs lead to disease are unclear. Relevant models, such as human cortical organoids (hCOs), are needed to understand the human-specific mechanisms of neurodevelopmental disease. We generated hCOs from 17 patients and controls, profiling 167,958 cells with single-cell RNA-sequencing analysis, which revealed neuronal-specific differential expression of genes outside the 16p11.2 region that are related to cell-cell adhesion, neuronal projection growth, and neurodevelopmental disorders. Furthermore, 16p11.2 deletion syndrome organoids exhibited reduced mRNA and protein levels of RBFOX1, a gene that can also harbor CNVs linked to neurodevelopmental phenotypes. We found that the genes previously shown to be regulated by RBFOX1 are also perturbed in organoids from patients with the 16p11.2 deletion syndrome and thus identified a novel link between independent CNVs associated with neuronal development and autism. Overall, this work suggests convergent signaling, which indicates the possibility of a common therapeutic mechanism across multiple rare neuronal diseases.
Collapse
Affiliation(s)
- Milos Kostic
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Joseph J. Raymond
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Christophe A. C. Freyre
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Beata Henry
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Tayfun Tumkaya
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Cambridge 02139, Massachusetts, United States
| | - Jivan Khlghatyan
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Jill Dvornik
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Jingyao Li
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Jack S. Hsiao
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Seon Hye Cheon
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Jonathan Chung
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Cambridge 02139, Massachusetts, United States
| | - Yishan Sun
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Ricardo E. Dolmetsch
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Kathleen A. Worringer
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Robert J. Ihry
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| |
Collapse
|
9
|
Fernandes L, Kleene R, Congiu L, Freitag S, Kneussel M, Loers G, Schachner M. CHL1 depletion affects dopamine receptor D2-dependent modulation of mouse behavior. Front Behav Neurosci 2023; 17:1288509. [PMID: 38025382 PMCID: PMC10665519 DOI: 10.3389/fnbeh.2023.1288509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The dopaminergic system plays a key role in the appropriate functioning of the central nervous system, where it is essential for emotional balance, arousal, reward, and motor control. The cell adhesion molecule close homolog of L1 (CHL1) contributes to dopaminergic system development, and CHL1 and the dopamine receptor D2 (D2R) are associated with mental disorders like schizophrenia, addiction, autism spectrum disorder and depression. Methods Here, we investigated how the interplay between CHL1 and D2R affects the behavior of young adult male and female wild-type (CHL+/+) and CHL1-deficient (CHL1-/-) mice, when D2R agonist quinpirole and antagonist sulpiride are applied. Results Low doses of quinpirole (0.02 mg/kg body weight) induced hypolocomotion of CHL1+/+ and CHL1-/- males and females, but led to a delayed response in CHL1-/- mice. Sulpiride (1 mg/kg body weight) affected locomotion of CHL1-/- females and social interaction of CHL1+/+ females as well as social interactions of CHL1-/- and CHL1+/+ males. Quinpirole increased novelty-seeking behavior of CHL1-/- males compared to CHL1+/+ males. Vehicle-treated CHL1-/- males and females showed enhanced working memory and reduced stress-related behavior. Discussion We propose that CHL1 regulates D2R-dependent functions in vivo. Deficiency of CHL1 leads to abnormal locomotor activity and emotionality, and to sex-dependent behavioral differences.
Collapse
Affiliation(s)
- Luciana Fernandes
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ludovica Congiu
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Freitag
- Institut für Molekulare Neurogenetik, Zentrum für Molekulare Neurobiologie Hamburg, ZMNH, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Kneussel
- Institut für Molekulare Neurogenetik, Zentrum für Molekulare Neurobiologie Hamburg, ZMNH, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
10
|
Bajracharya L, Lall M, Bijarnia-Mahay S, Kumar P, Mushtaq I, Saviour P, Paliwal P, Joshi A, Agarwal S, Suman P. A Rare Case of Mosaic 3pter and 5pter Deletion-Duplication with Autism Spectrum Disorder and Dyskinesia. Case Rep Genet 2023; 2023:7974886. [PMID: 37876589 PMCID: PMC10593553 DOI: 10.1155/2023/7974886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction There is evidence that neurodevelopmental disorders are associated with chromosomal abnormalities. Current genetic testing can clinch an exact diagnosis in 20-25% of such cases. Case Description. A 3 years and 11 months old boy with global developmental delay had repetitive behaviors and hyperkinetic movements. He was stunted and underweight. He had ataxia, limb dyskinesia, triangular face, microcephaly, upward slanting palpebral fissure, hypertelorism, retrognathia, posteriorly rotated ears, long philtrum, thin lips, broad nasal tip, polydactyly, tappering fingers, and decreased tone in the upper and lower limbs with normal deep tendon reflexes. Magnetic resonance imaging of the brain, ultrasound of the abdomen, and ophthalmological evaluation were normal. Brain evoked response auditory revealed bilateral moderate hearing loss. He fulfilled the Diagnostic Statistical Manual 5 criteria for autism. In the Vineland Social Maturity Scale, his score indicated a severe delay in social functioning. His genetic evaluation included karyotyping, fluorescence in situ hybridization (FISH), and chromosomal microarray analysis (CMA). The karyotype report from high-resolution lymphocyte cultures was mos 46, XY, der(3)t(3; 5)(p26; p15.3)[50]/46, XY,der(5) t(3;5) (p26;p15.3)[50].ish. His karyotype report showed a very rare and abnormal mosaic pattern with two cell lines (50% each). Cell-line#1: 3pter deletion with 5pter duplication (3pter-/5pter+) and cell-line#2: 3pter duplication with 5pter deletion (3pter+/5pter-) derived from a de novo reciprocal translocation t(3; 5)(p26; p15.3) which was confirmed by FISH. The chromosomal microarray analysis report was normal. The two cell lines (50% each) seem to have balanced out at the whole genome level. Occupational, sensory integration, and behavior modification therapy were initiated for his autistic features, and anticholinergic trihexiphenidyl was prescribed for hyperkinetic movements. Conclusion This case highlights a rare genetic finding and the need for timely genetic testing in a child with dysmorphism and autism with movement disorder to enable appropriate management and genetic counselling.
Collapse
Affiliation(s)
- Luna Bajracharya
- Department of Pediatrics, Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Meena Lall
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Sunita Bijarnia-Mahay
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Praveen Kumar
- Department of Pediatric Neurology, Institute of Child Health, Sir Ganga Ram Hospital, New Delhi, India
| | - Imran Mushtaq
- Child Developmental Clinic, Institute of Child Health, Sir Ganga Ram Hospital, New Delhi, India
| | - Pushpa Saviour
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Preeti Paliwal
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Anju Joshi
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Shruti Agarwal
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Praveen Suman
- Child Developmental Clinic, Institute of Child Health, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
11
|
Tang X, Feng C, Zhao Y, Zhang H, Gao Y, Cao X, Hong Q, Lin J, Zhuang H, Feng Y, Wang H, Shen L. A study of genetic heterogeneity in autism spectrum disorders based on plasma proteomic and metabolomic analysis: multiomics study of autism heterogeneity. MedComm (Beijing) 2023; 4:e380. [PMID: 37752942 PMCID: PMC10518435 DOI: 10.1002/mco2.380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Genetic heterogeneity poses a challenge to research and clinical translation of autism spectrum disorder (ASD). In this study, we conducted a plasma proteomic and metabolomic study of children with ASD with and without risk genes (de novo mutation) and controls to explore the impact of genetic heterogeneity on the search for biomarkers for ASD. In terms of the proteomic and metabolomic profiles, the groups of children with ASD carrying and those not carrying de novo mutation tended to cluster and overlap, and integrating them yielded differentially expressed proteins and differential metabolites that effectively distinguished ASD from controls. The mechanisms associated with them focus on several common and previously reported mechanisms. Proteomics results highlight the role of complement, inflammation and immunity, and cell adhesion. The main pathways of metabolic perturbations include amino acid, vitamin, glycerophospholipid, tryptophan, and glutamates metabolic pathways and solute carriers-related pathways. Integrating the two omics analyses revealed that L-glutamic acid and malate dehydrogenase may play key roles in the pathogenesis of ASD. These results suggest that children with ASD may have important underlying common mechanisms. They are not only potential therapeutic targets for ASD but also important contributors to the study of biomarkers for the disease.
Collapse
Affiliation(s)
- Xiaoxiao Tang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Chengyun Feng
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Yuxi Zhao
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Huajie Zhang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Yan Gao
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Xueshan Cao
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Qi Hong
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Jing Lin
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Hongbin Zhuang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Yuying Feng
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Hanghang Wang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Liming Shen
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenP. R. China
- Shenzhen Key Laboratory of Marine Biotechnology and EcologyShenzhenP. R. China
| |
Collapse
|
12
|
Lefebvre-Omar C, Liu E, Dalle C, d'Incamps BL, Bigou S, Daube C, Karpf L, Davenne M, Robil N, Jost Mousseau C, Blanchard S, Tournaire G, Nicaise C, Salachas F, Lacomblez L, Seilhean D, Lobsiger CS, Millecamps S, Boillée S, Bohl D. Neurofilament accumulations in amyotrophic lateral sclerosis patients' motor neurons impair axonal initial segment integrity. Cell Mol Life Sci 2023; 80:150. [PMID: 37184603 DOI: 10.1007/s00018-023-04797-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron (MN) disease in adults with no curative treatment. Neurofilament (NF) level in patient' fluids have recently emerged as the prime biomarker of ALS disease progression, while NF accumulation in MNs of patients is the oldest and one of the best pathological hallmarks. However, the way NF accumulations could lead to MN degeneration remains unknown. To assess NF accumulations and study the impact on MNs, we compared MNs derived from induced pluripotent stem cells (iPSC) of patients carrying mutations in C9orf72, SOD1 and TARDBP genes, the three main ALS genetic causes. We show that in all mutant MNs, light NF (NF-L) chains rapidly accumulate in MN soma, while the phosphorylated heavy/medium NF (pNF-M/H) chains pile up in axonal proximal regions of only C9orf72 and SOD1 MNs. Excitability abnormalities were also only observed in these latter MNs. We demonstrate that the integrity of the MN axonal initial segment (AIS), the region of action potential initiation and responsible for maintaining axonal integrity, is impaired in the presence of pNF-M/H accumulations in C9orf72 and SOD1 MNs. We establish a strong correlation between these pNF-M/H accumulations, an AIS distal shift, increased axonal calibers and modified repartition of sodium channels. The results expand our understanding of how NF accumulation could dysregulate components of the axonal cytoskeleton and disrupt MN homeostasis. With recent cumulative evidence that AIS alterations are implicated in different brain diseases, preserving AIS integrity could have important therapeutic implications for ALS.
Collapse
Affiliation(s)
- Cynthia Lefebvre-Omar
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Elise Liu
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Carine Dalle
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Boris Lamotte d'Incamps
- Université Paris-Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Stéphanie Bigou
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Clément Daube
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Léa Karpf
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marc Davenne
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | | | - Coline Jost Mousseau
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Stéphane Blanchard
- Institut Pasteur, INSERM U1115, Unité Biothérapies pour les Maladies Neurodégénératives, Paris, France
| | - Guillaume Tournaire
- Institut Pasteur, INSERM U1115, Unité Biothérapies pour les Maladies Neurodégénératives, Paris, France
| | | | - François Salachas
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Département de Neurologie, Assistance Publique Hôpitaux de Paris (APHP), Centre de Référence SLA Ile de France, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Lucette Lacomblez
- Département de Neurologie, Assistance Publique Hôpitaux de Paris (APHP), Centre de Référence SLA Ile de France, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Danielle Seilhean
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Département de Neuropathologie, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Christian S Lobsiger
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Stéphanie Millecamps
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Séverine Boillée
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
13
|
Yeo XY, Lim YT, Chae WR, Park C, Park H, Jung S. Alterations of presynaptic proteins in autism spectrum disorder. Front Mol Neurosci 2022; 15:1062878. [DOI: 10.3389/fnmol.2022.1062878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
The expanded use of hypothesis-free gene analysis methods in autism research has significantly increased the number of genetic risk factors associated with the pathogenesis of autism. A further examination of the implicated genes directly revealed the involvement in processes pertinent to neuronal differentiation, development, and function, with a predominant contribution from the regulators of synaptic function. Despite the importance of presynaptic function in synaptic transmission, the regulation of neuronal network activity, and the final behavioral output, there is a relative lack of understanding of the presynaptic contribution to the pathology of autism. Here, we will review the close association among autism-related mutations, autism spectrum disorders (ASD) phenotypes, and the altered presynaptic protein functions through a systematic examination of the presynaptic risk genes relating to the critical stages of synaptogenesis and neurotransmission.
Collapse
|
14
|
Martínez AL, Brea J, Domínguez E, Varela MJ, Allegue C, Cruz R, Monroy X, Merlos M, Burgueño J, Carracedo Á, Loza MI. Identification of Sodium Transients Through NaV1.5 Channels as Regulators of Differentiation in Immortalized Dorsal Root Ganglia Neurons. Front Cell Neurosci 2022; 16:816325. [PMID: 35465610 PMCID: PMC9018981 DOI: 10.3389/fncel.2022.816325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Neuronal differentiation is a complex process through which newborn neurons acquire the morphology of mature neurons and become excitable. We employed a combination of functional and transcriptomic approaches to deconvolute and identify key regulators of the differentiation process of a DRG neuron-derived cell line, and we focused our study on the NaV1.5 ion channel (encoded by Scn5a) as a channel involved in the acquisition of DRG neuronal features. Overexpression of Scn5a enhances the acquisition of neuronal phenotypic features and increases the KCl-elicited hyperexcitability response in a DRG-derived cell line. Moreover, pharmacologic inhibition of the NaV1.5 channel during differentiation hinders the acquisition of phenotypic features of neuronal cells and the hyperexcitability increase in response to changes in the extracellular medium ionic composition. Taken together, these data highlight the relevance of sodium transients in regulating the neuronal differentiation process in a DRG neuron-derived cell line.
Collapse
Affiliation(s)
- Antón L. Martínez
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José Brea
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eduardo Domínguez
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María J. Varela
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Catarina Allegue
- Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Raquel Cruz
- Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Xavier Monroy
- WeLab Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - Manuel Merlos
- WeLab Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - Javier Burgueño
- WeLab Barcelona, Parc Científic de Barcelona, Barcelona, Spain
- *Correspondence: Javier Burgueño,
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, Spain
| | - María Isabel Loza
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- María Isabel Loza,
| |
Collapse
|
15
|
Korotkov A, Luinenburg MJ, Romagnolo A, Zimmer TS, van Scheppingen J, Bongaarts A, Broekaart DWM, Anink JJ, Mijnsbergen C, Jansen FE, van Hecke W, Spliet WG, van Rijen PC, Feucht M, Hainfellner JA, Krsek P, Zamecnik J, Crino PB, Kotulska K, Lagae L, Jansen AC, Kwiatkowski DJ, Jozwiak S, Curatolo P, Mühlebner A, van Vliet EA, Mills JD, Aronica E. Down-regulation of the brain-specific cell-adhesion molecule contactin-3 in tuberous sclerosis complex during the early postnatal period. J Neurodev Disord 2022; 14:8. [PMID: 35030990 PMCID: PMC8903535 DOI: 10.1186/s11689-022-09416-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
Background The genetic disorder tuberous sclerosis complex (TSC) is frequently accompanied by the development of neuropsychiatric disorders, including autism spectrum disorder and intellectual disability, with varying degrees of impairment. These co-morbidities in TSC have been linked to the structural brain abnormalities, such as cortical tubers, and recurrent epileptic seizures (in 70–80% cases). Previous transcriptomic analysis of cortical tubers revealed dysregulation of genes involved in cell adhesion in the brain, which may be associated with the neurodevelopmental deficits in TSC. In this study we aimed to investigate the expression of one of these genes – cell-adhesion molecule contactin-3. Methods Reverse transcription quantitative polymerase chain reaction for the contactin-3 gene (CNTN3) was performed in resected cortical tubers from TSC patients with drug-resistant epilepsy (n = 35, age range: 1–48 years) and compared to autopsy-derived cortical control tissue (n = 27, age range: 0–44 years), as well as by western blot analysis of contactin-3 (n = 7 vs n = 7, age range: 0–3 years for both TSC and controls) and immunohistochemistry (n = 5 TSC vs n = 4 controls). The expression of contactin-3 was further analyzed in fetal and postnatal control tissue by western blotting and in-situ hybridization, as well as in the SH-SY5Y neuroblastoma cell line differentiation model in vitro. Results CNTN3 gene expression was lower in cortical tubers from patients across a wide range of ages (fold change = − 0.5, p < 0.001) as compared to controls. Contactin-3 protein expression was lower in the age range of 0–3 years old (fold change = − 3.8, p < 0.001) as compared to the age-matched controls. In control brain tissue, contactin-3 gene and protein expression could be detected during fetal development, peaked around birth and during infancy and declined in the adult brain. CNTN3 expression was induced in the differentiated SH-SY5Y neuroblastoma cells in vitro (fold change = 6.2, p < 0.01). Conclusions Our data show a lower expression of contactin-3 in cortical tubers of TSC patients during early postnatal period as compared to controls, which may affect normal brain development and might contribute to neuropsychiatric co-morbidities observed in patients with TSC. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-022-09416-2.
Collapse
Affiliation(s)
- Anatoly Korotkov
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Mark J Luinenburg
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Alessia Romagnolo
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Till S Zimmer
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Jackelien van Scheppingen
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Anika Bongaarts
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Diede W M Broekaart
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Jasper J Anink
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Caroline Mijnsbergen
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Floor E Jansen
- Department of Paediatric Neurology, University Medical Center, Brain Center, Utrecht, the Netherlands
| | - Wim van Hecke
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wim G Spliet
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Peter C van Rijen
- Rudolf Magnus Institute for Neuroscience, University Medical Center, Brain Center, Utrecht, the Netherlands
| | - Martha Feucht
- Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | | | - Pavel Krsek
- Department of Pediatric Neurology, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Josef Zamecnik
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Peter B Crino
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Lieven Lagae
- Department of Development and Regeneration-Section Pediatric Neurology, University Hospitals KU Leuven, Leuven, Belgium
| | - Anna C Jansen
- Pediatric Neurology Unit, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Sergiusz Jozwiak
- Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Paolo Curatolo
- Department of Clinical and Experimental Epilepsy, University College London, London, UK
| | - Angelika Mühlebner
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Erwin A van Vliet
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - James D Mills
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands. .,Stichting Epilepsie Instellingen Nederland, Heemstede, the Netherlands.
| |
Collapse
|
16
|
Boni C, Laudanna C, Sorio C. A Comprehensive Review of Receptor-Type Tyrosine-Protein Phosphatase Gamma (PTPRG) Role in Health and Non-Neoplastic Disease. Biomolecules 2022; 12:84. [PMID: 35053232 PMCID: PMC8773835 DOI: 10.3390/biom12010084] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Protein tyrosine phosphatase receptor gamma (PTPRG) is known to interact with and regulate several tyrosine kinases, exerting a tumor suppressor role in several type of cancers. Its wide expression in human tissues compared to the other component of group 5 of receptor phosphatases, PTPRZ expressed as a chondroitin sulfate proteoglycan in the central nervous system, has raised interest in its role as a possible regulatory switch of cell signaling processes. Indeed, a carbonic anhydrase-like domain (CAH) and a fibronectin type III domain are present in the N-terminal portion and were found to be associated with its role as [HCO3-] sensor in vascular and renal tissues and a possible interaction domain for cell adhesion, respectively. Studies on PTPRG ligands revealed the contactins family (CNTN) as possible interactors. Furthermore, the correlation of PTPRG phosphatase with inflammatory processes in different normal tissues, including cancer, and the increasing amount of its soluble form (sPTPRG) in plasma, suggest a possible role as inflammatory marker. PTPRG has important roles in human diseases; for example, neuropsychiatric and behavioral disorders and various types of cancer such as colon, ovary, lung, breast, central nervous system, and inflammatory disorders. In this review, we sum up our knowledge regarding the latest discoveries in order to appreciate PTPRG function in the various tissues and diseases, along with an interactome map of its relationship with a group of validated molecular interactors.
Collapse
Affiliation(s)
| | | | - Claudio Sorio
- Department of Medicine, General Pathology Division, University of Verona, 37134 Verona, Italy; (C.B.); (C.L.)
| |
Collapse
|
17
|
Eve M, Gandawijaya J, Yang L, Oguro-Ando A. Neuronal Cell Adhesion Molecules May Mediate Neuroinflammation in Autism Spectrum Disorder. Front Psychiatry 2022; 13:842755. [PMID: 35492721 PMCID: PMC9051034 DOI: 10.3389/fpsyt.2022.842755] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by restrictive and repetitive behaviors, alongside deficits in social interaction and communication. The etiology of ASD is largely unknown but is strongly linked to genetic variants in neuronal cell adhesion molecules (CAMs), cell-surface proteins that have important roles in neurodevelopment. A combination of environmental and genetic factors are believed to contribute to ASD pathogenesis. Inflammation in ASD has been identified as one of these factors, demonstrated through the presence of proinflammatory cytokines, maternal immune activation, and activation of glial cells in ASD brains. Glial cells are the main source of cytokines within the brain and, therefore, their activity is vital in mediating inflammation in the central nervous system. However, it is unclear whether the aforementioned neuronal CAMs are involved in modulating neuroimmune signaling or glial behavior. This review aims to address the largely unexplored role that neuronal CAMs may play in mediating inflammatory cascades that underpin neuroinflammation in ASD, primarily focusing on the Notch, nuclear factor-κB (NF-κB), and mitogen-activated protein kinase (MAPK) cascades. We will also evaluate the available evidence on how neuronal CAMs may influence glial activity associated with inflammation. This is important when considering the impact of environmental factors and inflammatory responses on ASD development. In particular, neural CAM1 (NCAM1) can regulate NF-κB transcription in neurons, directly altering proinflammatory signaling. Additionally, NCAM1 and contactin-1 appear to mediate astrocyte and oligodendrocyte precursor proliferation which can alter the neuroimmune response. Importantly, although this review highlights the limited information available, there is evidence of a neuronal CAM regulatory role in inflammatory signaling. This warrants further investigation into the role other neuronal CAM family members may have in mediating inflammatory cascades and would advance our understanding of how neuroinflammation can contribute to ASD pathology.
Collapse
Affiliation(s)
- Madeline Eve
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Liming Yang
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
18
|
Martin-de Saro M, Compean Z, Aguilar K, González-Huerta LM, Plaza-Benhumea L, Messina-Baas O, Cuevas-Covarrubiass SA. Partial Trisomy 13q/Monosomy 3p Resulting from a Paternal Reciprocal 3p;13q Translocation in a Boy with Facial Dysmorphism and Hypertrophic Cardiomyopathy. Mol Syndromol 2021; 12:305-311. [PMID: 34602958 DOI: 10.1159/000516058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/23/2021] [Indexed: 11/19/2022] Open
Abstract
Individuals with 3p deletion show a great clinical variability. Apparently, a 1.5-Mb terminal deletion, including the CRBN and CNTN4 genes, is sufficient to cause this syndrome. Partial trisomy 13q is a rare chromosomal abnormality with a variable phenotypic expression, but in most cases, patients have a phenotype resembling complete trisomy 13. The aim of the present study is to describe a 9-month-old Mexican male patient with 3p deletion/13q duplication and a novel clinical finding. He presented with facial dysmorphism and multiple congenital alterations. Echocardiogram revealed cardiac insufficiency with hypertrophic cardiomyopathy and pulmonary hypertension, not previously reported. Karyotype from the patient and his father were 46,XY,add(3)(p26) and 46,XY,t(3;13), respectively. Microarray assay of the proband exhibited an approximately 2.6-Mb loss at terminal 3p26.3 and a 27.7-Mb gain of the long arm in terminal chromosome 13 at q31.1q34. A chromosomal imbalance with a partial trisomy 13q31.1q34 and monosomy 3p26.3 of paternal origin were detected. Microarray assay of both parents were normal. The proband has a cardiomyopathy not previously reported. These data enrich the spectrum of clinical manifestations in 3p deletion/3q duplication chromosomopathy.
Collapse
Affiliation(s)
| | - Zyndia Compean
- Department of Pediatrics, Hospital Materno Infantil ISSEMyM, Toluca, Mexico
| | - Karina Aguilar
- Department of Pediatrics, Hospital Materno Infantil ISSEMyM, Toluca, Mexico
| | | | | | - Olga Messina-Baas
- Hospital General de Mexico, National Autonomous University of Mexico, Mexico City, Mexico
| | | |
Collapse
|