1
|
Goodman MO, Faquih T, Paz V, Nagarajan P, Lane JM, Spitzer B, Maher M, Chung J, Cade BE, Purcell SM, Zhu X, Noordam R, Phillips AJK, Kyle SD, Spiegelhalder K, Weedon MN, Lawlor DA, Rotter JI, Taylor KD, Isasi CR, Sofer T, Dashti HS, Rutter MK, Redline S, Saxena R, Wang H. Genome-wide association analysis of composite sleep health scores in 413,904 individuals. Commun Biol 2025; 8:115. [PMID: 39856408 PMCID: PMC11760956 DOI: 10.1038/s42003-025-07514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Recent genome-wide association studies (GWASs) of several individual sleep traits have identified hundreds of genetic loci, suggesting diverse mechanisms. Moreover, sleep traits are moderately correlated, so together may provide a more complete picture of sleep health, while illuminating distinct domains. Here we construct novel sleep health scores (SHSs) incorporating five core self-report measures: sleep duration, insomnia symptoms, chronotype, snoring, and daytime sleepiness, using additive (SHS-ADD) and five principal components-based (SHS-PCs) approaches. GWASs of these six SHSs identify 28 significant novel loci adjusting for multiple testing on six traits (p < 8.3e-9), along with 341 previously reported loci (p < 5e-08). The heritability of the first three SHS-PCs equals or exceeds that of SHS-ADD (SNP-h2 = 0.094), while revealing sleep-domain-specific genetic discoveries. Significant loci enrich in multiple brain tissues and in metabolic and neuronal pathways. Post-GWAS analyses uncover novel genetic mechanisms underlying sleep health and reveal connections (including potential causal links) to behavioral, psychological, and cardiometabolic traits.
Collapse
Affiliation(s)
- Matthew O Goodman
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Tariq Faquih
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Valentina Paz
- Instituto de Psicología Clínica, Facultad de Psicología, Universidad de la República, Montevideo, Uruguay
- MRC Unit for Lifelong Health & Ageing, Institute of Cardiovascular Science, University College London, London, United Kingdom
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pavithra Nagarajan
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Jacqueline M Lane
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Brian Spitzer
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Matthew Maher
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joon Chung
- Department of Informatics and Health Data Science, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Shaun M Purcell
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew J K Phillips
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Simon D Kyle
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kai Spiegelhalder
- Department of Psychiatry and Psychotherapy, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael N Weedon
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hassan S Dashti
- Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Martin K Rutter
- Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Richa Saxena
- Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Zhang L, Cheng X, Wang C, Zhou W, Zheng B, Zhang A. Compound heterozygous variants of ANKFY1 in a child with infantile-onset proteinuria and movement disorder. Clin Kidney J 2024; 17:sfae124. [PMID: 38915441 PMCID: PMC11194482 DOI: 10.1093/ckj/sfae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 06/26/2024] Open
Abstract
The ANKFY1 gene encodes a protein that belongs to double zinc finger proteins involved in endocytosis. Only one family with steroid-resistant nephrotic syndrome has been reported carrying a homozygous variant in ANKFY1 so far. Here we describe the second case where a 13-year-old boy presented with infantile-onset proteinuria and movement disorder. Whole-exome sequencing showed compound heterozygous variants (NM_001330063.2: c.2753C>G; p.Ser918Ter, and c.3287-11_3287-10del) in ANKFY1. In vitro functional study revealed the two variants led to reduced protein expression level of ANKFY1. This is the first case of co-existence of renal and nervous system phenotypes in a child with variants in ANKFY1, suggesting that bi-allelic variants in ANKFY1 might be associated with a new neuro-renal syndrome.
Collapse
Affiliation(s)
- Luyan Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xueqin Cheng
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Goodman MO, Faquih T, Paz V, Nagarajan P, Lane JM, Spitzer B, Maher M, Chung J, Cade BE, Purcell SM, Zhu X, Noordam R, Phillips AJK, Kyle SD, Spiegelhalder K, Weedon MN, Lawlor DA, Rotter JI, Taylor KD, Isasi CR, Sofer T, Dashti HS, Rutter MK, Redline S, Saxena R, Wang H. Genome-wide association analysis of composite sleep health scores in 413,904 individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.02.24302211. [PMID: 38352337 PMCID: PMC10863010 DOI: 10.1101/2024.02.02.24302211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Recent genome-wide association studies (GWASs) of several individual sleep traits have identified hundreds of genetic loci, suggesting diverse mechanisms. Moreover, sleep traits are moderately correlated, and together may provide a more complete picture of sleep health, while also illuminating distinct domains. Here we construct novel sleep health scores (SHSs) incorporating five core self-report measures: sleep duration, insomnia symptoms, chronotype, snoring, and daytime sleepiness, using additive (SHS-ADD) and five principal components-based (SHS-PCs) approaches. GWASs of these six SHSs identify 28 significant novel loci adjusting for multiple testing on six traits (p<8.3e-9), along with 341 previously reported loci (p<5e-08). The heritability of the first three SHS-PCs equals or exceeds that of SHS-ADD (SNP-h2=0.094), while revealing sleep-domain-specific genetic discoveries. Significant loci enrich in multiple brain tissues and in metabolic and neuronal pathways. Post GWAS analyses uncover novel genetic mechanisms underlying sleep health and reveal connections to behavioral, psychological, and cardiometabolic traits.
Collapse
Affiliation(s)
- Matthew O Goodman
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Tariq Faquih
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Valentina Paz
- Instituto de Psicología Clínica, Facultad de Psicología, Universidad de la República, Montevideo, Uruguay
- MRC Unit for Lifelong Health & Ageing, Institute of Cardiovascular Science, University College London, London, United Kingdom
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pavithra Nagarajan
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jacqueline M Lane
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Brian Spitzer
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Matthew Maher
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joon Chung
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Shaun M Purcell
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA, USA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew J. K. Phillips
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Simon D. Kyle
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kai Spiegelhalder
- Department of Psychiatry and Psychotherapy, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael N Weedon
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | - Deborah A. Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hassan S Dashti
- Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Martin K Rutter
- Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Richa Saxena
- Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| |
Collapse
|
4
|
Hu X, Yang L, Du Y, Meng X, Shi Y, Zeng J. Astragalus polysaccharide promotes osteogenic differentiation of human bone marrow derived mesenchymal stem cells by facilitating ANKFY1 expression through miR-760 inhibition. Bone Joint Res 2023; 12:476-485. [PMID: 37532241 PMCID: PMC10396440 DOI: 10.1302/2046-3758.128.bjr-2022-0248.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
Aims Astragalus polysaccharide (APS) participates in various processes, such as the enhancement of immunity and inhibition of tumours. APS can affect osteoporosis (OP) by regulating the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs). This study was designed to elucidate the mechanism of APS in hBMSC proliferation and osteoblast differentiation. Methods Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were performed to determine the expression of microRNA (miR)-760 and ankyrin repeat and FYVE domain containing 1 (ANKFY1) in OP tissues and hBMSCs. Cell viability was measured using the Cell Counting Kit-8 assay. The expression of cyclin D1 and osteogenic marker genes (osteocalcin (OCN), alkaline phosphatase (ALP), and runt-related transcription factor 2 (RUNX2)) was evaluated using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Mineral deposits were detected through Alizarin Red S staining. In addition, Western blotting was performed to detect the ANKFY1 protein levels following the regulation of miR-760. The relationship between miR-760 and ANKFY1 was determined using a luciferase reporter assay. Results The expression of miR-760 was upregulated in OP tissues, whereas ANKFY1 expression was downregulated. APS stimulated the differentiation and proliferation of hBMSCs by: increasing their viability; upregulating the expression levels of cyclin D1, ALP, OCN, and RUNX2; and inducing osteoblast mineralization. Moreover, APS downregulated the expression of miR-760. Overexpression of miR-760 was found to inhibit the promotive effect of APS on hBMSC differentiation and proliferation, while knockdown of miR-760 had the opposite effect. ANKFY1 was found to be the direct target of miR-760. Additionally, ANKFY1 participated in the APS-mediated regulation of miR-760 function in hBMSCs. Conclusion APS promotes the osteogenic differentiation and proliferation of hBMSCs. Moreover, APS alleviates the effects of OP by downregulating miR-760 and upregulating ANKFY1 expression.
Collapse
Affiliation(s)
- Xianfeng Hu
- Department of General Practice, Wuhan Fourth Hospital, Wuhan, China
| | - Liu Yang
- Department of General Practice, Wuhan Fourth Hospital, Wuhan, China
| | - Yanhua Du
- Department of General Practice, Wuhan Fourth Hospital, Wuhan, China
| | - Xiangping Meng
- Department of General Practice, Wuhan Fourth Hospital, Wuhan, China
| | - Yuanyuan Shi
- Department of General Practice, Wuhan Fourth Hospital, Wuhan, China
| | - Juan Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Zhang P, Duan L, Ou Y, Ling Q, Cao L, Qian H, Zhang J, Wang J, Yuan X. The cerebellum and cognitive neural networks. Front Hum Neurosci 2023; 17:1197459. [PMID: 37576472 PMCID: PMC10416251 DOI: 10.3389/fnhum.2023.1197459] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Cognitive function represents a complex neurophysiological capacity of the human brain, encompassing a higher level of neural processing and integration. It is widely acknowledged that the cerebrum plays a commanding role in the regulation of cognitive functions. However, the specific role of the cerebellum in cognitive processes has become a subject of considerable scholarly intrigue. In 1998, Schmahmann first proposed the concept of "cognitive affective syndrome (CCAS)," linking cerebellar damage to cognitive and emotional impairments. Since then, a substantial body of literature has emerged, exploring the role of the cerebellum in cognitive neurological function. The cerebellum's adjacency to the cerebral cortex, brainstem, and spinal cord suggests that the cerebral-cerebellar network loops play a crucial role in the cerebellum's participation in cognitive neurological functions. In this review, we comprehensively examine the recent literature on the involvement of the cerebellum in cognitive functions from three perspectives: the cytological basis of the cerebellum and its anatomical functions, the cerebellum and cognitive functions, and Crossed cerebellar diaschisis. Our aim is to shed light on the role and mechanisms of the cerebellum in cognitive neurobrain networks.
Collapse
Affiliation(s)
- Pingshu Zhang
- Department of Neurology, Kailuan General Hospital, North China University of Technology, Tangshan, Hebei, China
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| | - Liqin Duan
- Department of Neurology, Kailuan General Hospital, North China University of Technology, Tangshan, Hebei, China
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| | - Ya Ou
- Department of Neurology, Kailuan General Hospital, North China University of Technology, Tangshan, Hebei, China
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| | - Qirong Ling
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| | - Lingyun Cao
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| | - Hongchun Qian
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| | - Jian Zhang
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| | - Jing Wang
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| | - Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital, North China University of Technology, Tangshan, Hebei, China
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| |
Collapse
|