1
|
Teli P, Islam N, Petzold A. Headache management in traumatic brain injury. J Neurol Sci 2024; 463:123002. [PMID: 39047510 DOI: 10.1016/j.jns.2024.123002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/07/2024] [Indexed: 07/27/2024]
Abstract
Traumatic brain injury (TBI) is estimated to rank as the third most important disease burden worldwide. About 60% of the survivors develop chronic headaches and visual symptoms, and the long-term management of headaches in these patients is controversial. Importantly, the care pathway of most patients is fragmented, complicating conclusive headache management. Here we review the epidemiology and aetiology of post traumatic headaches (PTH), discuss the diagnostic work up and summarise the acute and long-term management.
Collapse
Affiliation(s)
- Parisa Teli
- Queen Square Institute of Neurology, UCL, UK
| | - Niaz Islam
- Moorfields Eye Hospital, City Road, London, UK
| | - Axel Petzold
- Queen Square Institute of Neurology, UCL, UK; The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK; Moorfields Eye Hospital, City Road, London, UK; Amsterdam University Medical Centre, Departments of Neurology and Ophthalmology, Amsterdam, NL
| |
Collapse
|
2
|
Della Pietra A, Gómez Dabó L, Mikulenka P, Espinoza-Vinces C, Vuralli D, Baytekin I, Martelletti P, Giniatullin R. Mechanosensitive receptors in migraine: a systematic review. J Headache Pain 2024; 25:6. [PMID: 38221631 PMCID: PMC10788982 DOI: 10.1186/s10194-023-01710-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/25/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Migraine is a debilitating neurological disorder with pain profile, suggesting exaggerated mechanosensation. Mechanosensitive receptors of different families, which specifically respond to various mechanical stimuli, have gathered increasing attention due to their potential role in migraine related nociception. Understanding these mechanisms is of principal importance for improved therapeutic strategies. This systematic review comprehensively examines the involvement of mechanosensitive mechanisms in migraine pain pathways. METHODS A systematic search across the Cochrane Library, Scopus, Web of Science, and Medline was conducted on 8th August 2023 for the period from 2000 to 2023, according to PRISMA guidelines. The review was constructed following a meticulous evaluation by two authors who independently applied rigorous inclusion criteria and quality assessments to the selected studies, upon which all authors collectively wrote the review. RESULTS We identified 36 relevant studies with our analysis. Additionally, 3 more studies were selected by literature search. The 39 papers included in this systematic review cover the role of the putative mechanosensitive Piezo and K2P, as well as ASICs, NMDA, and TRP family of channels in the migraine pain cascade. The outcome of the available knowledge, including mainly preclinical animal models of migraine and few clinical studies, underscores the intricate relationship between mechanosensitive receptors and migraine pain symptoms. The review presents the mechanisms of activation of mechanosensitive receptors that may be involved in the generation of nociceptive signals and migraine associated clinical symptoms. The gender differences of targeting these receptors as potential therapeutic interventions are also acknowledged as well as the challenges related to respective drug development. CONCLUSIONS Overall, this analysis identified key molecular players and uncovered significant gaps in our understanding of mechanotransduction in migraine. This review offers a foundation for filling these gaps and suggests novel therapeutic options for migraine treatments based on achievements in the emerging field of mechano-neurobiology.
Collapse
Affiliation(s)
- Adriana Della Pietra
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Laura Gómez Dabó
- Neurology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Petr Mikulenka
- Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | | | - Doga Vuralli
- Department of Neurology and Algology, Neuroscience and Neurotechnology Center of Excellence, Neuropsychiatry Center, Gazi University, Faculty of Medicine, Ankara, Turkey
| | - Isil Baytekin
- Department of Neurology, Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Paolo Martelletti
- School of Health Sciences, Unitelma Sapienza University of Rome, Rome, Italy
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
3
|
Pensato U, Cevoli S, Pierangeli G, Cortelli P. The evolutionary meaning of migraine. Cephalalgia 2023; 43:3331024231209303. [PMID: 38041827 DOI: 10.1177/03331024231209303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
INTRODUCTION Migraine's astonishing prevalence and preserved genetic background contrast with the definition of a disease and the biological meaning of experiencing recurrent, severe headache attacks is still puzzling. METHODS To provide a comprehensive explanation of the migraine evolutionary meaning, we review (i) the putative role of the autonomic nervous system in migraine attacks, (ii) the inter-ictal autonomic, functional, and metabolic signature of migraine patients, (iii) the bio-behavioral perspective of pain, and (iv) the allostatic perception of migraine chronification. RESULTS Migraineurs have inter-ictal cortical hyperexcitability and metabolic dysfunction that predisposes to brain energetic imbalance. Multiple precipitating factors may lead to brain energy consumption over the migraine attack generation threshold. In response, the brain engenders adaptive, evolutionary conserved, autonomic-behavior responses through the antidromic activation of the trigeminovascular system. The sickness behavior and severe pain experienced during migraine attacks result in avoiding mental and physical activity, allowing brain energy restoration. Chronic exposure to stressors may result in an allostatic overload, leading to maladaptive chronic activation of these responses. In this bio-behavioral perspective, the chronification of migraine should be envisioned as a pathological process, whereas the migraine itself should not. CONCLUSION Migraine has an evolutionary (Darwinian) meaning.
Collapse
Affiliation(s)
- Umberto Pensato
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Sabina Cevoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giulia Pierangeli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM); University of Bologna, Bologna, Italy
| | - Pietro Cortelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM); University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Koroleva K, Svitko S, Ananev A, Buglinina A, Bogatova K, Yakovleva O, Nurmieva D, Shaidullov I, Sitdikova G. Effects of Nitric Oxide on the Activity of P2X and TRPV1 Receptors in Rat Meningeal Afferents of the Trigeminal Nerve. Int J Mol Sci 2023; 24:ijms24087519. [PMID: 37108677 PMCID: PMC10144808 DOI: 10.3390/ijms24087519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Nitric oxide is one of the endogenous molecules that play a key role in migraine. However, the interaction between NO and the main players in the nociceptive activity of the meningeal trigeminal afferents-TRPV1 and P2X3 receptors-remains unstudied. In the current project, the effects of acute and chronic NO administration on the activity of TRPV1 and P2X3 receptors in the peripheral afferents were studied using electrophysiological recording of action potentials of the trigeminal nerve in the rat hemiskull preparations. The data obtained indicate that exogenous and endogenous NO increased the activity of the trigeminal nerve independent on the inhibition of the TRPV1 and P2X3 receptors. The activity of the trigeminal nerve triggered by ATP changed neither in acute incubation in the NO donor-sodium nitroprusside (SNP) nor in the chronic nitroglycerine (NG)-induced migraine model. Moreover, the chronic NG administration did not increase in the number of degranulated mast cells in the rat meninges. At the same time, the capsaicin-induced activity of the trigeminal nerve was higher with chronic NO administration or after acute NO application, and these effects were prevented by N-ethylmaleimide. In conclusion, we suggested that NO positively modulates the activity of TRPV1 receptors by S-nitrosylation, which may contribute to the pro-nociceptive action of NO and underlie the sensitization of meningeal afferents in chronic migraine.
Collapse
Affiliation(s)
- Kseniia Koroleva
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Svetlana Svitko
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Anton Ananev
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Anastasiia Buglinina
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ksenia Bogatova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Olga Yakovleva
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Dinara Nurmieva
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ilnar Shaidullov
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Guzel Sitdikova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
5
|
Della Pietra A, Krivoshein G, Ivanov K, Giniatullina R, Jyrkkänen HK, Leinonen V, Lehtonen M, van den Maagdenberg AMJM, Savinainen J, Giniatullin R. Potent dual MAGL/FAAH inhibitor AKU-005 engages endocannabinoids to diminish meningeal nociception implicated in migraine pain. J Headache Pain 2023; 24:38. [PMID: 37038131 PMCID: PMC10088116 DOI: 10.1186/s10194-023-01568-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/17/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Engaging the endocannabinoid system through inhibition of monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), degrading endocannabinoids (endoCBs) 2-arachidonoylglycerol (2-AG) and anandamide (AEA), was proposed as a promising approach to ameliorate migraine pain. However, the activity of MAGL and FAAH and action of endoCB on spiking activity of meningeal afferents, from which migraine pain originates, has not been explored thus far. Therefore, we here explored the analgesic effects of endoCB enhancement in rat and human meningeal tissues. METHODS Both MAGL and FAAH activity and local 2-AG and AEA levels were measured by activity-based protein profiling (ABPP) and LC-MS/MS, respectively, in rat meninges obtained from hemiskulls of P38-P40 Wistar rats and human meninges from elderly patients undergoing non-migraine related neurosurgery. The action on endoCBs upon administration of novel dual MAGL/FAAH inhibitor AKU-005 on meningeal afferents excitability was tested by investigating paired KCl-induced spiking and validation with local (co-)application of either AEA or 2-AG. Finally, the specific TRPV1 agonist capsaicin and blocker capsazepine were tested. RESULTS The basal level of 2-AG exceeded that of AEA in rat and human meninges. KCl-induced depolarization doubled the level of AEA. AKU-005 slightly increased spontaneous spiking activity whereas the dual MAGL/FAAH inhibitor significantly decreased excitation of nerve fibres induced by KCl. Similar inhibitory effects on meningeal afferents were observed with local applications of 2-AG or AEA. The action of AKU-005 was reversed by CB1 antagonist AM-251, implying CB1 receptor involvement in the anti-nociceptive effect. The inhibitory action of AEA was also reversed by AM-251, but not with the TRPV1 antagonist capsazepine. Data cluster analysis revealed that both AKU-005 and AEA largely increased long-term depression-like meningeal spiking activity upon paired KCl-induced spiking. CONCLUSIONS In the meninges, high anti-nociceptive 2-AG levels can tonically counteract meningeal signalling, whereas AEA can be engaged on demand by local depolarization. AEA-mediated anti-nociceptive effects through CB1 receptors have therapeutic potential. Together with previously detected MAGL activity in trigeminal ganglia, dual MAGL/FAAH inhibitor AKU-005 appears promising as migraine treatment.
Collapse
Affiliation(s)
- Adriana Della Pietra
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Georgii Krivoshein
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Konstantin Ivanov
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Raisa Giniatullina
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henna-Kaisa Jyrkkänen
- Department of Neurosurgery, Kuopio University Hospital and Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Department of Neurosurgery, Kuopio University Hospital and Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Juha Savinainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
6
|
Baraldi C, Lo Castro F, Ornello R, Sacco S, Pani L, Guerzoni S. OnabotulinumtoxinA: Still the Present for Chronic Migraine. Toxins (Basel) 2023; 15:59. [PMID: 36668879 PMCID: PMC9865956 DOI: 10.3390/toxins15010059] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
OnabotulinumtoxinA (BT-A) is one of the few drugs approved for the preventive treatment of chronic migraine (CM). Despite this, some aspects of its mechanism of action are still a matter of debate, and the precise magnitude of BT-A effects needs to be completely elucidated. BT-A acts primarily upon trigeminal and cervical nerve endings, by inhibiting the release of inflammatory mediators such as calcitonin gene-related peptide, as well as reducing the insertion of ionotropic and metabotropic receptors into the neuronal membrane. These actions increase the depolarization threshold of trigeminal and cervical nerve fibers, thus reducing their activation. The central actions of BT-A are still a matter of debate: a retrograde axonal transport has been postulated, but not clearly assessed in humans. Clinically, the efficacy of BT-A in CM has been assessed by large, randomized placebo-controlled trials, such as the Phase 3 REsearch Evaluating Migraine Prophylaxis Therapy (PREEMPT) trials. Those results were also confirmed in a wide range of open-label studies, even for long-term periods. Recently, novel findings have led to a better understanding of its pharmacological actions and clinical usefulness in migraine prevention. This narrative review summarizes, updates and critically revises the available data on BT-A and its possible implementation in chronic migraine. Moreover, the current role of BT-A in CM treatment has been discussed.
Collapse
Affiliation(s)
- Carlo Baraldi
- Department of Biomedical, Metabolic and Neural Sciences, PhD School in Neurosciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Flavia Lo Castro
- Department of Biomedical, Metabolic and Neural Sciences, Post Graduate School of Pharmacology and Clinical Toxicology, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Raffaele Ornello
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, 67100 L’Aquila, Italy
| | - Simona Sacco
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, 67100 L’Aquila, Italy
| | - Luca Pani
- Department of Biomedical, Metabolic and Neural Sciences, Pharmacology Unit, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136, USA
- VeraSci, Durham, NC 27707, USA
- Department of Specialist Medicines, Digital and Predictive Medicine, Pharmacology and Clinical Metabolic Toxicology-Headache Center and Drug Abuse, Laboratory of Clinical Pharmacology and Pharmacogenomics, AOU Policlinico Di Modena, 41124 Modena, Italy
| | - Simona Guerzoni
- Department of Specialist Medicines, Digital and Predictive Medicine, Pharmacology and Clinical Metabolic Toxicology-Headache Center and Drug Abuse, Laboratory of Clinical Pharmacology and Pharmacogenomics, AOU Policlinico Di Modena, 41124 Modena, Italy
| |
Collapse
|
7
|
Giniatullin R, Nistri A. Role of ATP in migraine mechanisms: focus on P2X3 receptors. J Headache Pain 2023; 24:1. [PMID: 36597043 PMCID: PMC9809127 DOI: 10.1186/s10194-022-01535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
Migraine is a major health burden worldwide with complex pathophysiology and multifarious underlying mechanisms. One poorly understood issue concerns the early steps in the generation of migraine pain. To elucidate the basic process of migraine pain further, it seems useful to consider key molecular players that may operate synergistically to evoke headache. While the neuropeptide CGRP is an important contributor, we propose that extracellular ATP (that generally plays a powerful nociceptive role) is also a major component of migraine headache, acting in concert with CGRP to stimulate trigeminal nociceptive neurons. The aim of the present focused review is to highlight the role of ATP activating its P2X3 membrane receptors selectively expressed by sensory neurons including their nerve fiber terminals in the meninges. Specifically, we present data on the homeostasis of ATP and related purines in the trigeminovascular system and in the CNS; the basic properties of ATP signalling at peripheral and central nerve terminals; the characteristics of P2X3 and related receptors in trigeminal neurons; the critical speed and persistence of P2X3 receptor activity; their cohabitation at the so-called meningeal neuro-immune synapse; the identity of certain endogenous agents cooperating with ATP to induce neuronal sensitization in the trigeminal sensory system; the role of P2X3 receptors in familial type migraine; the current state of P2X3 receptor antagonists and their pharmacological perspectives in migraine. It is proposed that the unique kinetic properties of P2X3 receptors activated by ATP offer an interesting translational value to stimulate future studies for innovative treatments of migraine pain.
Collapse
Affiliation(s)
- R. Giniatullin
- grid.9668.10000 0001 0726 2490A.I Virtanen Institute, University of Eastern Finland, 70211 Kuopio, Finland
| | - A. Nistri
- grid.5970.b0000 0004 1762 9868Department of Neuroscience, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| |
Collapse
|
8
|
Lund AM, Hannibal J. Localization of the neuropeptides pituitary adenylate cyclase-activating polypeptide, vasoactive intestinal peptide, and their receptors in the basal brain blood vessels and trigeminal ganglion of the mouse CNS; an immunohistochemical study. Front Neuroanat 2022; 16:991403. [PMID: 36387999 PMCID: PMC9643199 DOI: 10.3389/fnana.2022.991403] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are structurally related neuropeptides that are widely expressed in vertebrate tissues. The two neuropeptides are pleiotropic and have been associated with migraine pathology. Three PACAP and VIP receptors have been described: PAC1, VPAC1, and VPAC2. The localization of these receptors in relation to VIP and PACAP in migraine-relevant structures has not previously been shown in mice. In the present study, we used fluorescence immunohistochemistry, well-characterized antibodies, confocal microscopy, and three-dimensional reconstruction to visualize the distribution of PACAP, VIP, and their receptors in the basal blood vessels (circle of Willis), trigeminal ganglion, and brain stem spinal trigeminal nucleus (SP5) of the mouse CNS. We demonstrated a dense network of circularly oriented VIP fibers on the basal blood vessels. PACAP nerve fibers were fewer in numbers compared to VIP fibers and ran along the long axis of the blood vessels, colocalized with calcitonin gene-related peptide (CGRP). The nerve fibers expressing CGRP are believed to be sensorial, with neuronal somas localized in the trigeminal ganglion and PACAP was found in a subpopulation of these CGRP-neurons. Immunostaining of the receptors revealed that only the VPAC1 receptor was present in the basal blood vessels, localized on the surface cell membrane of vascular smooth muscle cells and innervated by VIP fibers. No staining was seen for the PAC1, VPAC1, or VPAC2 receptor in the trigeminal ganglion. However, distinct PAC1 immunoreactivity was found in neurons innervated by PACAP nerve terminals located in the spinal trigeminal nucleus. These findings indicate that the effect of VIP is mediated via the VPAC1 receptor in the basal arteries. The role of PACAP in cerebral arteries is less clear. The localization of PACAP in a subpopulation of CGRP-expressing neurons in the trigeminal ganglion points toward a primary sensory function although a dendritic release cannot be excluded which could stimulate the VPAC1 receptor or the PAC1 and VPAC2 receptors on immune cells in the meninges, initiating neurogenic inflammation relevant for migraine pathology.
Collapse
Affiliation(s)
- Anne Marie Lund
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens Hannibal
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Jens Hannibal,
| |
Collapse
|
9
|
Inhibiting Endocannabinoid Hydrolysis as Emerging Analgesic Strategy Targeting a Spectrum of Ion Channels Implicated in Migraine Pain. Int J Mol Sci 2022; 23:ijms23084407. [PMID: 35457225 PMCID: PMC9027089 DOI: 10.3390/ijms23084407] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 12/23/2022] Open
Abstract
Migraine is a disabling neurovascular disorder characterized by severe pain with still limited efficient treatments. Endocannabinoids, the endogenous painkillers, emerged, alternative to plant cannabis, as promising analgesics against migraine pain. In this thematic review, we discuss how inhibition of the main endocannabinoid-degrading enzymes, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), could raise the level of endocannabinoids (endoCBs) such as 2-AG and anandamide in order to alleviate migraine pain. We describe here: (i) migraine pain signaling pathways, which could serve as specific targets for antinociception; (ii) a divergent distribution of MAGL and FAAH activities in the key regions of the PNS and CNS implicated in migraine pain signaling; (iii) a complexity of anti-nociceptive effects of endoCBs mediated by cannabinoid receptors and through a direct modulation of ion channels in nociceptive neurons; and (iv) the spectrum of emerging potent MAGL and FAAH inhibitors which efficiently increase endoCBs levels. The specific distribution and homeostasis of endoCBs in the main regions of the nociceptive system and their generation ‘on demand’, along with recent availability of MAGL and FAAH inhibitors suggest new perspectives for endoCBs-mediated analgesia in migraine pain.
Collapse
|
10
|
Giniatullin R. 5-hydroxytryptamine in migraine: The puzzling role of ionotropic 5-HT 3 receptor in the context of established therapeutic effect of metabotropic 5-HT 1 subtypes. Br J Pharmacol 2021; 179:400-415. [PMID: 34643938 DOI: 10.1111/bph.15710] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
5-hydroxytryptamine (5-HT; serotonin) is traditionally considered as a key mediator implicated in migraine. Multiple 5-HT receptor subtypes contribute to a variety of region-specific functional effects. The raphé nuclei control nociceptive inputs by releasing 5-HT in the brainstem, whereas dural mast cells provide the humoral source of 5-HT in the meninges. Triptans (5-HT1B/D agonists) and ditans (5-HT1F agonists) are the best established 5-HT anti-migraine agents. However, activation of meningeal afferents via ionotropic 5-HT3 receptors results in long-lasting excitatory drive suggesting a pro-nociceptive role for these receptors in migraine. Nevertheless, clinical data do not clearly support the applicability of currently available 5-HT3 antagonists to migraine treatment. The reasons for this might be the presence of 5-HT3 receptors on inhibitory interneurons dampening the excitatory drive, a lack of 5-HT3 A-E subunit-selective antagonists and gender/age-dependent effects. This review is focusing on the controversial role of 5-HT3 receptors in migraine pathology and related pharmacological perspectives of 5-HT ligands.
Collapse
Affiliation(s)
- Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
11
|
Suleimanova A, Talanov M, van den Maagdenberg AMJM, Giniatullin R. Deciphering in silico the Role of Mutated Na V 1.1 Sodium Channels in Enhancing Trigeminal Nociception in Familial Hemiplegic Migraine Type 3. Front Cell Neurosci 2021; 15:644047. [PMID: 34135733 PMCID: PMC8200561 DOI: 10.3389/fncel.2021.644047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/06/2021] [Indexed: 12/24/2022] Open
Abstract
Familial hemiplegic migraine type 3 (FHM3) is caused by gain-of-function mutations in the SCN1A gene that encodes the α1 subunit of voltage-gated NaV1.1 sodium channels. The high level of expression of NaV1.1 channels in peripheral trigeminal neurons may lead to abnormal nociceptive signaling thus contributing to migraine pain. NaV1.1 dysfunction is relevant also for other neurological disorders, foremost epilepsy and stroke that are comorbid with migraine. Here we used computer modeling to test the functional role of FHM3-mutated NaV1.1 channels in mechanisms of trigeminal pain. The activation of Aδ-fibers was studied for two algogens, ATP and 5-HT, operating through P2X3 and 5-HT3 receptors, respectively, at trigeminal nerve terminals. In WT Aδ-fibers of meningeal afferents, NaV1.1 channels efficiently participate in spike generation induced by ATP and 5-HT supported by NaV1.6 channels. Of the various FHM3 mutations tested, the L263V missense mutation, with a longer activation state and lower activation voltage, resulted in the most pronounced spiking activity. In contrast, mutations that result in a loss of NaV1.1 function largely reduced firing of trigeminal nerve fibers. The combined activation of P2X3 and 5-HT3 receptors and branching of nerve fibers resulted in very prolonged and high-frequency spiking activity in the mutants compared to WT. We identified, in silico, key determinants of long-lasting nociceptive activity in FHM3-mutated Aδ-fibers that naturally express P2X3 and 5-HT3 receptors and suggest mutant-specific correction options. Modeled trigeminal nerve firing was significantly higher for FHM3 mutations, compared to WT, suggesting that pronounced nociceptive signaling may contribute to migraine pain.
Collapse
Affiliation(s)
- Alina Suleimanova
- Institute of Information Technology and Intelligent Systems, Kazan Federal University, Kazan, Russia
| | - Max Talanov
- Institute of Information Technology and Intelligent Systems, Kazan Federal University, Kazan, Russia
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Rashid Giniatullin
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|