1
|
Cheng Y, Lv LJ, Cui Y, Han XM, Zhang Y, Hu CX. Psychological stress impact neurotrophic factor levels in patients with androgenetic alopecia and correlated with disease progression. World J Psychiatry 2024; 14:1437-1447. [DOI: 10.5498/wjp.v14.i10.1437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 10/17/2024] Open
Abstract
BACKGROUND Androgenetic alopecia (AGA) is a common form of hair loss that can be influenced by psychological factors.
AIM To investigate the impact of mental stress on neurotrophic factors in patients with AGA and correlate the findings with the progression of AGA.
METHODS A total of 120 patients with AGA were analyzed in this study, which were divided into a non-stress group (n = 30) and a stress group (n = 90) on the basis of the presence or absence of psychological stress confirmed by Depression Anxiety Stress Scale-21 scale. The baseline demographic characteristics, serum cortisol levels, hair growth parameters, neurotrophic factors, and AGA progression scores between the non-stress and stress groups were compared. Correlation analyses were conducted to assess the relationships among stress, neurotrophic factors, hair loss progression, and AGA progression.
RESULTS This study revealed significantly higher cortisol levels throughout the day in the stress group than in the non-stress group. The stress group exhibited lower levels of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor and higher expression levels of neurotrophin (NT)-3 and NT-4 than the non-stress group. Hair parameters indicated lower hair diameter, decreased hair density, and more severe AGA grading in the stress group, whereas follicle count and terminal/vellus hair ratio showed no significant differences between the two groups. After 1 year of treatment with 5% minoxidil, efficacy was observed to be lower but AGA progression was notably more pronounced in the stress group than in the non-stress group. Disease progression was positively correlated with high stress and NT-4 levels.
CONCLUSION This study provides compelling evidence of the influence of mental stress on neurotrophic factors and its correlation with the progression of AGA. The findings underscore the need for a comprehensive approach to the management of AGA that considers the physiological and psychosocial aspects. Further research is warranted to validate the findings and explore targeted therapeutic interventions for individuals with stress-related AGA.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Dermatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Li-Jing Lv
- Department of Dermatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Yu Cui
- Department of Dermatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Xiao-Mei Han
- Department of Dermatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Yan Zhang
- Department of Dermatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Cai-Xia Hu
- Department of Dermatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
2
|
Dong Z, Wang F, Liu Y, Li Y, Yu H, Peng S, Sun T, Qu M, Sun K, Wang L, Ma Y, Chen K, Zhao J, Lin Q. Genomic and single-cell analyses reveal genetic signatures of swimming pattern and diapause strategy in jellyfish. Nat Commun 2024; 15:5936. [PMID: 39009560 PMCID: PMC11250803 DOI: 10.1038/s41467-024-49848-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Jellyfish exhibit innovative swimming patterns that contribute to exploring the origins of animal locomotion. However, the genetic and cellular basis of these patterns remains unclear. Herein, we generated chromosome-level genome assemblies of two jellyfish species, Turritopsis rubra and Aurelia coerulea, which exhibit straight and free-swimming patterns, respectively. We observe positive selection of numerous genes involved in statolith formation, hair cell ciliogenesis, ciliary motility, and motor neuron function. The lineage-specific absence of otolith morphogenesis- and ciliary movement-related genes in T. rubra may be associated with homeostatic structural statocyst loss and straight swimming pattern. Notably, single-cell transcriptomic analyses covering key developmental stages reveal the enrichment of diapause-related genes in the cyst during reverse development, suggesting that the sustained diapause state favours the development of new polyps under favourable conditions. This study highlights the complex relationship between genetics, locomotion patterns and survival strategies in jellyfish, thereby providing valuable insights into the evolutionary lineages of movement and adaptation in the animal kingdom.
Collapse
Affiliation(s)
- Zhijun Dong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Fanghan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yali Liu
- University of Chinese Academy of Sciences, Beijing, 100101, China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yongxue Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Haiyan Yu
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Saijun Peng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Tingting Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Meng Qu
- University of Chinese Academy of Sciences, Beijing, 100101, China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Ke Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Lei Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanqing Ma
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, Shandong, 264006, China
| | - Kai Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jianmin Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Qiang Lin
- University of Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
3
|
Feng Y, Zhang J, Li Y, Chen G, Zhang X, Ning G, Wu S. Inhibition of Pi4kb activity causes malformation of vestibular apparatus in zebrafish by downregulating hey1. Gene 2024; 898:148105. [PMID: 38135256 DOI: 10.1016/j.gene.2023.148105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Phosphatidylinositol 4 kinase-β (PI4KB) plays critical roles in human genetic diseases. In zebrafish, Pi4kb is strongly expressed in hair cells (HCs), which are necessary for detecting sound vibrations, head movements, and water motion. However, the role of PI4KB in HC or semicircular canal development is unclear. Herein, we report that pi4kb morphants exhibit insensitivity to sound stimulation and abnormal morphological vestibular organs, including cilium loss in HCs of the cristae and semicircular canal malformation. As bone morphogenetic protein (BMP) signaling is associated with HC and semicircular canal development, we analyzed the expression of BMP-related genes; the phosphorylated Smad1/5/9 (p-Smad1/5/9) expression was markedly reduced in otic HCs. RNA-sequencing data indicated that the transcriptional levels of BMP membrane receptor 2 (bmpr2a and bmpr2b) and hes-related family of bHLH transcription factors with YRPW motif 1 (hey1), a direct downstream target gene of p-Smad, were significantly reduced in the pi4kb morphants, as verified using quantitative reverse transcription-polymerase chain reaction and in situ hybridization. Co-injection of hey1 mRNA and pi4kb morpholino notably recovered vestibular apparatus development, including the number and length of cilia in HCs of the cristae and semicircular canal formation. Collectively, these results suggest that Pi4kb is involved in vestibular apparatus development in zebrafish by regulating BMP membrane receptor 2 and p-Smad1/5/9 levels, thereby affecting the transcriptional activation of the target gene hey1. This study sheds light on the interaction between Pi4kb and the BMP-Hey1 signaling axis, which is critical for HC and semicircular canal formation.
Collapse
Affiliation(s)
- Yufei Feng
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Jiaqi Zhang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, China; Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, HeilongJiang, China
| | - Yuzhen Li
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Gengrong Chen
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Xiaoting Zhang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Guozhu Ning
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Shuilong Wu
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.
| |
Collapse
|
4
|
van der Valk WH, van Beelen ESA, Steinhart MR, Nist-Lund C, Osorio D, de Groot JCMJ, Sun L, van Benthem PPG, Koehler KR, Locher H. A single-cell level comparison of human inner ear organoids with the human cochlea and vestibular organs. Cell Rep 2023; 42:112623. [PMID: 37289589 PMCID: PMC10592453 DOI: 10.1016/j.celrep.2023.112623] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/21/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
Inner ear disorders are among the most common congenital abnormalities; however, current tissue culture models lack the cell type diversity to study these disorders and normal otic development. Here, we demonstrate the robustness of human pluripotent stem cell-derived inner ear organoids (IEOs) and evaluate cell type heterogeneity by single-cell transcriptomics. To validate our findings, we construct a single-cell atlas of human fetal and adult inner ear tissue. Our study identifies various cell types in the IEOs including periotic mesenchyme, type I and type II vestibular hair cells, and developing vestibular and cochlear epithelium. Many genes linked to congenital inner ear dysfunction are confirmed to be expressed in these cell types. Additional cell-cell communication analysis within IEOs and fetal tissue highlights the role of endothelial cells on the developing sensory epithelium. These findings provide insights into this organoid model and its potential applications in studying inner ear development and disorders.
Collapse
Affiliation(s)
- Wouter H van der Valk
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA.
| | - Edward S A van Beelen
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Matthew R Steinhart
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Carl Nist-Lund
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Osorio
- Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - John C M J de Groot
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Peter Paul G van Benthem
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Karl R Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA; Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Heiko Locher
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|