1
|
Azari N, Rezaee M, Dayer D, Tabandeh MR. Dimethyl itaconate modulates neuroprotective effect on primary rat astrocytes under inflammatory condition by regulating the expression of neurotrophic factors and TrkA/B-P75 receptors. Neurol Res 2024; 46:1137-1148. [PMID: 39489601 DOI: 10.1080/01616412.2024.2423583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Astrocytes, specialized glial cells, are essential for maintaining the central nervous system homeostasis. Inflammatory conditions can disrupt neurotrophic factors and receptor expression in astrocytes, leading to potential central nervous system damage. Itaconate, recently identified for its anti-inflammatory properties, was investigated in this study for its effects on neurotrophic factors in LPS-stimulated primary rat astrocytes. METHODS Primary rat astrocyte cells were isolated from one-day-old Wistar rats and exposed to 1 µg/ml lipopolysaccharide (LPS) for 6 h to stimulate inflammation. The effect of DMI (62.5, 125, and 250 µM for 18 h) on the cell viability of astrocyte cells exposed to LPS was evaluated by the MTT assay. The effects of DMI on the mRNA and protein levels of NGF, BDNF, and GDNF were evaluated using ELISA and qRT-PCR assays. Protein and mRNA levels of neurotrophic factor receptors (TrkA, TrkB, and P75) were evaluated using qRT-PCR and Western blot analyses. RESULTS The results showed that DMI suppressed astrocytes cell death induced by LPS in a dose-dependent manner. DMI dose-dependently restored the reduced mRNA and protein levels of NGF, BDNF, GDNF, and TrkA and TrkB receptors in LPS-treated astrocytes, but it significantly decreased the p75 expression in the same condition. CONCLUSION In conclusion, DMI may be able to support astrocyte survival and functions based on the restoration of neurotrophic factors and their receptors expression in LPS-stimulated astrocyte cells. This suggests that DMI could be a promising therapeutic option for neurodegenerative diseases characterized by inflammation-induced astrocyte dysfunction.
Collapse
Affiliation(s)
- Nooshin Azari
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Malahat Rezaee
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Dian Dayer
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cells and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
2
|
Bhat K, Helmholz H, Willumeit-Römer R. Application of an in vitro neuroinflammation model to evaluate the efficacy of magnesium-lithium alloys. Front Cell Neurosci 2024; 18:1485427. [PMID: 39539342 PMCID: PMC11558531 DOI: 10.3389/fncel.2024.1485427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Mg-Li alloys can be promising candidates as bioresorbable Li-releasing implants for bipolar disorder and other neurodegenerative disorders. In order to compare the therapeutic efficacy of conventional Li salts and Li delivered through Mg-Li alloy extracts, we tested an in vitro model based on the neuroinflammation hypothesis of mood disorders (peripheral inflammation inducing neuroinflammation) wherein, a coculture of microglia and astrocytes was treated with conditioned medium from pro-inflammatory macrophages. Two alloys, Mg-1.6Li and Mg-9.5Li, were tested in the form of material extracts and well-known outcomes of Li treatment such as GSK3β phosphorylation (indirect flow cytometry) and influence on inflammation-related gene expression (qPCR) were compared against Li salts. This is the first study demonstrating that Li can increase the phosphorylation of GSK3β in glial cells in the presence of excess Mg. Furthermore, Mg-Li alloys were more effective than Li salts in downregulating IL6 and upregulating the neurotrophin GDNF. Mg had no antagonistic effects toward Li-driven downregulation of astrogliosis markers. Overall, the results provide evidence to support further studies employing Mg-Li alloys for neurological applications.
Collapse
|
3
|
Gupta A, Mishra SK, Lascelles BDX. Emerging evidence of artemin/GFRα3 signaling in musculoskeletal pain. Osteoarthritis Cartilage 2024:S1063-4584(24)01404-3. [PMID: 39374825 DOI: 10.1016/j.joca.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Chronic musculoskeletal pain is highly prevalent and poses a significant personal, societal, and economic burden. Management of chronic musculoskeletal pain remains a challenge. Long-term use of common analgesic medications such as nonsteroidal anti-inflammatory drugs and opioids is associated with adverse events, and in the case of opioids, drug addiction. Additionally, many individuals do not experience sufficient pain relief with these therapeutic approaches. Thus, there is an urgent need to develop clinically efficacious and safe therapeutics for musculoskeletal pain. Recent advances in our understanding of musculoskeletal pain neurobiology have helped identify the role of neurotrophic factors, specifically, the glial cell line-derived neurotrophic factor (GDNF) family of ligands (GFL) and their associated signaling pathways. This review outlines our current understanding of the GFL signaling systems, discusses their role in inflammatory and chronic musculoskeletal pain and sensitivity, and comments on the analgesic therapeutic potential of targeting the GFL signaling system.
Collapse
Affiliation(s)
- Ankita Gupta
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Santosh K Mishra
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | - B Duncan X Lascelles
- Comparative Pain Research and Education Center, North Carolina State University, Raleigh, NC, USA; Thurston Arthritis Center, UNC School of Medicine, Chapel Hill, NC, USA; Center for Translational Pain Research, Department of Anesthesiology, Duke University, Durham, NC, USA.
| |
Collapse
|
4
|
Kong Q, Han X, Cheng H, Liu J, Zhang H, Dong T, Chen J, So KF, Mi X, Xu Y, Tang S. Lycium barbarum glycopeptide (wolfberry extract) slows N-methyl-N-nitrosourea-induced degradation of photoreceptors. Neural Regen Res 2024; 19:2290-2298. [PMID: 38488563 PMCID: PMC11034605 DOI: 10.4103/1673-5374.390958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/03/2023] [Accepted: 09/16/2023] [Indexed: 04/24/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202410000-00030/figure1/v/2024-02-06T055622Z/r/image-tiff Photoreceptor cell degeneration leads to blindness, for which there is currently no effective treatment. Our previous studies have shown that Lycium barbarum (L. barbarum) polysaccharide (LBP) protects degenerated photoreceptors in rd1, a transgenic mouse model of retinitis pigmentosa. L. barbarum glycopeptide (LbGP) is an immunoreactive glycoprotein extracted from LBP. In this study, we investigated the potential protective effect of LbGP on a chemically induced photoreceptor-degenerative mouse model. Wild-type mice received the following: oral administration of LbGP as a protective pre-treatment on days 1-7; intraperitoneal administration of 40 mg/kg N-methyl-N-nitrosourea to induce photoreceptor injury on day 7; and continuation of orally administered LbGP on days 8-14. Treatment with LbGP increased photoreceptor survival and improved the structure of photoreceptors, retinal photoresponse, and visual behaviors of mice with photoreceptor degeneration. LbGP was also found to partially inhibit the activation of microglia in N-methyl-N-nitrosourea-injured retinas and significantly decreased the expression of two pro-inflammatory cytokines. In conclusion, LbGP effectively slowed the rate of photoreceptor degeneration in N-methyl-N-nitrosourea-injured mice, possibly through an anti-inflammatory mechanism, and has potential as a candidate drug for the clinical treatment of photoreceptor degeneration.
Collapse
Affiliation(s)
- Qihang Kong
- Department of Ophthalmology, Aier Eye Hospital, Jinan University, Guangzhou, Guangdong Province, China
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Xiu Han
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Haiyang Cheng
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Jiayu Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Huijun Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
- Department of Ophthalmology, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong Province, China
| | - Tangrong Dong
- School of Stomatology, Jinan University, Guangzhou, Guangdong Province, China
| | - Jiansu Chen
- Department of Ophthalmology, Aier Eye Hospital, Jinan University, Guangzhou, Guangdong Province, China
- Aier Academician Station, Changsha, Hunan Province, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
- Aier Academician Station, Changsha, Hunan Province, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
- State Key Laboratory of Brain and Cognitive Sciences, Hong Kong Special Administrative Region, China
| | - Xuesong Mi
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
- Aier Academician Station, Changsha, Hunan Province, China
| | - Ying Xu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
- Aier Academician Station, Changsha, Hunan Province, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Shibo Tang
- Department of Ophthalmology, Aier Eye Hospital, Jinan University, Guangzhou, Guangdong Province, China
- Aier Academician Station, Changsha, Hunan Province, China
| |
Collapse
|
5
|
Jurcau MC, Jurcau A, Cristian A, Hogea VO, Diaconu RG, Nunkoo VS. Inflammaging and Brain Aging. Int J Mol Sci 2024; 25:10535. [PMID: 39408862 PMCID: PMC11476611 DOI: 10.3390/ijms251910535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Progress made by the medical community in increasing lifespans comes with the costs of increasing the incidence and prevalence of age-related diseases, neurodegenerative ones included. Aging is associated with a series of morphological changes at the tissue and cellular levels in the brain, as well as impairments in signaling pathways and gene transcription, which lead to synaptic dysfunction and cognitive decline. Although we are not able to pinpoint the exact differences between healthy aging and neurodegeneration, research increasingly highlights the involvement of neuroinflammation and chronic systemic inflammation (inflammaging) in the development of age-associated impairments via a series of pathogenic cascades, triggered by dysfunctions of the circadian clock, gut dysbiosis, immunosenescence, or impaired cholinergic signaling. In addition, gender differences in the susceptibility and course of neurodegeneration that appear to be mediated by glial cells emphasize the need for future research in this area and an individualized therapeutic approach. Although rejuvenation research is still in its very early infancy, accumulated knowledge on the various signaling pathways involved in promoting cellular senescence opens the perspective of interfering with these pathways and preventing or delaying senescence.
Collapse
Affiliation(s)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Alexander Cristian
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Vlad Octavian Hogea
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | | | | |
Collapse
|
6
|
Miller MR, Landis HE, Miller RE, Tizabi Y. Intercellular Adhesion Molecule 1 (ICAM-1): An Inflammatory Regulator with Potential Implications in Ferroptosis and Parkinson's Disease. Cells 2024; 13:1554. [PMID: 39329738 PMCID: PMC11430830 DOI: 10.3390/cells13181554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1/CD54), a transmembrane glycoprotein, has been considered as one of the most important adhesion molecules during leukocyte recruitment. It is encoded by the ICAM1 gene and plays a central role in inflammation. Its crucial role in many inflammatory diseases such as ulcerative colitis and rheumatoid arthritis are well established. Given that neuroinflammation, underscored by microglial activation, is a key element in neurodegenerative diseases such as Parkinson's disease (PD), we investigated whether ICAM-1 has a role in this progressive neurological condition and, if so, to elucidate the underpinning mechanisms. Specifically, we were interested in the potential interaction between ICAM-1, glial cells, and ferroptosis, an iron-dependent form of cell death that has recently been implicated in PD. We conclude that there exist direct and indirect (via glial cells and T cells) influences of ICAM-1 on ferroptosis and that further elucidation of these interactions can suggest novel intervention for this devastating disease.
Collapse
Affiliation(s)
| | - Harold E. Landis
- Integrative Medicine Fellow, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
7
|
Salama RM, Darwish SF, Yehia R, Eissa N, Elmongy NF, Abd-Elgalil MM, Schaalan MF, El Wakeel SA. Apilarnil exerts neuroprotective effects and alleviates motor dysfunction by rebalancing M1/M2 microglia polarization, regulating miR-155 and miR-124 expression in a rotenone-induced Parkinson's disease rat model. Int Immunopharmacol 2024; 137:112536. [PMID: 38909495 DOI: 10.1016/j.intimp.2024.112536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Microglial activation contributes to the neuropathology of Parkinson's disease (PD). Inhibiting M1 while simultaneously boosting M2 microglia activation may therefore be a potential treatment for PD. Apilarnil (API) is a bee product produced from drone larvae. Recent research has demonstrated the protective effects of API on multiple body systems. Nevertheless, its impact on PD or the microglial M1/M2 pathway has not yet been investigated. Thus, we intended to evaluate the dose-dependent effects of API in rotenone (ROT)-induced PD rat model and explore the role of M1/M2 in mediating its effect. Seventy-two Wistar rats were equally grouped as; control, API, ROT, and groups in which API (200, 400, and 800 mg/kg, p.o.) was given simultaneously with ROT (2 mg/kg, s.c.) for 28 days. The high dose of API (800 mg/kg) showed enhanced motor function, higher expression of tyrosine hydroxylase and dopamine levels, less dopamine turnover and α-synuclein expression, and a better histopathological picture when compared to the ROT group and the lower two doses. API's high dose exerted its neuroprotective effects through abridging the M1 microglial activity, illustrated in the reduced expression of miR-155, Iba-1, CD36, CXCL10, and other pro-inflammatory markers' levels. Inversely, API high dose enhanced M2 microglial activity, witnessed in the elevated expression of miR-124, CD206, Ym1, Fizz1, arginase-1, and other anti-inflammatory indices, in comparison to the diseased group. To conclude, our study revealed a novel neuroprotective impact for API against experimentally induced PD, where the high dose showed the highest protection via rebalancing M1/M2 polarization.
Collapse
Affiliation(s)
- Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Samar F Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt.
| | - Rana Yehia
- Pharmacology and Toxicology Department, Faculty of Pharmacy, British University in Egypt (BUE), Cairo, Egypt.
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates.
| | - Noura F Elmongy
- Physiology Department, Damietta Faculty of Medicine, Al-Azhar University, Damietta, Egypt.
| | - Mona M Abd-Elgalil
- Histology and Cell Biology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt.
| | - Mona F Schaalan
- Clinical Pharmacy Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Sara A El Wakeel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| |
Collapse
|
8
|
Guzmán-Sastoque P, Sotelo S, Esmeral NP, Albarracín SL, Sutachan JJ, Reyes LH, Muñoz-Camargo C, Cruz JC, Bloch NI. Assessment of CRISPRa-mediated gdnf overexpression in an In vitro Parkinson's disease model. Front Bioeng Biotechnol 2024; 12:1420183. [PMID: 39175618 PMCID: PMC11338903 DOI: 10.3389/fbioe.2024.1420183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Parkinson's disease (PD) presents a significant challenge in medical science, as current treatments are limited to symptom management and often carry significant side effects. Our study introduces an innovative approach to evaluate the effects of gdnf overexpression mediated by CRISPRa in an in vitro model of Parkinson's disease. The expression of gdnf can have neuroprotective effects, being related to the modulation of neuroinflammation and pathways associated with cell survival, differentiation, and growth. Methods We have developed a targeted delivery system using a magnetite nanostructured vehicle for the efficient transport of genetic material. This system has resulted in a substantial increase, up to 200-fold) in gdnf expression in an In vitro model of Parkinson's disease using a mixed primary culture of astrocytes, neurons, and microglia. Results and Discussion The delivery system exhibits significant endosomal escape of more than 56%, crucial for the effective delivery and activation of the genetic material within cells. The increased gdnf expression correlates with a notable reduction in MAO-B complex activity, reaching basal values of 14.8 μU/μg of protein, and a reduction in reactive oxygen species. Additionally, there is up to a 34.6% increase in cell viability in an In vitro Parkinson's disease model treated with the neurotoxin MPTP. Our study shows that increasing gdnf expression can remediate some of the cellular symptoms associated with Parkinson's disease in an in vitro model of the disease using a novel nanostructured delivery system.
Collapse
Affiliation(s)
| | - Sebastián Sotelo
- Biomedical Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Natalia P. Esmeral
- Biomedical Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Sonia Luz Albarracín
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jhon-Jairo Sutachan
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luis H. Reyes
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de los Andes, Bogotá, Colombia
| | | | - Juan C. Cruz
- Biomedical Engineering Department, Universidad de los Andes, Bogotá, Colombia
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de los Andes, Bogotá, Colombia
| | - Natasha I. Bloch
- Biomedical Engineering Department, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
9
|
Bäckryd E, Themistocleous A, Larsson A, Gordh T, Rice ASC, Tesfaye S, Bennett DL, Gerdle B. Eleven neurology-related proteins measured in serum are positively correlated to the severity of diabetic neuropathy. Sci Rep 2024; 14:17068. [PMID: 39048581 PMCID: PMC11269577 DOI: 10.1038/s41598-024-66471-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
About 20% of patients with diabetes suffer from chronic pain with neuropathic characteristics. We investigated the multivariate associations between 92 neurology-related proteins measured in serum from 190 patients with painful and painless diabetic neuropathy. Participants were recruited from the Pain in Neuropathy Study, an observational cross-sectional multicentre study in which participants underwent deep phenotyping. In the exploration cohort, two groups were defined by hierarchical cluster analyses of protein data. The proportion of painless vs painful neuropathy did not differ between the two groups, but one group had a significantly higher grade of neuropathy as measured by the Toronto Clinical Scoring System (TCSS). This finding was replicated in the replication cohort. Analyzing both groups together, we found that a group of 11 inter-correlated proteins (TNFRSF12A, SCARB2, N2DL-2, SKR3, EFNA4, LAYN, CLM-1, CD38, UNC5C, GFR-alpha-1, and JAM-B) were positively associated with TCSS values. Notably, EFNA4 and UNC5C are known to be part of axon guidance pathways. To conclude, although cluster analysis of 92 neurology-related proteins did not distinguish painful from painless diabetic neuropathy, we identified 11 proteins which positively correlated to neuropathy severity and warrant further investigation as potential biomarkers.
Collapse
Affiliation(s)
- Emmanuel Bäckryd
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
| | | | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Torsten Gordh
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Andrew S C Rice
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Björn Gerdle
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
Wijayanti IAS, Adnyana IMO, Widyadharma IPE, Wiratnaya IGE, Mahadewa TGB, Astawa INM. Neuroinflammation mechanism underlying neuropathic pain: the role of mesenchymal stem cell in neuroglia. AIMS Neurosci 2024; 11:226-243. [PMID: 39431272 PMCID: PMC11486618 DOI: 10.3934/neuroscience.2024015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 10/22/2024] Open
Abstract
Pain is an essential aspect of the body's physiological response to unpleasant noxious stimuli from either external sustained injuries or an internal disease condition that occurs within the body. Generally, pain is temporary. However, in patients with neuropathic pain, the experienced pain is persistent and uncontrollable, with an unsatisfactory treatment effectiveness. The activation of the immune system is a crucial factor in both central and peripheral neuropathic pain. The immune response plays an important role in the progression of the stages of neuropathic pain, and acts not only as pain mediators, but also produce analgesic molecules. Neuropathic pain has long been described as a result of dysfunctional nerve activities. However, there is substantial evidence indicating that the regulation of hyperalgesia is mediated by astrocytes and microglia activation. Mesenchymal stem cells currently hold an optimal potential in managing pain, as they can migrate to damaged tissues and have a robust immunosuppressive role for autologous or heterologous transplantation. Moreover, mesenchymal stem cells revealed their immunomodulatory capabilities by secreting growth factors and cytokines through direct cell interactions. The main idea underlying the use of mesenchymal stem cells in pain management is that these cells can replace damaged nerve cells by releasing neurotrophic factors. This property makes them the perfect option to modulate and treat neuropathic pain, which is notoriously difficult to treat.
Collapse
Affiliation(s)
- Ida Ayu Sri Wijayanti
- Doctoral Program in Medical Sciences, Faculty of Medicine, Universitas Udayana, Bali, Indonesia 80232
| | - I Made Oka Adnyana
- Department of Neurology, Faculty of Medicine, Universitas Udayana, Bali, Indonesia 80232
| | - I Putu Eka Widyadharma
- Department of Neurology, Faculty of Medicine, Universitas Udayana, Bali, Indonesia 80232
| | - I Gede Eka Wiratnaya
- Department of Orthopedics and Traumatology, Faculty of Medicine, Universitas Udayana, Bali, Indonesia 80232
| | | | - I Nyoman Mantik Astawa
- Department of Pathobiology, Faculty of Veterinary Medicine, Universitas Udayana, Bali, Indonesia 80232
| |
Collapse
|
11
|
Tizabi Y, Bennani S, El Kouhen N, Getachew B, Aschner M. Heavy Metal Interactions with Neuroglia and Gut Microbiota: Implications for Huntington's Disease. Cells 2024; 13:1144. [PMID: 38994995 PMCID: PMC11240758 DOI: 10.3390/cells13131144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Huntington's disease (HD) is a rare but progressive and devastating neurodegenerative disease characterized by involuntary movements, cognitive decline, executive dysfunction, and neuropsychiatric conditions such as anxiety and depression. It follows an autosomal dominant inheritance pattern. Thus, a child who has a parent with the mutated huntingtin (mHTT) gene has a 50% chance of developing the disease. Since the HTT protein is involved in many critical cellular processes, including neurogenesis, brain development, energy metabolism, transcriptional regulation, synaptic activity, vesicle trafficking, cell signaling, and autophagy, its aberrant aggregates lead to the disruption of numerous cellular pathways and neurodegeneration. Essential heavy metals are vital at low concentrations; however, at higher concentrations, they can exacerbate HD by disrupting glial-neuronal communication and/or causing dysbiosis (disturbance in the gut microbiota, GM), both of which can lead to neuroinflammation and further neurodegeneration. Here, we discuss in detail the interactions of iron, manganese, and copper with glial-neuron communication and GM and indicate how this knowledge may pave the way for the development of a new generation of disease-modifying therapies in HD.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Samia Bennani
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20670, Morocco
| | - Nacer El Kouhen
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20670, Morocco
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
12
|
Singh AA, Yadav D, Khan F, Song M. Indole-3-Carbinol and Its Derivatives as Neuroprotective Modulators. Brain Sci 2024; 14:674. [PMID: 39061415 PMCID: PMC11274471 DOI: 10.3390/brainsci14070674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its downstream tropomyosin receptor kinase B (TrkB) signaling pathway play pivotal roles in the resilience and action of antidepressant drugs, making them prominent targets in psychiatric research. Oxidative stress (OS) contributes to various neurological disorders, including neurodegenerative diseases, stroke, and mental illnesses, and exacerbates the aging process. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant responsive element (ARE) serves as the primary cellular defense mechanism against OS-induced brain damage. Thus, Nrf2 activation may confer endogenous neuroprotection against OS-related cellular damage; notably, the TrkB/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway, stimulated by BDNF-dependent TrkB signaling, activates Nrf2 and promotes its nuclear translocation. However, insufficient neurotrophin support often leads to the downregulation of the TrkB signaling pathway in brain diseases. Thus, targeting TrkB activation and the Nrf2-ARE system is a promising therapeutic strategy for treating neurodegenerative diseases. Phytochemicals, including indole-3-carbinol (I3C) and its metabolite, diindolylmethane (DIM), exhibit neuroprotective effects through BDNF's mimetic activity; Akt phosphorylation is induced, and the antioxidant defense mechanism is activated by blocking the Nrf2-kelch-like ECH-associated protein 1 (Keap1) complex. This review emphasizes the therapeutic potential of I3C and its derivatives for concurrently activating neuronal defense mechanisms in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Alka Ashok Singh
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (A.A.S.); (D.Y.)
| | - Dhananjay Yadav
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (A.A.S.); (D.Y.)
| | - Fazlurrahman Khan
- Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea;
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (A.A.S.); (D.Y.)
| |
Collapse
|
13
|
Lin X, Ren P, Xue Z, Liu X, Cao Y, Li T, Miao H. Astrocytic GDNF ameliorates anesthesia and surgery-induced cognitive impairment by promoting hippocampal synaptic plasticity in aged mice. Neurochem Int 2024; 177:105765. [PMID: 38750960 DOI: 10.1016/j.neuint.2024.105765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Perioperative neurocognitive disorders (PND) are common complications after surgery in older patients. However, the specific mechanism of this condition remains unclear. Glial cell line-derived neurotrophic factor (GDNF) is an important neurotrophin that abundantly expressed throughout the brain. It can enhance synaptic plasticity and alleviate learning and memory impairments. Thus, the purpose of this study was to investigate the role of GDNF in PND and the mechanisms involved. METHODS The PND animal model was established by performing left tibial fracture surgery on 18-month-old C57BL/6 mice under sevoflurane anesthesia. Recombinant adeno-associated virus (rAAV)-GDNF or empty vectors were injected bilaterally into the hippocampal CA1 region of aged mice 3 weeks before anesthesia/surgery. The open field and fear conditioning test were used to assess the behavior changes. Golgi staining and electrophysiology were utilized to evaluate the morphological and functional alterations of neuronal synaptic plasticity. Western blot analysis was carried out to measure the proteins expression levels and immunofluorescence staining was performed to probe the cellular localization of GDNF. RESULTS Mice with surgery and anesthesia showed a significant decrease in hippocampus-dependent learning and memory, accompanied by a decline in hippocampal synaptic plasticity. Anesthesia/surgery induced a reduction of GDNF, which was colocalized with astrocytes. Overexpression of GDNF in astrocytes could ameliorate the decline in cognitive function by improving hippocampal synaptic plasticity, meanwhile astrocytic GDNF rescued the anesthesia/surgery-induced decrease in GFRα1 and NCAM. CONCLUSION The study concludes that astrocytic GDNF may improve anesthesia/surgery-induced cognitive impairment by promoting hippocampal synaptic plasticity in aged mice via the GFRα1/NCAM pathway.
Collapse
Affiliation(s)
- Xiaowan Lin
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Peng Ren
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ziyi Xue
- Department of Anesthesiology, Peking University First Hospital, Beijing, China
| | - Xiao Liu
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Ying Cao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Tianzuo Li
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| | - Huihui Miao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Tizabi Y, Getachew B, Hauser SR, Tsytsarev V, Manhães AC, da Silva VDA. Role of Glial Cells in Neuronal Function, Mood Disorders, and Drug Addiction. Brain Sci 2024; 14:558. [PMID: 38928557 PMCID: PMC11201416 DOI: 10.3390/brainsci14060558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Mood disorders and substance use disorder (SUD) are of immense medical and social concern. Although significant progress on neuronal involvement in mood and reward circuitries has been achieved, it is only relatively recently that the role of glia in these disorders has attracted attention. Detailed understanding of the glial functions in these devastating diseases could offer novel interventions. Here, following a brief review of circuitries involved in mood regulation and reward perception, the specific contributions of neurotrophic factors, neuroinflammation, and gut microbiota to these diseases are highlighted. In this context, the role of specific glial cells (e.g., microglia, astroglia, oligodendrocytes, and synantocytes) on phenotypic manifestation of mood disorders or SUD are emphasized. In addition, use of this knowledge in the potential development of novel therapeutics is touched upon.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA;
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA;
| | - Sheketha R. Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Vassiliy Tsytsarev
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Alex C. Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-170, RJ, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-100, BA, Brazil;
| |
Collapse
|
15
|
Colvett I, Gilmore A, Guzman S, Ledreux A, Quintero JE, Ginjupally DR, Gurwell JA, Slevin JT, Guduru Z, Gerhardt GA, van Horne CG, Granholm AC. Recipient Reaction and Composition of Autologous Sural Nerve Tissue Grafts into the Human Brain. J Clin Med 2023; 12:6121. [PMID: 37834764 PMCID: PMC10573749 DOI: 10.3390/jcm12196121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Parkinson's disease (PD) is a severe neurological disease for which there is no effective treatment or cure, and therefore it remains an unmet need in medicine. We present data from four participants who received autologous transplantation of small pieces of sural nerve tissue into either the basal forebrain containing the nucleus basalis of Meynert (NBM) or the midbrain substantia nigra (SN). The grafts did not exhibit significant cell death or severe host-tissue reaction up to 55 months post-grafting and contained peripheral cells. Dopaminergic neurites showed active growth in the graft area and into the graft in the SN graft, and cholinergic neurites were abundant near the graft in the NBM. These results provide a histological basis for changes in clinical features after autologous peripheral nerve tissue grafting into the NBM or SN in PD.
Collapse
Affiliation(s)
- Isaac Colvett
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.C.); (A.G.); (A.L.)
| | - Anah Gilmore
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.C.); (A.G.); (A.L.)
| | - Samuel Guzman
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Aurélie Ledreux
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.C.); (A.G.); (A.L.)
| | - Jorge E. Quintero
- Brain Restoration Center, University of Kentucky, Lexington, KY 40536, USA; (J.E.Q.); (J.A.G.); (J.T.S.); (G.A.G.); (C.G.v.H.)
- Department of Neurosurgery, University of Kentucky, Lexington, KY 40536, USA;
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Dhanunjaya Rao Ginjupally
- Department of Neurosurgery, University of Kentucky, Lexington, KY 40536, USA;
- Department of Neurosurgery, Krishna Institute of Medical Sciences, Secunderabad 500003, Telangana, India
| | - Julie A. Gurwell
- Brain Restoration Center, University of Kentucky, Lexington, KY 40536, USA; (J.E.Q.); (J.A.G.); (J.T.S.); (G.A.G.); (C.G.v.H.)
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
| | - John T. Slevin
- Brain Restoration Center, University of Kentucky, Lexington, KY 40536, USA; (J.E.Q.); (J.A.G.); (J.T.S.); (G.A.G.); (C.G.v.H.)
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
| | - Zain Guduru
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
| | - Greg A. Gerhardt
- Brain Restoration Center, University of Kentucky, Lexington, KY 40536, USA; (J.E.Q.); (J.A.G.); (J.T.S.); (G.A.G.); (C.G.v.H.)
- Department of Neurosurgery, University of Kentucky, Lexington, KY 40536, USA;
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
| | - Craig G. van Horne
- Brain Restoration Center, University of Kentucky, Lexington, KY 40536, USA; (J.E.Q.); (J.A.G.); (J.T.S.); (G.A.G.); (C.G.v.H.)
- Department of Neurosurgery, University of Kentucky, Lexington, KY 40536, USA;
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Ann-Charlotte Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.C.); (A.G.); (A.L.)
| |
Collapse
|
16
|
Chen MH, Liu XZ, Qu XW, Guo RB, Zhang L, Kong L, Yu Y, Liu Y, Zang J, Li XY, Li XT. ApoE-modified liposomes encapsulating resveratrol and salidroside alleviate manifestations of Alzheimer's disease in APP/PS-1 mice. Drug Dev Ind Pharm 2023; 49:559-571. [PMID: 37649422 DOI: 10.1080/03639045.2023.2252062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a neurodegenerative disease that is associated with aging and is influenced by both genetic and environmental factors. Several studies and clinical trials have demonstrated that resveratrol (Res) and salidroside (Sal) are not only biologically safe but also influence AD biomarker trajectories. However, their clinical applications have been quite limited due to poor specificity, low solubility, and insufficient blood-brain barrier (BBB) penetration. Therefore, we developed a nano-drug delivery system in which Res and Sal were encapsulated in liposomes, which were surface-modified with ApoE (ApoE-Res/Sal-Lips) to compensate for these deficiencies. METHOD In this study, ApoE-Res/Sal-Lips were prepared using a standard thin-film hydration method for liposomes. Then, cellular uptake of the loaded liposomes was assessed in vitro using fluorescent staining assays. A BBB model was constructed to investigate the capacity of the liposomes to cross the BBB in vitro, and the ability of liposomes to target the brain was observed by in vivo imaging. In addition, the neuroprotective effects of the different liposome formulations in APP/PS-1 mice were evaluated by measuring the changes in levels of oxidative, anti-inflammatory, and anti-apoptotic factors in the mice brains. RESULTS In vitro, ApoE-Res/Sal-Lips increased the uptake of Res and Sal by bEnd.3 and N2a cells, enhanced BBB penetration, and improved transport efficiency. In vivo, the ApoE-Res/Sal-Lips were found to alleviate AD pathological symptoms, reduce learning and memory impairments, and improve brain function. CONCLUSION ApoE-Res/Sal-Lips provide a new method for the treatment of AD.
Collapse
Affiliation(s)
- Mu-Han Chen
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Xin-Ze Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Xiu-Wu Qu
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese Medicine, Jinzhong, P.R. China
| | - Rui-Bo Guo
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Lu Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Yang Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Juan Zang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Xiu-Ying Li
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese Medicine, Jinzhong, P.R. China
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| |
Collapse
|
17
|
Ruiz-Cantero MC, Cortés-Montero E, Jain A, Montilla-García Á, Bravo-Caparrós I, Shim J, Sánchez-Blázquez P, Woolf CJ, Baeyens JM, Cobos EJ. The sigma-1 receptor curtails endogenous opioid analgesia during sensitization of TRPV1 nociceptors. Br J Pharmacol 2023; 180:1148-1167. [PMID: 36478100 DOI: 10.1111/bph.16003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Peripheral sensitization contributes to pathological pain. While prostaglandin E2 (PGE2) and nerve growth factor (NGF) sensitize peptidergic C-nociceptors (TRPV1+), glial cell line-derived neurotrophic factor (GDNF) sensitizes non-peptidergic C-neurons (IB4+). The sigma-1 receptor (sigma-1R) is a Ca2+ -sensing chaperone known to modulate opoid analgesia. This receptor binds both to TRPV1 and the μ opioid receptor, although the functional repercussions of these physical interactions in peripheral sensitization are unknown. EXPERIMENTAL APPROACH We tested the effects of sigma-1 antagonism on PGE2-, NGF-, and GDNF-induced mechanical and heat hyperalgesia in mice. We used immunohistochemistry to determine the presence of endomorphin-2, an endogenous μ receptor agonist, on dorsal root ganglion (DRG) neurons. Recombinant proteins were used to study the interactions between sigma-1R, μ- receptor, and TRPV1. We used calcium imaging to study the effects of sigma-1 antagonism on PGE2-induced sensitization of TRPV1+ nociceptors. KEY RESULTS Sigma1 antagonists reversed PGE2- and NGF-induced hyperalgesia but not GDNF-induced hyperalgesia. Endomorphin-2 was detected on TRPV1+ but not on IB4+ neurons. Peripheral opioid receptor antagonism by naloxone methiodide or administration of an anti-endomorphin-2 antibody to a sensitized paw reversed the antihyperalgesia induced by sigma-1 antagonists. Sigma-1 antagonism transfers sigma-1R from TRPV1 to μ receptors, suggesting that sigma-1R participate in TRPV1-μ receptor crosstalk. Moreover, sigma-1 antagonism reversed, in a naloxone-sensitive manner, PGE2-induced sensitization of DRG neurons to the calcium flux elicited by capsaicin, the prototypic TRPV1 agonist. CONCLUSION AND IMPLICATIONS Sigma-1 antagonism harnesses endogenous opioids produced by TRPV1+ neurons to reduce hyperalgesia by increasing μ receptor activity.
Collapse
Affiliation(s)
- M Carmen Ruiz-Cantero
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute ibs. GRANADA, Granada, Spain
| | - Elsa Cortés-Montero
- Department of Translational Neurosciences, Neuropharmacology, Cajal Institute, CSIC, Madrid, Spain
| | - Aakanksha Jain
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Ángeles Montilla-García
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
| | - Inmaculada Bravo-Caparrós
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
| | - Jaehoon Shim
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Pilar Sánchez-Blázquez
- Department of Translational Neurosciences, Neuropharmacology, Cajal Institute, CSIC, Madrid, Spain
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - José M Baeyens
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute ibs. GRANADA, Granada, Spain
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute ibs. GRANADA, Granada, Spain.,Teófilo Hernando Institute for Drug Discovery, Madrid, Spain
| |
Collapse
|
18
|
Kim JH, Kang RJ, Hyeon SJ, Ryu H, Joo H, Bu Y, Kim JH, Suk K. Lipocalin-2 Is a Key Regulator of Neuroinflammation in Secondary Traumatic and Ischemic Brain Injury. Neurotherapeutics 2023; 20:803-821. [PMID: 36508119 PMCID: PMC10275845 DOI: 10.1007/s13311-022-01333-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Reactive glial cells are hallmarks of brain injury. However, whether these cells contribute to secondary inflammatory pathology and neurological deficits remains poorly understood. Lipocalin-2 (LCN2) has inflammatory and neurotoxic effects in various disease models; however, its pathogenic role in traumatic brain injury remains unknown. The aim of the present study was to investigate the expression of LCN2 and its role in neuroinflammation following brain injury. LCN2 expression was high in the mouse brain after controlled cortical impact (CCI) and photothrombotic stroke (PTS) injury. Brain levels of LCN2 mRNA and protein were also significantly higher in patients with chronic traumatic encephalopathy (CTE) than in normal subjects. RT-PCR and immunofluorescence analyses revealed that astrocytes were the major cellular source of LCN2 in the injured brain. Lcn2 deficiency or intracisternal injection of an LCN2 neutralizing antibody reduced CCI- and PTS-induced brain lesions, behavioral deficits, and neuroinflammation. Mechanistically, in cultured glial cells, recombinant LCN2 protein enhanced scratch injury-induced proinflammatory cytokine gene expression and inhibited Gdnf gene expression, whereas Lcn2 deficiency exerted opposite effects. Together, our results from CTE patients, rodent brain injury models, and cultured glial cells suggest that LCN2 mediates secondary damage response to traumatic and ischemic brain injury by promoting neuroinflammation and suppressing the expression of neurotropic factors.
Collapse
Affiliation(s)
- Jae-Hong Kim
- Brain Korea 21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ri Jin Kang
- Brain Korea 21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Jae Hyeon
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Hoon Ryu
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Veterans Affairs Boston Healthcare System, Boston, MA USA
- Boston University Alzheimer’s Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA USA
| | - Hyejin Joo
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Present Address: Pharmacological Research Division, Toxicological Evaluation and Research Department, Ministry of Food and Drug Safety, National Institute of Food and Drug Safety Evaluation, Chungju, Republic of Korea
| | - Youngmin Bu
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jong-Heon Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Brain Korea 21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
19
|
Lin KJ, Chen SD, Lin KL, Liou CW, Lan MY, Chuang YC, Wang PW, Lee JJ, Wang FS, Lin HY, Lin TK. Iron Brain Menace: The Involvement of Ferroptosis in Parkinson Disease. Cells 2022; 11:3829. [PMID: 36497089 PMCID: PMC9735800 DOI: 10.3390/cells11233829] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson disease (PD) is the second-most common neurodegenerative disease. The characteristic pathology of progressive dopaminergic neuronal loss in people with PD is associated with iron accumulation and is suggested to be driven in part by the novel cell death pathway, ferroptosis. A unique modality of cell death, ferroptosis is mediated by iron-dependent phospholipid peroxidation. The mechanisms of ferroptosis inhibitors enhance antioxidative capacity to counter the oxidative stress from lipid peroxidation, such as through the system xc-/glutathione (GSH)/glutathione peroxidase 4 (GPX4) axis and the coenzyme Q10 (CoQ10)/FSP1 pathway. Another means to reduce ferroptosis is with iron chelators. To date, there is no disease-modifying therapy to cure or slow PD progression, and a recent topic of research seeks to intervene with the development of PD via regulation of ferroptosis. In this review, we provide a discussion of different cell death pathways, the molecular mechanisms of ferroptosis, the role of ferroptosis in blood-brain barrier damage, updates on PD studies in ferroptosis, and the latest progress of pharmacological agents targeting ferroptosis for the intervention of PD in clinical trials.
Collapse
Affiliation(s)
- Kai-Jung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Family Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Shang-Der Chen
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Kai-Lieh Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chia-Wei Liou
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Min-Yu Lan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Pao Chien Hospital, Pingtung 90064, Taiwan
- Department of Biological Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Pei-Wen Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Metabolism, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Jong-Jer Lee
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Feng-Sheng Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Hung-Yu Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| |
Collapse
|
20
|
Adam MI, Lin L, Makin AM, Zhang XF, Zhou LX, Liao XY, Zhao L, Wang F, Luo DS. Glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor regulate the interaction between astrocytes and Schwann cells at the trigeminal root entry zone. Neural Regen Res 2022; 18:1364-1370. [PMID: 36453424 PMCID: PMC9838158 DOI: 10.4103/1673-5374.354517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The trigeminal root entry zone is the zone at which the myelination switches from peripheral Schwann cells to central oligodendrocytes. Its special anatomical and physiological structure renders it susceptible to nerve injury. The etiology of most primary trigeminal neuralgia is closely related to microvascular compression of the trigeminal root entry zone. This study aimed to develop an efficient in vitro model mimicking the glial environment of trigeminal root entry zone as a tool to investigate the effects of glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor on the structural and functional integrity of trigeminal root entry zone and modulation of cellular interactions. Primary astrocytes and Schwann cells isolated from trigeminal root entry zone of postnatal rats were inoculated into a two-well silicon culture insert to mimic the trigeminal root entry zone microenvironment and treated with glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor. In monoculture, glial cell line-derived neurotrophic factor promoted the migration of Schwann cells, but it did not have effects on the migration of astrocytes. In the co-culture system, glial cell line-derived neurotrophic factor promoted the bidirectional migration of astrocytes and Schwann cells. Brain-derived neurotrophic factor markedly promoted the activation and migration of astrocytes. However, in the co-culture system, brain-derived neurotrophic factor inhibited the migration of astrocytes and Schwann cells to a certain degree. These findings suggest that glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor are involved in the regulation of the astrocyte-Schwann cell interaction in the co-culture system derived from the trigeminal root entry zone. This system can be used as a cell model to study the mechanism of glial dysregulation associated with trigeminal nerve injury and possible therapeutic interventions.
Collapse
Affiliation(s)
- Madeha Ishag Adam
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ling Lin
- Public Technology Service Center of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Amir Mahmoud Makin
- Center for Membrane and Water Science & Technology, Institute of Oceanic and Environmental Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Xiao-Fen Zhang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Lu-Xi Zhou
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xin-Yue Liao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Li Zhao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Feng Wang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China,Correspondence to: Dao-Shu Luo, ; Feng Wang, .
| | - Dao-Shu Luo
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China,Correspondence to: Dao-Shu Luo, ; Feng Wang, .
| |
Collapse
|
21
|
Glial-derived neurotrophic factor regulates the expression of TREK2 in rat primary sensory neurons leading to attenuation of axotomy-induced neuropathic pain. Exp Neurol 2022; 357:114190. [PMID: 35907583 DOI: 10.1016/j.expneurol.2022.114190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/24/2022] [Indexed: 11/24/2022]
Abstract
TREK2 is a member of the 2-pore domain family of K+ channels (K2P) preferentially expressed by unmyelinated, slow-conducting and non-peptidergic isolectin B4-binding (IB4+) primary sensory neurons of the dorsal root ganglia (DRG). IB4+ neurons depend on the glial-derived neurotrophic factor (GDNF) family of ligands (GFL's) to maintain their phenotype. In our previous work, we demonstrated that 7 days after spinal nerve axotomy (SNA) of the L5 DRG, TREK2 moves away from the cell membrane resulting in a more depolarised resting membrane potential (Em). Given that axotomy deprives DRG neurons from peripherally-derived GFL's, we hypothesized that they might control the expression of TREK2. Using a combination of immunohistochemistry, immunocytochemistry, western blotting, in vivo pharmacological manipulation and behavioral tests we examined the ability of the GFL's (GDNF, neurturin and artemin) and their selective receptors (GFRα1, GFRα2 and GFRα3) to regulate the expression and function of TREK2 in the DRG. We found that TREK2 correlated strongly with the three receptors normally and ipsilaterally for all GFR's after SNA. GDNF, but not NGF, neurturin or artemin up-regulated the expression of TREK2 in cultured DRG neurons. In vivo continuous, subcutaneous administration of GDNF restored the subcellular distribution of TREK2 ipsilaterally and reversed mechanical and cold allodynia 7 days after SNA. This is the first demonstration that GDNF controls the expression of a K2P channel in nociceptors. As TREK2 controls the Em of C-nociceptors affecting their excitability, our finding has therapeutic potential in the treatment of chronic pain.
Collapse
|
22
|
Candesartan protects against d-galactose induced - Neurotoxicity and memory deficit via modulation of autophagy and oxidative stress. Toxicol Appl Pharmacol 2021; 435:115827. [PMID: 34906534 DOI: 10.1016/j.taap.2021.115827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 01/25/2023]
Abstract
PURPOSE d-galactose induces neuroinflammation and memory deficit via oxidative stress. Candesartan is an angiotensin II-receptor blocker and has proved neuroprotective properties. This study aimed to investigate the neuroprotective effect of candesartan against d-galactose induced neuroinflammation and memory deficit via autophagy. METHODS Twenty-eight male Wistar rats aged 3 months were divided into four equal groups: control (vehicle), d-gal (100 mg/kg d-galactose), cand (1 mg/kg candesartan), and cand+d-gal (100 mg/kg d-galactose & 1 mg/kg candesartan). All treatments were given orally and daily for 4 weeks. Assessment of memory was done using Morris water maze (MWM) test. Brain tissue was assessed for malondialdehyde (MDA), total thiol, catalase activity, glial fibrillary acidic protein (GFAP) and gene expression of TNF-α, GDNF-1 as well as autophagy genes (Beclin 1 and ATG 5). RESULTS Prophylactic treatment of candesartan in d-galactose-treated rats significantly (p < 0.001) reduced oxidative stress via reduction of MDA as well as elevation of catalase activity and total thiol levels. Additionally, candesartan prophylactic treatment significantly increased gene expression of GDNF-1 and decreased gene expression of TNF-α. Furthermore, candesartan significantly increased the expression of autophagy related gene (Beclin 1 and ATG 5) in cand+d-gal treated rats. These results were supported by the histopathological findings which showed that candesartan prevented the neuronal injury in the cerebral cortex and hippocampus and decreased GFAP positive cells of the d-galactose-treated rats. Moreover, MWM test showed that candesartan significantly improved memory deficit in cand+d-gal treated rats. CONCLUSION Candesartan prevents d-galactose-induced neurotoxicity and memory deficit via activating autophagy and decreasing oxidative stress. Therefore, candesartan was a good candidate for age-related neurodegenerative disorders and memory deficit.
Collapse
|
23
|
Wang J, Li X, Wang C, Li Y, Wang J, Fang R, Wang J, Chen J, Dong J. Exposure to di-(2-ethylhexyl) phthalate reduces secretion of GDNF via interfering with estrogen pathway and downregulating ERK/c-fos signaling pathway in astrocytes. Food Chem Toxicol 2021; 158:112592. [PMID: 34624416 DOI: 10.1016/j.fct.2021.112592] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/15/2021] [Accepted: 10/03/2021] [Indexed: 02/07/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a typical endocrine-disrupting chemical (EDC) that can increase the risk of central nervous system disease. This study aimed to investigate the in vitro and in vivo effects of DEHP exposure on GDNF secretion and the underlying mechanisms. Pregnant Wistar rats were randomly assigned into four groups and administered 0, 30, 300, or 750 mg/kg DEHP daily by oral gavage. In addition, primary astrocytes were exposed to mono-(2-ethylhexyl) phthalate (MEHP), the main metabolite of DEHP. Our results showed that DEHP exposure reduced GDNF levels and downregulated the ERK/c-fos signaling pathway in the cerebral cortex of male, but not female, offspring. Moreover, exogenous estrogen could overcome the decreased GDNF levels in astrocytes caused by MEHP exposure. MEHP also decreased p300 levels and downregulated the ERK/c-fos signaling pathway in primary astrocytes. Honokiol restored GDNF levels following MEHP exposure by activating the ERK/c-fos signaling pathway, while the inhibitor U0126 further reduced the GDNF levels. These results suggested that DEHP exposure could interfere with the normal effects of estrogen in the brain and downregulate the ERK/c-fos signaling pathway to decrease the GDNF secretion from astrocytes in the cerebral cortex.
Collapse
Affiliation(s)
- Jianan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Xudong Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Chaonan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Yan Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Jinmiao Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Rui Fang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Jingsi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China.
| | - Jing Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China.
| |
Collapse
|
24
|
Falo CP, Benitez R, Caro M, Morell M, Forte-Lago I, Hernandez-Cortes P, Sanchez-Gonzalez C, O’Valle F, Delgado M, Gonzalez-Rey E. The Neuropeptide Cortistatin Alleviates Neuropathic Pain in Experimental Models of Peripheral Nerve Injury. Pharmaceutics 2021; 13:pharmaceutics13070947. [PMID: 34202793 PMCID: PMC8309056 DOI: 10.3390/pharmaceutics13070947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
Neuropathic pain is one of the most severe forms of chronic pain caused by the direct injury of the somatosensory system. The current drugs for treating neuropathies have limited efficacies or show important side effects, and the development of analgesics with novel modes of action is critical. The identification of endogenous anti-nociceptive factors has emerged as an attractive strategy for designing new pharmacological approaches to treat neuropathic pain. Cortistatin is a neuropeptide with potent anti-inflammatory activity, recently identified as a natural analgesic peptide in several models of pain evoked by inflammatory conditions. Here, we investigated the potential analgesic effect of cortistatin in neuropathic pain using a variety of experimental models of peripheral nerve injury caused by chronic constriction or partial transection of the sciatic nerve or by diabetic neuropathy. We found that the peripheral and central injection of cortistatin ameliorated hyperalgesia and allodynia, two of the dominant clinical manifestations of chronic neuropathic pain. Cortistatin-induced analgesia was multitargeted, as it regulated the nerve damage-induced hypersensitization of primary nociceptors, inhibited neuroinflammatory responses, and enhanced the production of neurotrophic factors both at the peripheral and central levels. We also demonstrated the neuroregenerative/protective capacity of cortistatin in a model of severe peripheral nerve transection. Interestingly, the nociceptive system responded to nerve injury by secreting cortistatin, and a deficiency in cortistatin exacerbated the neuropathic pain responses and peripheral nerve dysfunction. Therefore, cortistatin-based therapies emerge as attractive alternatives for treating chronic neuropathic pain of different etiologies.
Collapse
Affiliation(s)
- Clara P. Falo
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
| | - Raquel Benitez
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
| | - Marta Caro
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
| | - Maria Morell
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
- Genyo Center for Genomics and Oncological Research, Parque Tecnologico de la Salud, 18016 Granada, Spain
| | - Irene Forte-Lago
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
| | - Pedro Hernandez-Cortes
- Department of Orthopedic Surgery, San Cecilio University Hospital, 18071 Granada, Spain;
| | - Clara Sanchez-Gonzalez
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
| | - Francisco O’Valle
- Department of Pathology, School of Medicine, IBIMER and IBS-Granada, Granada University, 18016 Granada, Spain;
| | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
- Correspondence: (M.D.); (E.G.-R.)
| | - Elena Gonzalez-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
- Correspondence: (M.D.); (E.G.-R.)
| |
Collapse
|