1
|
Kostović I. Development of the basic architecture of neocortical circuitry in the human fetus as revealed by the coupling spatiotemporal pattern of synaptogenesis along with microstructure and macroscale in vivo MR imaging. Brain Struct Funct 2024; 229:2339-2367. [PMID: 39102068 PMCID: PMC11612014 DOI: 10.1007/s00429-024-02838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
In humans, a quantifiable number of cortical synapses appears early in fetal life. In this paper, we present a bridge across different scales of resolution and the distribution of synapses across the transient cytoarchitectonic compartments: marginal zone (MZ), cortical plate (CP), subplate (SP), and in vivo MR images. The tissue of somatosensory cortex (7-26 postconceptional weeks (PCW)) was prepared for electron microscopy, and classified synapses with a determined subpial depth were used for creating histograms matched to the histological sections immunoreacted for synaptic markers and aligned to in vivo MR images (1.5 T) of corresponding fetal ages (maternal indication). Two time periods and laminar patterns of synaptogenesis were identified: an early and midfetal two-compartmental distribution (MZ and SP) and a late fetal three-compartmental distribution (CP synaptogenesis). During both periods, a voluminous, synapse-rich SP was visualized on the in vivo MR. Another novel finding concerns the phase of secondary expansion of the SP (13 PCW), where a quantifiable number of synapses appears in the upper SP. This lamina shows a T2 intermediate signal intensity below the low signal CP. In conclusion, the early fetal appearance of synapses shows early differentiation of putative genetic mechanisms underlying the synthesis, transport and assembly of synaptic proteins. "Pioneering" synapses are likely to play a morphogenetic role in constructing of fundamental circuitry architecture due to interaction between neurons. They underlie spontaneous, evoked, and resting state activity prior to ex utero experience. Synapses can also mediate genetic and environmental triggers, adversely altering the development of cortical circuitry and leading to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
2
|
Fitzgerald M. On the relation of injury to pain-an infant perspective. Pain 2024; 165:S33-S38. [PMID: 39560413 DOI: 10.1097/j.pain.0000000000003366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/03/2024] [Indexed: 11/20/2024]
Abstract
ABSTRACT Forty-five years ago, Patrick Wall published his John J Bonica lecture "On the relation of injury to pain."90 In this lecture, he argued that pain is better classified as an awareness of a need-state than as a sensation. This need state, he argued, serves more to promote healing than to avoid injury. Here I reframe Wall's prescient proposal to pain in early life and propose a set of different need states that are triggered when injury occurs in infancy. This paper, and my own accompanying Bonica lecture, is dedicated to his memory and to his unique contribution to the neuroscience of pain. The IASP definition of pain includes a key statement, "through their life experiences, individuals learn the concept of pain."69 But the relation between injury and pain is not fixed from birth. In early life, the links between nociception (the sense) and pain (the need state) are very different from those of adults, although no less important. I propose that injury evokes three pain need states in infancy, all of which depend on the state of maturity of the central nervous system: (1) the need to attract maternal help; (2) the need to learn the concept of pain; and (3) the need to maintain healthy activity dependent brain development.
Collapse
Affiliation(s)
- Maria Fitzgerald
- Department of Neuroscience, Physiology & Pharamcology, University College London, London, United Kingdom
| |
Collapse
|
3
|
Luna R, Li J, Bauer R, van Leeuwen C. Retinal waves in adaptive rewiring networks orchestrate convergence and divergence in the visual system. Netw Neurosci 2024; 8:653-672. [PMID: 39355440 PMCID: PMC11340993 DOI: 10.1162/netn_a_00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/26/2024] [Indexed: 10/03/2024] Open
Abstract
Spontaneous retinal wave activity shaping the visual system is a complex neurodevelopmental phenomenon. Retinal ganglion cells are the hubs through which activity diverges throughout the visual system. We consider how these divergent hubs emerge, using an adaptively rewiring neural network model. Adaptive rewiring models show in a principled way how brains could achieve their complex topologies. Modular small-world structures with rich-club effects and circuits of convergent-divergent units emerge as networks evolve, driven by their own spontaneous activity. Arbitrary nodes of an initially random model network were designated as retinal ganglion cells. They were intermittently exposed to the retinal waveform, as the network evolved through adaptive rewiring. A significant proportion of these nodes developed into divergent hubs within the characteristic complex network architecture. The proportion depends parametrically on the wave incidence rate. Higher rates increase the likelihood of hub formation, while increasing the potential of ganglion cell death. In addition, direct neighbors of designated ganglion cells differentiate like amacrine cells. The divergence observed in ganglion cells resulted in enhanced convergence downstream, suggesting that retinal waves control the formation of convergence in the lateral geniculate nuclei. We conclude that retinal waves stochastically control the distribution of converging and diverging activity in evolving complex networks.
Collapse
Affiliation(s)
- Raúl Luna
- Department of Psychobiology and Methodology in Behavioural Sciences, Faculty of Psychology, Universidad Complutense de Madrid, Madrid, Spain
- Institute of Optics, Spanish National Research Council (CSIC), Madrid, Spain
- KU Leuven, Brain and Cognition, Leuven, Belgium
| | - Jia Li
- KU Leuven, Brain and Cognition, Leuven, Belgium
| | - Roman Bauer
- NICE Research Group, Computer Science Research Centre, University of Surrey, Guildford, UK
| | - Cees van Leeuwen
- KU Leuven, Brain and Cognition, Leuven, Belgium
- RPTU Kaiserslautern, Cognitive Science, Kaiserslautern, Germany
| |
Collapse
|
4
|
Yrjölä P, Vanhatalo S, Tokariev A. Neuronal Coupling Modes Show Differential Development in the Early Cortical Activity Networks of Human Newborns. J Neurosci 2024; 44:e1012232024. [PMID: 38769006 PMCID: PMC11211727 DOI: 10.1523/jneurosci.1012-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 03/27/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
The third trimester is a critical period for the development of functional networks that support the lifelong neurocognitive performance, yet the emergence of neuronal coupling in these networks is poorly understood. Here, we used longitudinal high-density electroencephalographic recordings from preterm infants during the period from 33 to 45 weeks of conceptional age (CA) to characterize early spatiotemporal patterns in the development of local cortical function and the intrinsic coupling modes [ICMs; phase-phase (PPCs), amplitude-amplitude (AACs), and phase-amplitude correlations (PACs)]. Absolute local power showed a robust increase with CA across the full frequency spectrum, while local PACs showed sleep state-specific, biphasic development that peaked a few weeks before normal birth. AACs and distant PACs decreased globally at nearly all frequencies. In contrast, the PPCs showed frequency- and region-selective development, with an increase of coupling strength with CA between frontal, central, and occipital regions at low-delta and alpha frequencies together with a wider-spread decrease at other frequencies. Our findings together present the spectrally and spatially differential development of the distinct ICMs during the neonatal period and provide their developmental templates for future basic and clinical research.
Collapse
Affiliation(s)
- Pauliina Yrjölä
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital and HUS Diagnostic Center, Helsinki University Hospital, Helsinki 00290, Finland
- Department of Physiology, University of Helsinki, Helsinki 00014, Finland
| | - Sampsa Vanhatalo
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital and HUS Diagnostic Center, Helsinki University Hospital, Helsinki 00290, Finland
- Department of Physiology, University of Helsinki, Helsinki 00014, Finland
| | - Anton Tokariev
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital and HUS Diagnostic Center, Helsinki University Hospital, Helsinki 00290, Finland
- Department of Physiology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
5
|
Hamad MIK, Emerald BS, Kumar KK, Ibrahim MF, Ali BR, Bataineh MF. Extracellular molecular signals shaping dendrite architecture during brain development. Front Cell Dev Biol 2023; 11:1254589. [PMID: 38155836 PMCID: PMC10754048 DOI: 10.3389/fcell.2023.1254589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Proper growth and branching of dendrites are crucial for adequate central nervous system (CNS) functioning. The neuronal dendritic geometry determines the mode and quality of information processing. Any defects in dendrite development will disrupt neuronal circuit formation, affecting brain function. Besides cell-intrinsic programmes, extrinsic factors regulate various aspects of dendritic development. Among these extrinsic factors are extracellular molecular signals which can shape the dendrite architecture during early development. This review will focus on extrinsic factors regulating dendritic growth during early neuronal development, including neurotransmitters, neurotrophins, extracellular matrix proteins, contact-mediated ligands, and secreted and diffusible cues. How these extracellular molecular signals contribute to dendritic growth has been investigated in developing nervous systems using different species, different areas within the CNS, and different neuronal types. The response of the dendritic tree to these extracellular molecular signals can result in growth-promoting or growth-limiting effects, and it depends on the receptor subtype, receptor quantity, receptor efficiency, the animal model used, the developmental time windows, and finally, the targeted signal cascade. This article reviews our current understanding of the role of various extracellular signals in the establishment of the architecture of the dendrites.
Collapse
Affiliation(s)
- Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kukkala K. Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Marwa F. Ibrahim
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mo’ath F. Bataineh
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
6
|
Luhmann HJ. Malformations-related neocortical circuits in focal seizures. Neurobiol Dis 2023; 178:106018. [PMID: 36706927 DOI: 10.1016/j.nbd.2023.106018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/25/2023] Open
Abstract
This review article gives an overview on the molecular, cellular and network mechanisms underlying focal seizures in neocortical networks with developmental malformations. Neocortical malformations comprise a large variety of structural abnormalities associated with epilepsy and other neurological and psychiatric disorders. Genetic or acquired disorders of neocortical cell proliferation, neuronal migration and/or programmed cell death may cause pathologies ranging from the expression of dysmorphic neurons and heterotopic cell clusters to abnormal layering and cortical misfolding. After providing a brief overview on the pathogenesis and structure of neocortical malformations in humans, animal models are discussed and how they contributed to our understanding on the mechanisms of neocortical hyperexcitability associated with developmental disorders. State-of-the-art molecular biological and electrophysiological techniques have been also used in humans and on resectioned neocortical tissue of epileptic patients and provide deep insights into the subcellular, cellular and network mechanisms contributing to focal seizures. Finally, a brief outlook is given how novel models and methods can shape translational research in the near future.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz, Germany.
| |
Collapse
|
7
|
Blumberg MS, Adolph KE. Protracted development of motor cortex constrains rich interpretations of infant cognition. Trends Cogn Sci 2023; 27:233-245. [PMID: 36681607 PMCID: PMC9957955 DOI: 10.1016/j.tics.2022.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/18/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023]
Abstract
Cognition in preverbal human infants must be inferred from overt motor behaviors such as gaze shifts, head turns, or reaching for objects. However, infant mammals - including human infants - show protracted postnatal development of cortical motor outflow. Cortical control of eye, face, head, and limb movements is absent at birth and slowly emerges over the first postnatal year and beyond. Accordingly, the neonatal cortex in humans cannot generate the motor behaviors routinely used to support inferences about infants' cognitive abilities, and thus claims of developmental continuity between infant and adult cognition are suspect. Recognition of the protracted development of motor cortex should temper rich interpretations of infant cognition and motivate more serious consideration of the role of subcortical mechanisms in early cognitive development.
Collapse
Affiliation(s)
- Mark S Blumberg
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA; DeLTA Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Karen E Adolph
- Department of Psychology, New York University, New York, NY 10003, USA.
| |
Collapse
|
8
|
Zayachkivsky A, Lehmkuhle MJ, Ekstrand JJ, Dudek FE. Background suppression of electrical activity is a potential biomarker of subsequent brain injury in a rat model of neonatal hypoxia-ischemia. J Neurophysiol 2022; 128:118-130. [PMID: 35675445 DOI: 10.1152/jn.00024.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrographic seizures and abnormal background activity in the neonatal electroencephalogram (EEG) may differentiate between harmful versus benign brain insults. Using two animal models of neonatal seizures, electrical activity was recorded in freely behaving rats and examined quantitatively during successive time periods with field-potential recordings obtained shortly after the brain insult (i.e., 0-4 days). Single-channel, differential recordings with miniature wireless telemetry were used to analyze spontaneous electrographic seizures and background suppression of electrical activity after 1) hypoxia-ischemia (HI), which is a model of neonatal encephalopathy that causes acute seizures and a large brain lesion with possible development of epilepsy, 2) hypoxia alone (Ha), which causes severe acute seizures without an obvious lesion or subsequent epilepsy, and 3) sham control rats. Background EEG exhibited increases in power as a function of age in control animals. Although background electrical activity was depressed in all frequency bands immediately after HI, suppression in the β and γ bands was greatest and lasted longest. Spontaneous electrographic seizures were recorded, but only in a few HI-treated animals. Ha-treated rat pups were similar to sham controls, they had no subsequent spontaneous electrographic seizures after the treatment and background suppression was only briefly observed in one frequency band. Thus, the normal age-dependent maturation of electrical activity patterns in control animals was significantly disrupted after HI. Suppression of the background EEG observed here after HI-induced acute seizures and subsequent brain injury may be a noninvasive biomarker for detecting severe brain injuries and may help predict subsequent epilepsy.NEW & NOTEWORTHY Biomarkers of neonatal brain injury are needed. Hypoxia-ischemia (HI) in immature rat pups caused severe brain injury, which was associated with strongly suppressed background EEG. The suppression was most robust in the β and γ bands; it started immediately after the HI injury and persisted for days. Thus, background suppression may be a noninvasive biomarker for detecting severe brain injuries and may help predict subsequent epilepsy.
Collapse
Affiliation(s)
- A Zayachkivsky
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - M J Lehmkuhle
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - J J Ekstrand
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - F E Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|