1
|
Fimiani C, Pereira JA, Gerber J, Berg I, DeGeer J, Bachofner S, Fischer JS, Kauffmann M, Suter U. The E3 ubiquitin ligase Nedd4 fosters developmental myelination in the mouse central and peripheral nervous system. Glia 2025; 73:422-444. [PMID: 39511974 DOI: 10.1002/glia.24642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
Ubiquitination is a major post-translational regulatory mechanism that tunes numerous aspects of ubiquitinated target proteins, including localization, stability, and function. During differentiation and myelination, Oligodendrocytes (OLs) in the central nervous system and Schwann cells (SCs) in the peripheral nervous system undergo major cellular changes, including the tightly controlled production of large and accurate amounts of proteins and lipids. Such processes have been implied to depend on regulatory aspects of ubiquitination, with E3 ubiquitin ligases being generally involved in the selection of specific ubiquitination substrates by ligating ubiquitin to targets and granting target selectivity. In this study, we have used multiple transgenic mouse lines to investigate the functional impact of the E3 ubiquitin ligase Nedd4 in the OL- and SC-lineages. Our findings in the developing spinal cord indicate that Nedd4 is required for the correct accumulation of differentiated OLs and ensures proper myelination, supporting and further expanding previously suggested conceptual models. In sciatic nerves, we found that Nedd4 is required for timely radial sorting of axons by SCs as a pre-requirement for correct onset of myelination. Moreover, Nedd4 ensures correct myelin thickness in both SCs and spinal cord OLs.
Collapse
Affiliation(s)
- Cristina Fimiani
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jorge A Pereira
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Joanne Gerber
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ingrid Berg
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jonathan DeGeer
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Sven Bachofner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jonas S Fischer
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Manuel Kauffmann
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Ye K, Zhao X, Liu L, Ge F, Zheng F, Liu Z, Tian M, Han X, Gao X, Xia Q, Wang D. Comparative Analysis of Human Brain RNA-seq Reveals the Combined Effects of Ferroptosis and Autophagy on Alzheimer's Disease in Multiple Brain Regions. Mol Neurobiol 2024:10.1007/s12035-024-04642-2. [PMID: 39710824 DOI: 10.1007/s12035-024-04642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024]
Abstract
Ferroptosis and autophagy are closely associated with Alzheimer's disease (AD). Elevated ferric ion levels can induce oxidative stress and chronic inflammatory responses, resulting in brain tissue damage and further neurological cell damage. Autophagy in Alzheimer's has a dual role. On one hand, it protects neurons by removing β-amyloid and cellular damage products caused by oxidative stress and inflammation. On the other hand, abnormal autophagy is linked to neuronal apoptosis and neurodegeneration. However, the intricate interplay between ferroptosis and autophagy in AD remains insufficiently explored. This study focuses on the roles of ferroptosis and autophagy in AD and their interconnection through bioinformatics analysis, shedding light on the disease. Ferroptosis and autophagy significantly correlate with the development and course of AD. Using PPI network analysis and unsupervised consistency clustering analysis, we uncovered a complex network of interactions between ferroptosis and autophagy during disease progression, demonstrating a significant congruence in their modification patterns. Functional analyses further demonstrated that ferroptosis and autophagy together affect the immunological status and synaptic regulation in hippocampal regions in patients with AD, which significantly impacts the start and progression of the disease.
Collapse
Affiliation(s)
- Ke Ye
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Xue Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Lulu Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Fangliang Ge
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Feifei Zheng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Zijie Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Mengjie Tian
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Xinyu Han
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China.
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, 150000, Heilongjiang, China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150000, Heilongjiang, China.
| | - Qing Xia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China.
| |
Collapse
|
3
|
Saito Y, Keino D, Kuroda Y, Enomoto Y, Naruto T, Tanaka Y, Tanaka M, Usui H, Kitagawa N, Yanagimachi M, Kurosawa K. Two-hit mutation causes Wilms tumor in an individual with FBXW7-related neurodevelopmental syndrome. J Hum Genet 2024:10.1038/s10038-024-01299-6. [PMID: 39414990 DOI: 10.1038/s10038-024-01299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024]
Abstract
FBXW7 (F-box and WD-repeat domain-containing 7) is a tumor suppressor gene, and its germline variants have been causally linked to Wilms tumors. Furthermore, germline variants of FBXW7 have also been implicated in a neurodevelopmental syndrome. However, little is known regarding the occurrence of Wilms tumor in patients with FBXW7-related neurodevelopmental syndrome. We identified a novel constitutional pathogenic variant of FBXW7 in a patient with intellectual disability, who also developed Wilms tumor. The variant was derived from his apparently normal mother, and was also detected in his sister who exhibited developmental delay. Furthermore, we detected a somatic nonsense variant on the paternal allele of FBXW7 in the tumor DNA. These results suggest that the development of Wilms tumor along with FBXW7-related neurodevelopmental syndrome follows the two-hit model, which needs to be validated to establish appropriate follow-up management and tumor surveillance.
Collapse
Affiliation(s)
- Yoko Saito
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Dai Keino
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yukiko Kuroda
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yumi Enomoto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Takuya Naruto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yukichi Tanaka
- Department of Pathology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Mio Tanaka
- Department of Pathology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hidehito Usui
- Department of Surgery, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Norihiko Kitagawa
- Department of Surgery, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Masakatsu Yanagimachi
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan.
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan.
| |
Collapse
|
4
|
Wang Y, Ma X, Li H, Dai Y, Wang X, Liu L. Case report: A novel FBXW7 gene variant causes global developmental delay. Front Genet 2024; 15:1436462. [PMID: 39364007 PMCID: PMC11446863 DOI: 10.3389/fgene.2024.1436462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/26/2024] [Indexed: 10/05/2024] Open
Abstract
Objective: To investigate a case of neurodevelopmental disorder caused by mutation of FBXW7. Methods: Clinical data were collected from the patient, trio-WES (whole-exome sequencing) was performed on the patient and his parents (trio), and the results were verified by Sanger sequencing. RESULTS: The patient was a 2-year and 1-month old male who presented with facial dysmorphism (prominent forehead, ocular hypertelorism, and low nasal bridge), global developmental delay, language impairment, hypertonia, labial hemangioma, hydrocele, and overgrowth. The trio-WES confirmed that the child had a pathogenic de novo FBXW7 gene variant, c.1612C>T (p.G1n538*), a heretofore unreported locus. Conclusion: This case of developmental delay, hypotonia, and impaired language (OMIM: #620012) related to a mutation in FBXW7, is a rare genetic disorder, newly identified in recent years, and seldom reported. The presence of hypertonia, labial hemangioma, and hydrocele in this child suggests significant phenotypic heterogeneity of the disease, and the discovery of new mutant loci enriches the spectrum of pathogenic variants of the disease.
Collapse
Affiliation(s)
- Yu Wang
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiaoping Ma
- Department of Pediatric Rehabilitation, The First People’s Hospital of Yinchuan, Yinchuan, China
| | - Hua Li
- Department of Pediatric Rehabilitation, The First People’s Hospital of Yinchuan, Yinchuan, China
| | - Yanrui Dai
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiaochen Wang
- Department of Pediatric Rehabilitation, The First People’s Hospital of Yinchuan, Yinchuan, China
| | - Li Liu
- Department of Pediatric Rehabilitation, The First People’s Hospital of Yinchuan, Yinchuan, China
| |
Collapse
|
5
|
Spildrejorde M, Leithaug M, Samara A, Aass HCD, Sharma A, Acharya G, Nordeng H, Gervin K, Lyle R. Citalopram exposure of hESCs during neuronal differentiation identifies dysregulated genes involved in neurodevelopment and depression. Front Cell Dev Biol 2024; 12:1428538. [PMID: 39055655 PMCID: PMC11269147 DOI: 10.3389/fcell.2024.1428538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs), including citalopram, are widely used antidepressants during pregnancy. However, the effects of prenatal exposure to citalopram on neurodevelopment remain poorly understood. We aimed to investigate the impact of citalopram exposure on early neuronal differentiation of human embryonic stem cells using a multi-omics approach. Citalopram induced time- and dose-dependent effects on gene expression and DNA methylation of genes involved in neurodevelopmental processes or linked to depression, such as BDNF, GDF11, CCL2, STC1, DDIT4 and GAD2. Single-cell RNA-sequencing analysis revealed distinct clusters of stem cells, neuronal progenitors and neuroblasts, where exposure to citalopram subtly influenced progenitor subtypes. Pseudotemporal analysis showed enhanced neuronal differentiation. Our findings suggest that citalopram exposure during early neuronal differentiation influences gene expression patterns associated with neurodevelopment and depression, providing insights into its potential neurodevelopmental impact and highlighting the importance of further research to understand the long-term consequences of prenatal SSRI exposure.
Collapse
Affiliation(s)
- Mari Spildrejorde
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Magnus Leithaug
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Athina Samara
- Division of Clinical Paediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
- Astrid Lindgren Children′s Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Biomaterials, FUTURE Center for Functional Tissue Reconstruction, University of Oslo, Oslo, Norway
| | - Hans Christian D. Aass
- The Flow Cytometry Core Facility, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Ankush Sharma
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Solna, Sweden
- Center for Fetal Medicine, Karolinska University Hospital, Solna, Sweden
| | - Hedvig Nordeng
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Kristina Gervin
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Robert Lyle
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
6
|
Chiricosta L, Minuti A, Gugliandolo A, Salamone S, Pollastro F, Mazzon E, Artimagnella O. Cannabinerol Prevents Endoplasmic Reticulum and Mitochondria Dysfunctions in an In Vitro Model of Alzheimer's Disease: A Network-Based Transcriptomic Analysis. Cells 2024; 13:1012. [PMID: 38920643 PMCID: PMC11201759 DOI: 10.3390/cells13121012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024] Open
Abstract
Neurodegenerative disorders are affecting millions of people worldwide, impacting the healthcare system of our society. Among them, Alzheimer's disease (AD) is the most common form of dementia, characterized by severe cognitive impairments. Neuropathological hallmarks of AD are β-amyloid (Aβ) plaques and neurofibrillary tangles, as well as endoplasmic reticulum and mitochondria dysfunctions, which finally lead to apoptosis and neuronal loss. Since, to date, there is no definitive cure, new therapeutic and prevention strategies are of crucial importance. In this scenario, cannabinoids are deeply investigated as promising neuroprotective compounds for AD. In this study, we evaluated the potential neuroprotective role of cannabinerol (CBNR) in an in vitro cellular model of AD via next-generation sequencing. We observed that CBNR pretreatment counteracts the Aβ-induced loss of cell viability of differentiated SH-SY5Y cells. Moreover, a network-based transcriptomic analysis revealed that CBNR restores normal mitochondrial and endoplasmic reticulum functions in the AD model. Specifically, the most important genes regulated by CBNR are related mainly to oxidative phosphorylation (COX6B1, OXA1L, MT-CO2, MT-CO3), protein folding (HSPA5) and degradation (CUL3, FBXW7, UBE2D1), and glucose (G6PC3) and lipid (HSD17B7, ERG28, SCD) metabolism. Therefore, these results suggest that CBNR could be a new neuroprotective agent helpful in the prevention of AD dysfunctions.
Collapse
Affiliation(s)
- Luigi Chiricosta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Aurelio Minuti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy; (S.S.); (F.P.)
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy; (S.S.); (F.P.)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Osvaldo Artimagnella
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
7
|
Jeon SJ, Chung KC. The SCF-FBW7β E3 ligase mediates ubiquitination and degradation of the serine/threonine protein kinase PINK1. J Biol Chem 2024; 300:107198. [PMID: 38508312 PMCID: PMC11026729 DOI: 10.1016/j.jbc.2024.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Understanding the mechanisms that govern the stability of functionally crucial proteins is essential for various cellular processes, development, and overall cell viability. Disturbances in protein homeostasis are linked to the pathogenesis of neurodegenerative diseases. PTEN-induced kinase 1 (PINK1), a protein kinase, plays a significant role in mitochondrial quality control and cellular stress response, and its mutated forms lead to early-onset Parkinson's disease. Despite its importance, the specific mechanisms regulating PINK1 protein stability have remained unclear. This study reveals a cytoplasmic interaction between PINK1 and F-box and WD repeat domain-containing 7β (FBW7β) in mammalian cells. FBW7β, a component of the Skp1-Cullin-1-F-box protein complex-type ubiquitin ligase, is instrumental in recognizing substrates. Our findings demonstrate that FBW7β regulates PINK1 stability through the Skp1-Cullin-1-F-box protein complex and the proteasome pathway. It facilitates the K48-linked polyubiquitination of PINK1, marking it for degradation. When FBW7 is absent, PINK1 accumulates, leading to heightened mitophagy triggered by carbonyl cyanide 3-chlorophenylhydrazone treatment. Moreover, exposure to the toxic compound staurosporine accelerates PINK1 degradation via FBW7β, correlating with increased cell death. This study unravels the intricate mechanisms controlling PINK1 protein stability and sheds light on the novel role of FBW7β. These findings deepen our understanding of PINK1-related pathologies and potentially pave the way for therapeutic interventions.
Collapse
Affiliation(s)
- Seo Jeong Jeon
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
8
|
Binan L, Danquah S, Valakh V, Simonton B, Bezney J, Nehme R, Cleary B, Farhi SL. Simultaneous CRISPR screening and spatial transcriptomics reveals intracellular, intercellular, and functional transcriptional circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569494. [PMID: 38076932 PMCID: PMC10705493 DOI: 10.1101/2023.11.30.569494] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Pooled optical screens have enabled the study of cellular interactions, morphology, or dynamics at massive scale, but have not yet leveraged the power of highly-plexed single-cell resolved transcriptomic readouts to inform molecular pathways. Here, we present Perturb-FISH, which bridges these approaches by combining imaging spatial transcriptomics with parallel optical detection of in situ amplified guide RNAs. We show that Perturb-FISH recovers intracellular effects that are consistent with Perturb-seq results in a screen of lipopolysaccharide response in cultured monocytes, and uncover new intercellular and density-dependent regulation of the innate immune response. We further pair Perturb-FISH with a functional readout in a screen of autism spectrum disorder risk genes, showing common calcium activity phenotypes in induced pluripotent stem cell derived astrocytes and their associated genetic interactions and dysregulated molecular pathways. Perturb-FISH is thus a generally applicable method for studying the genetic and molecular associations of spatial and functional biology at single-cell resolution.
Collapse
Affiliation(s)
- Loϊc Binan
- Spatial Technology Platform, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Serwah Danquah
- Spatial Technology Platform, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Vera Valakh
- Spatial Technology Platform, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Brooke Simonton
- Present address: The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. (Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA)
| | - Jon Bezney
- Present address: Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA. (Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA)
| | - Ralda Nehme
- Spatial Technology Platform, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Brian Cleary
- Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA; Department of Biology, Boston University, Boston, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA; Program in Bioinformatics, Boston University, Boston, MA, USA; Biological Design Center, Boston University, Boston, MA, USA
| | - Samouil L Farhi
- Spatial Technology Platform, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
9
|
Massri AJ, Fitzpatrick M, Cunny H, Li JL, Harry GJ. Differential gene expression profiling implicates altered network development in rat postnatal day 4 cortex following 4-Methylimidazole (4-MeI) induced maternal seizures. Neurotoxicol Teratol 2023; 100:107301. [PMID: 37783441 PMCID: PMC10843020 DOI: 10.1016/j.ntt.2023.107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Compromised maternal health leading to maternal seizures can have adverse effects on the healthy development of offspring. This may be the result of inflammation, hypoxia-ischemia, and altered GABA signaling. The current study examined cortical tissue from F2b (2nd litter of the 2nd generation) postnatal day 4 (PND4) offspring of female Harlan SD rats chronically exposed to the seizuregenic compound, 4-Methylimidazole (0, 750, or 2500 ppm 4-MeI). Maternal seizures were evident only at 2500 ppm 4-MeI. GABA related gene expression as examined by qRT-PCR and whole genome microarray showed no indication of disrupted GABA or glutamatergic signaling. Canonical pathway hierarchical clustering and multi-omics combinatory genomic (CNet) plots of differentially expressed genes (DEG) showed alterations in genes associated with regulatory processes of cell development including neuronal differentiation and synaptogenesis. Functional enrichment analysis showed a similarity of cellular processes across the two exposure groups however, the genes comprising each cluster were primarily unique rather than shared and often showed different directionality. A dose-related induction of cytokine signaling was indicated however, pathways associated with individual cytokine signaling were not elevated, suggesting an alternative involvement of cytokine signaling. Pathways related to growth process and cell signaling showed a negative activation supporting an interpretation of disruption or delay in developmental processes at the 2500 ppm 4-MeI exposure level with maternal seizures. Thus, while GABA signaling was not altered as has been observed with maternal seizures, the pattern of DEG suggested a potential for alteration in neuronal network formation.
Collapse
Affiliation(s)
- Abdull J Massri
- Integrative Bioinformatics, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mackenzie Fitzpatrick
- Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Helen Cunny
- Office of the Scientific Director, Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jian-Liang Li
- Integrative Bioinformatics, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - G Jean Harry
- Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
10
|
Zhao H, Wang J, Li Z, Wang S, Yu G, Wang L. Identification ferroptosis-related hub genes and diagnostic model in Alzheimer's disease. Front Mol Neurosci 2023; 16:1280639. [PMID: 37965040 PMCID: PMC10642492 DOI: 10.3389/fnmol.2023.1280639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Background Ferroptosis is a newly defined form of programmed cell death and plays an important role in Alzheimer's disease (AD) pathology. This study aimed to integrate bioinformatics techniques to explore biomarkers to support the correlation between ferroptosis and AD. In addition, further investigation of ferroptosis-related biomarkers was conducted on the transcriptome characteristics in the asymptomatic AD (AsymAD). Methods The microarray datasets GSE118553, GSE132903, GSE33000, and GSE157239 on AD were downloaded from the GEO database. The list of ferroptosis-related genes was extracted from the FerrDb website. Differentially expressed genes (DEGs) were identified by R "limma" package and used to screen ferroptosis-related hub genes. The random forest algorithm was used to construct the diagnostic model through hub genes. The immune cell infiltration was also analyzed by CIBERSORTx. The miRNet and DGIdb database were used to identify microRNAs (miRNAs) and drugs which targeting hub genes. Results We identified 18 ferroptosis-related hub genes anomalously expressed in AD, and consistent expression trends had been observed in both AsymAD The random forest diagnosis model had good prediction results in both training set (AUC = 0.824) and validation set (AUC = 0.734). Immune cell infiltration was analyzed and the results showed that CD4+ T cells resting memory, macrophages M2 and neutrophils were significantly higher in AD. A significant correlation of hub genes with immune infiltration was observed, such as DDIT4 showed strong positive correlation with CD4+ T cells memory resting and AKR1C2 had positive correlation with Macrophages M2. Additionally, the microRNAs (miRNAs) and drugs which targeting hub genes were screened. Conclusion These results suggest that ferroptosis-related hub genes we screened played a part in the pathological progression of AD. We explored the potential of these genes as diagnostic markers and their relevance to immune cells which will help in understanding the development of AD. Targeting miRNAs and drugs provides new research clues for preventing the development of AD.
Collapse
Affiliation(s)
| | | | | | | | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
11
|
Cheng J, Zheng H, Liu C, Jin J, Xing Z, Wu Y. Age-Associated UBE2O Reduction Promotes Neuronal Death in Alzheimer's Disease. J Alzheimers Dis 2023:JAD221143. [PMID: 37182872 DOI: 10.3233/jad-221143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease leading to dementia in the elderly. Ubiquitin proteasome system (UPS) is critical for protein homeostasis, while the functional decline of UPS with age contributes to the pathogenesis of AD. Ubiquitin-conjugating enzyme E2O (UBE2O), an E2-E3 hybrid enzyme, is a major component of UPS. However, its role in AD pathogenesis has not been fully defined. OBJECTIVE We aimed to identify the age-associated expression of UBE2O and its role AD pathogenesis. METHODS Western blot analysis were used to assess expression of UBE2O in organs/tissues and cell lines. Immunofluorescence staining was performed to examine the cellular distribution of UBE2O. Neuronal death was determined by the activity of lactate dehydrogenase. RESULTS UBE2O is highly expressed in the cortex and hippocampus. It is predominantly expressed in neurons but not in glial cells. The peak expression of UBE2O is at postnatal day 17 and 14 in the cortex and hippocampus, respectively. Moreover its expression is gradually reduced with age. Importantly, UBE2O is significantly reduced in both cortex and hippocampus of AD mice. Consistently, overexpression of amyloid-β protein precursor (AβPP) with a pathogenic mutation (AβPPswe) for AD reduces the expression of UBE2O and promotes neuronal death, while increased expression of UBE2O rescues AβPPswe-induced neuronal death. CONCLUSION Our study indicates that age-associated reduction of UBE2O may facilitates neuronal death in AD, while increasing UBE2O expression or activity may be a potential approach for AD treatment by inhibiting neuronal death.
Collapse
Affiliation(s)
- Jing Cheng
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Huancheng Zheng
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Chenyu Liu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, Alberta Institute, School of Mental Health and The Affiliated Kangning Hospital, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Jiabin Jin
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Wenzhou Kangning Hospital, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Zhenkai Xing
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Yili Wu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Wenzhou Kangning Hospital, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
12
|
Nussinov R, Yavuz BR, Arici MK, Demirel HC, Zhang M, Liu Y, Tsai CJ, Jang H, Tuncbag N. Neurodevelopmental disorders, like cancer, are connected to impaired chromatin remodelers, PI3K/mTOR, and PAK1-regulated MAPK. Biophys Rev 2023; 15:163-181. [PMID: 37124926 PMCID: PMC10133437 DOI: 10.1007/s12551-023-01054-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) and cancer share proteins, pathways, and mutations. Their clinical symptoms are different. However, individuals with NDDs have higher probabilities of eventually developing cancer. Here, we review the literature and ask how the shared features can lead to different medical conditions and why having an NDD first can increase the chances of malignancy. To explore these vital questions, we focus on dysregulated PI3K/mTOR, a major brain cell growth pathway in differentiation, and MAPK, a critical pathway in proliferation, a hallmark of cancer. Differentiation is governed by chromatin organization, making aberrant chromatin remodelers highly likely agents in NDDs. Dysregulated chromatin organization and accessibility influence the lineage of specific cell brain types at specific embryonic development stages. PAK1, with pivotal roles in brain development and in cancer, also regulates MAPK. We review, clarify, and connect dysregulated pathways with dysregulated proliferation and differentiation in cancer and NDDs and highlight PAK1 role in brain development and MAPK regulation. Exactly how PAK1 activation controls brain development, and why specific chromatin remodeler components, e.g., BAF170 encoded by SMARCC2 in autism, await clarification.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Bengi Ruken Yavuz
- Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - M Kaan Arici
- Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Habibe Cansu Demirel
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, 34450 Istanbul, Turkey
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Nurcan Tuncbag
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, 34450 Istanbul, Turkey
- School of Medicine, Koc University, 34450 Istanbul, Turkey
| |
Collapse
|
13
|
Mansky RH, Greguske EA, Yu D, Zarate N, Intihar TA, Tsai W, Brown TG, Thayer MN, Kumar K, Gomez-Pastor R. Tumor suppressor p53 regulates heat shock factor 1 protein degradation in Huntington's disease. Cell Rep 2023; 42:112198. [PMID: 36867535 PMCID: PMC10128052 DOI: 10.1016/j.celrep.2023.112198] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/08/2022] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
p53 and HSF1 are two major transcription factors involved in cell proliferation and apoptosis, whose dysregulation contributes to cancer and neurodegeneration. Contrary to most cancers, p53 is increased in Huntington's disease (HD) and other neurodegenerative diseases, while HSF1 is decreased. p53 and HSF1 reciprocal regulation has been shown in different contexts, but their connection in neurodegeneration remains understudied. Using cellular and animal models of HD, we show that mutant HTT stabilized p53 by abrogating the interaction between p53 and E3 ligase MDM2. Stabilized p53 promotes protein kinase CK2 alpha prime and E3 ligase FBXW7 transcription, both of which are responsible for HSF1 degradation. Consequently, p53 deletion in striatal neurons of zQ175 HD mice restores HSF1 abundance and decrease HTT aggregation and striatal pathology. Our work shows the mechanism connecting p53 stabilization with HSF1 degradation and pathophysiology in HD and sheds light on the broader molecular differences and commonalities between cancer and neurodegeneration.
Collapse
Affiliation(s)
- Rachel H Mansky
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erin A Greguske
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dahyun Yu
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nicole Zarate
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Taylor A Intihar
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Tsai
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Taylor G Brown
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mackenzie N Thayer
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kompal Kumar
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
14
|
Flounlacker KM, Hahn YK, Xu R, Simons CA, Tian T, Hauser KF, Knapp PE. Myelin regulatory factor is a target of individual and interactive effects of HIV-1 Tat and morphine in the striatum and pre-frontal cortex. J Neurovirol 2023; 29:15-26. [PMID: 36853588 DOI: 10.1007/s13365-022-01107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 03/01/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) remain pervasive even with increased efficacy/use of antiretroviral therapies. Opioid use/abuse among HIV + individuals is documented to exacerbate CNS deficits. White matter (WM) alterations, including myelin pallor, and volume/structural alterations detected by diffusion tensor imaging are common observations in HIV + individuals, and studies in non-human primates suggest that WM may harbor virus. Using transgenic mice that express the HIV-1 Tat protein, we examined in vivo effects of 2-6 weeks of Tat and morphine exposure on WM using genomic and biochemical methods. RNA sequencing of striatal tissue at 2 weeks revealed robust changes in mRNAs associated with oligodendrocyte precursor populations and myelin integrity, including those for transferrin, the atypical oligodendrocyte marker N-myc downstream regulated 1 (Ndrg1), and myelin regulatory factor (Myrf/Mrf), an oligodendrocyte-specific transcription factor with a significant role in oligodendrocyte differentiation/maturation. Western blots conducted after 6-weeks exposure in 3 brain regions (striatum, corpus callosum, pre-frontal cortex) revealed regional differences in the effect of Tat and morphine on Myrf levels, and on levels of myelin basic protein (MBP), whose transcription is regulated by Myrf. Responses included individual and interactive effects. Although baseline and post-treatment levels of Myrf and MBP differed between brain regions, post-treatment MBP levels in striatum and pre-frontal cortex were compatible with changes in Myrf activity. Additionally, the Myrf regulatory ubiquitin ligase Fbxw7 was identified as a novel target in our model. These results suggest that Myrf and Fbxw7 contribute to altered myelin gene regulation in HIV.
Collapse
Affiliation(s)
- Kelly M Flounlacker
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, 1101 E. Marshall St, Richmond, VA, 23298-0709, USA.
| | - Yun Kyung Hahn
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, 1101 E. Marshall St, Richmond, VA, 23298-0709, USA
| | - Ruqiang Xu
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, 1101 E. Marshall St, Richmond, VA, 23298-0709, USA
| | - Chloe A Simons
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, 1101 E. Marshall St, Richmond, VA, 23298-0709, USA
| | - Tao Tian
- Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Kurt F Hauser
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, 1101 E. Marshall St, Richmond, VA, 23298-0709, USA.,Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.,The Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Pamela E Knapp
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, 1101 E. Marshall St, Richmond, VA, 23298-0709, USA.,Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.,The Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| |
Collapse
|
15
|
Shang D, Huang M, Wang B, Yan X, Wu Z, Zhang X. mtDNA Maintenance and Alterations in the Pathogenesis of Neurodegenerative Diseases. Curr Neuropharmacol 2023; 21:578-598. [PMID: 35950246 PMCID: PMC10207910 DOI: 10.2174/1570159x20666220810114644] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Considerable evidence indicates that the semiautonomous organelles mitochondria play key roles in the progression of many neurodegenerative disorders. Mitochondrial DNA (mtDNA) encodes components of the OXPHOS complex but mutated mtDNA accumulates in cells with aging, which mirrors the increased prevalence of neurodegenerative diseases. This accumulation stems not only from the misreplication of mtDNA and the highly oxidative environment but also from defective mitophagy after fission. In this review, we focus on several pivotal mitochondrial proteins related to mtDNA maintenance (such as ATAD3A and TFAM), mtDNA alterations including mtDNA mutations, mtDNA elimination, and mtDNA release-activated inflammation to understand the crucial role played by mtDNA in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Our work outlines novel therapeutic strategies for targeting mtDNA.
Collapse
Affiliation(s)
- Dehao Shang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Minghao Huang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
16
|
Abstract
Neurodegenerative diseases are caused by the progressive loss of specific neurons. The exact mechanisms of action of these diseases are unknown, and many studies have focused on pathways related to abnormal accumulation and processing of proteins, mitochondrial dysfunction, and oxidative stress leading to apoptotic death. However, a growing body of evidence indicates that aberrant cell cycle re-entry plays a major role in the pathogenesis of neurodegeneration. The activation of the cell cycle in mature neurons could be promoted by several signaling mechanisms, including c-Jun N-terminal kinases, p38 mitogen-activated protein kinases, and mitogen-activated protein kinase/extracellular signal-regulated kinase cascades; post-translational modifications such as Tau-phosphorylation; and DNA damage response. In all these events, implicated Cdk5, a proline-directed serine/threonine protein kinase, seems to be responsible for several cellular processes in neurons including axon growth, neurotransmission, synaptic plasticity, neuronal migration, and maintenance of neuronal survival. However, under pathological conditions, Cdk5 dysregulation may lead to cell cycle re-entry in post-mitotic neurons. Thus, Cdk5 hyperactivation, by its physiologic activator p25, hyper-phosphorylates downstream substrates related to neurodegenerative diseases. This review summarizes factors such as oxidative stress, DNA damage response, signaling pathway disturbance, and Ubiquitin proteasome malfunction contributing to cell cycle re-entry in post-mitotic neurons. It also describes how all these factors are linked to a greater or lesser extent with Cdk5. Thus, it offers a global vision of the function of cell cycle-related proteins in mature neurons with a focus on Cdk5 and how this protein contributes to the development of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease by cell cycle activation.
Collapse
Affiliation(s)
- Raquel Requejo-Aguilar
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain,Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain,Correspondence to: Raquel Requejo-Aguilar, PhD, .
| |
Collapse
|
17
|
Song H, Yang J, Yu W. Promoter Hypomethylation of TGFBR3 as a Risk Factor of Alzheimer’s Disease: An Integrated Epigenomic-Transcriptomic Analysis. Front Cell Dev Biol 2022; 9:825729. [PMID: 35310542 PMCID: PMC8924075 DOI: 10.3389/fcell.2021.825729] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the abnormal deposition of amyloid-β (Aβ) plaques and tau tangles in the brain and accompanied with cognitive impairment. However, the fundamental cause of this disease remains elusive. To elucidate the molecular processes related to AD, we carried out an integrated analysis utilizing gene expression microarrays (GSE36980 and GSE5281) and DNA methylation microarray (GSE66351) in temporal cortex of AD patients from the Gene Expression Omnibus (GEO) database. We totally discovered 409 aberrantly methylated and differentially expressed genes. These dysregulated genes were significantly enriched in biological processes including cell part morphogenesis, chemical synaptic transmission and regulation of Aβ formation. Through convergent functional genomic (CFG) analysis, expression cross-validation and clinicopathological correlation analysis, higher TGFBR3 level was observed in AD and positively correlated with Aβ accumulation. Meanwhile, the promoter methylation level of TGFBR3 was reduced in AD and negatively associated with Aβ level and advanced Braak stage. Mechanically, TGFBR3 might promote Aβ production by enhancing β- and γ-secretase activities. Further investigation revealed that TGFBR3 may exert its functions via Synaptic vesicle cycle, Calcium signaling pathway and MAPK signal pathway by regulating hub genes GNB1, GNG3, CDC5L, DYNC1H1 and FBXW7. Overall, our findings highlighted TGFBR3 as an AD risk gene and might be used as a diagnostic biomarker and therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Hui Song
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Jue Yang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- *Correspondence: Wenfeng Yu,
| |
Collapse
|
18
|
Liu S, Lu Y, Geng D. Molecular Subgroup Classification in Alzheimer's Disease by Transcriptomic Profiles. J Mol Neurosci 2022; 72:866-879. [PMID: 35080766 DOI: 10.1007/s12031-021-01957-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive cognitive disorder that occurs worldwide, and the lack of disease-modifying targets and pathways is a pressing issue. This study aimed to provide new targets and pathways by performing molecular subgroup classification. After normalizing the collected data, the subgroup number was confirmed with consensus clustering. Comparisons of clinical features among subgroups were conducted to clarify the clinical traits of each subgroup. Subgroup-specific genes were identified to perform weighted gene coexpression analysis (WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were carried out. Next, gene set enrichment analysis (GSEA) was performed. Protein-protein interaction networks were built to screen core genes and in each subgroup to perform Spearman correlation analysis with clinical traits. Sequencing profiles of 1068 AD samples collected from 2 datasets were classified into 3 subgroups. Clinical comparisons revealed that patients in subgroup III tended to be younger, while their pathological grades were the most severe. WGCNA detected four gene modules, and the turquoise module, where the dopaminergic synapse pathway was enriched, was related to subgroup I. The neurotrophin signaling pathway and TGF-beta signaling pathway were robustly enriched in the blue and brown modules, respectively, in subgroup III. Moreover, 3 hub genes in subgroup I were negatively correlated with the sum of neurofibrillary tangle (Nft) density. Conversely, hub genes in subgroups II and III exhibited positive correlations with the sum of Nft density. These results provide new pathways and targets for AD treatment.
Collapse
Affiliation(s)
- Sha Liu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, West Huaihai Road 99, Xuzhou, 221002, Jiangsu, China
| | - Yan Lu
- Department of Neurology, The Municipal Hospital, Xuzhou Medical University, Xuzhou, 221116, Jiangsu, China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, West Huaihai Road 99, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|