1
|
Meng L, Gu T, Yu P, Zhang Z, Wei Z. The role of microglia in Neuroinflammation associated with cardiopulmonary bypass. Front Cell Neurosci 2024; 18:1496520. [PMID: 39742156 PMCID: PMC11685197 DOI: 10.3389/fncel.2024.1496520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025] Open
Abstract
Cardiopulmonary bypass (CPB) and deep hypothermic circulatory arrest (DHCA) are indispensable core techniques in cardiac surgery. Numerous studies have shown that cardiopulmonary bypass and deep hypothermic circulatory arrest are associated with the occurrence of neuroinflammation, accompanied by the activation of microglia. Microglia, as macrophages in the central nervous system, play an irreplaceable role in neuroinflammation. Current research on neuroinflammation induced by microglia activation mainly focuses on neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, neuropathic pain, acquired brain injury, and others. However, there is relatively limited research on microglia and neuroinflammation under conditions of cardiopulmonary bypass and deep hypothermic circulatory arrest. The close relationship between cardiopulmonary bypass, deep hypothermic circulatory arrest, and cardiac surgery underscores the importance of identifying targets for intervening in neuroinflammation through microglia. This could greatly benefit cardiac surgery patients during cardiopulmonary bypass and the perioperative period, significantly improving patient prognosis. This review article provides the first comprehensive discussion on the signaling pathways associated with neuroinflammation triggered by microglia activation, the impact of cardiopulmonary bypass on microglia, as well as the current status and advancements in cardiopulmonary bypass animal models. It provides new insights and methods for the treatment of neuroinflammation related to cardiopulmonary bypass and deep hypothermic circulatory arrest, holding significant importance for clinical treatment by cardiac surgeons, management strategies by cardiopulmonary bypass physicians, and the development of neurologically related medications.
Collapse
Affiliation(s)
- Lingda Meng
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tianxiang Gu
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Peng Yu
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiwei Zhang
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhijing Wei
- Department of Trauma Center, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Megari K, Kosmidis MH. Protecting the Brain While Healing Hearts: The Protective Role of Cognitive Reserve in Cardiac Surgery. Am J Geriatr Psychiatry 2024; 32:195-204. [PMID: 37926673 DOI: 10.1016/j.jagp.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE One of the most significant complications following coronary artery bypass grafting (CABG) is postoperative cognitive decline (POCD). CABG patients frequently experience considerable postoperative cognitive dysfunction (POCD), including decline in attention, orientation, memory, judgment, and social functioning. DESIGN These negative effects may potentially be resolved by a protective factor, cognitive reserve (CR) that has been considered to function as a buffer against the consequences of neuropathology. SETTING We explored the frequency of POCD and CR in coronary artery disease patients undergoing CABG. We hypothesized that high levels of CR would protect against POCD after cardiac surgery. PARTICIPANTS We assessed 101 patients before surgery, and 4 months after cardiopulmonary bypass surgery with the use of extracorporeal circulation. MEASUREMENTS Measures of cognitive functions, CR, anxiety, and depression were included in the assessment. RESULTS Each patient was placed in the high (n = 50) or low CR (n = 51) group, based on median split. Chi-square tests effect showed that patients with low CR were more likely to a great extend to demonstrate postsurgical cognitive decline in attention, memory, visuospatial perception and executive functions than patients with high CR upon postsurgery neuropsychological assessment. CONCLUSIONS Our results suggest that CR can forecast neuropsychological outcomes of cardiac surgery, recognizing the patients with low CR and help them to participate to interventions programs that could slow cognitive aging or reduce the risk of dementia and enhance their overall postsurgical functional outcome.
Collapse
Affiliation(s)
- Kalliopi Megari
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mary H Kosmidis
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
3
|
Levy AS, Merenzon MA, Eatz T, Morell AA, Eichberg DG, Bloom MJ, Shah AH, Komotar RJ, Ivan ME. Development of an enhanced recovery protocol after laser ablation surgery protocol: a preliminary analysis. Neurooncol Pract 2023; 10:281-290. [PMID: 37188164 PMCID: PMC10180378 DOI: 10.1093/nop/npad007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Enhanced recovery after surgery (ERAS) programs are a model of care that aim to improve patient outcomes, reduce complications, and facilitate recovery while reducing healthcare-associated costs and admission length. While such programs have been developed in other surgical subspecialties, there have yet to be guidelines published specifically for laser interstitial thermal therapy (LITT). Here we describe the first multidisciplinary ERAS preliminary protocol for LITT for the treatment of brain tumors. Methods Between the years 2013 and 2021, 184 adult patients consecutively treated with LITT at our single institution were retrospectively analyzed. During this time, a series of pre, intra, and postoperative adjustments were made to the admission course and surgical/anesthesia workflow with the goal of improving recovery and admission length. Results The mean age at surgery was 60.7 years with a median preoperative Karnofsky performance score of 90 ± 13. Lesions were most commonly metastases (50%) and high-grade gliomas (37%). The mean length of stay was 2.4 days, with the average patient being discharged 1.2 days after surgery. There was an overall readmission rate of 8.7% with a LITT-specific readmission rate of 2.2%. Three of 184 patients required repeat intervention in the perioperative period, and there was one perioperative mortality. Conclusions This preliminary study shows the proposed LITT ERAS protocol to be a safe means of discharging patients on postoperative day 1 while preserving outcomes. Although future prospective work is needed to validate this protocol, results show the ERAS approach to be promising for LITT.
Collapse
Affiliation(s)
- Adam S Levy
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida, 33136, USA
| | - Martin A Merenzon
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida, 33136, USA
| | - Tiffany Eatz
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida, 33136, USA
| | - Alexis A Morell
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida, 33136, USA
| | - Daniel G Eichberg
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida, 33136, USA
| | - Marc J Bloom
- Department of Anesthesiology, University of Miami Health System, Miami, Florida, USA
| | - Ashish H Shah
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida, 33136, USA
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida, 33136, USA
- Sylvester Cancer Center, University of Miami Health System, Miami, Florida, USA
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida, 33136, USA
- Sylvester Cancer Center, University of Miami Health System, Miami, Florida, USA
| |
Collapse
|
4
|
Tsai YH, Chen CY, Wong HF, Chou AH. Comparison of neostigmine and sugammadex for hemodynamic parameters in neurointerventional anesthesia. Front Neurol 2023; 14:1045847. [PMID: 37139057 PMCID: PMC10150384 DOI: 10.3389/fneur.2023.1045847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/23/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Hemodynamic stability is important during neurointerventional procedures. However, ICP or blood pressure may increase due to endotracheal extubation. The aim of this study was to compare the hemodynamic effects of sugammadex and neostigmine with atropine in neurointerventional procedures during emergence from anesthesia. Methods Patients undergoing neurointerventional procedures were allocated to the sugammadex group (Group S) and the neostigmine group (Group N). Group S was administered IV 2 mg/kg sugammadex when a train-of-four (TOF) count of 2 was present, and Group N was administered neostigmine 50 mcg/kg with atropine 0.2 mg/kg at a TOF count of 2. We recorded heart rate, systolic blood pressure, diastolic blood pressure, mean blood pressure (MAP), and peripheral arterial oxygen saturation during administration of the reverse agent and at 2, 5, 10, 15, 30, 120 min, and 24 h thereafter. The primary outcome was blood pressure and heart rate change after the reversal agent was given. The secondary outcomes were systolic blood pressure variability standard deviation (a measure of the amount of variation or dispersion of a set of values), systolic blood pressure variability-successive variation (square root of the average squared difference between successive blood pressure measurements), nicardipine use, time-to-TOF ratio ≥0.9 after the administration of reversal agent, and time from the administration of the reversal agent to tracheal extubation. Results A total of 31 patients were randomized to sugammadex, and 30 patients were randomized to neostigmine. Except for anesthesia time, there were no significant differences in any of the clinical characteristics between the two groups. The results demonstrated that the increase in MAP from period A to B was significantly greater in Group N than in Group S (regression coefficient = -10, 95% confidence interval = -17.3 to -2.7, P = 0.007). The MAP level was significantly increased from period A to B in the neostigmine group (95.1 vs. 102.4 mm Hg, P = 0.015), but it was not altered in Group S. In contrast, the change in HR from periods A to B was not significantly different between groups. Conclusion We suggest that sugammadex is a better option than neostigmine in interventional neuroradiological procedures due to the shorter extubation time and more stable hemodynamic change during emergence.
Collapse
Affiliation(s)
- Yu-Hsun Tsai
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, Taoyuan City, Taiwan
| | - Chun-Yu Chen
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, Taoyuan City, Taiwan
| | - Ho-Fai Wong
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, College of Medicine and School of Medical Technology, Chang-Gung University, Linkou, Taiwan
| | - An-Hsun Chou
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, Taoyuan City, Taiwan
- *Correspondence: An-Hsun Chou ;
| |
Collapse
|
5
|
Cheng C, Wan H, Cong P, Huang X, Wu T, He M, Zhang Q, Xiong L, Tian L. Targeting neuroinflammation as a preventive and therapeutic approach for perioperative neurocognitive disorders. J Neuroinflammation 2022; 19:297. [PMID: 36503642 PMCID: PMC9743533 DOI: 10.1186/s12974-022-02656-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Perioperative neurocognitive disorders (PND) is a common postoperative complication associated with regional or general anesthesia and surgery. Growing evidence in both patient and animal models of PND suggested that neuroinflammation plays a critical role in the development and progression of this problem, therefore, mounting efforts have been made to develop novel therapeutic approaches for PND by targeting specific factors or steps alongside the neuroinflammation. Multiple studies have shown that perioperative anti-neuroinflammatory strategies via administering pharmacologic agents or performing nonpharmacologic approaches exert benefits in the prevention and management of PND, although more clinical evidence is urgently needed to testify or confirm these results. Furthermore, long-term effects and outcomes with respect to cognitive functions and side effects are needed to be observed. In this review, we discuss recent preclinical and clinical studies published within a decade as potential preventive and therapeutic approaches targeting neuroinflammation for PND.
Collapse
Affiliation(s)
- Chun Cheng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434 China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434 China ,grid.24516.340000000123704535Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434 China
| | - Hanxi Wan
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434 China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434 China ,grid.24516.340000000123704535Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434 China
| | - Peilin Cong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434 China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434 China ,grid.24516.340000000123704535Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434 China
| | - Xinwei Huang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434 China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434 China ,grid.24516.340000000123704535Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434 China
| | - Tingmei Wu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434 China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434 China ,grid.24516.340000000123704535Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434 China
| | - Mengfan He
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434 China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434 China ,grid.24516.340000000123704535Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434 China
| | - Qian Zhang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434 China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434 China ,grid.24516.340000000123704535Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434 China
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434 China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434 China ,grid.24516.340000000123704535Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434 China
| | - Li Tian
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434 China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434 China ,grid.24516.340000000123704535Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434 China
| |
Collapse
|
6
|
Togioka BM, Schenning KJ. Optimizing Reversal of Neuromuscular Block in Older Adults: Sugammadex or Neostigmine. Drugs Aging 2022; 39:749-761. [PMID: 35934764 DOI: 10.1007/s40266-022-00969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2022] [Indexed: 11/03/2022]
Abstract
Residual neuromuscular paralysis, the presence of clinically significant weakness after administration of pharmacologic neuromuscular blockade reversal, is associated with postoperative pulmonary complications and is more common in older patients. In contemporary anesthesia practice, reversal of neuromuscular blockade is accomplished with neostigmine or sugammadex. Neostigmine, an acetylcholinesterase inhibitor, increases the concentration of acetylcholine at the neuromuscular junction, providing competitive antagonism of neuromuscular blocking drug and facilitating muscle contraction. Sugammadex, a modified gamma-cyclodextrin, antagonizes neuromuscular blockade by encapsulating rocuronium and vecuronium in a one-to-one ratio for renal clearance, a pharmacokinetic property that led to the recommendation that sugammadex not be administered to those with end-stage renal disease. While data are limited, reports suggest sugammadex is efficacious and well tolerated in individuals with reduced renal function. Sugammadex provides a more rapid and complete reversal of neuromuscular blockade than neostigmine. There is also accumulating evidence that sugammadex may provide a protective effect against the development of postoperative pulmonary complications, nausea, and vomiting, and that it may have beneficial effects on the rate of bowel and bladder recovery after surgery. Accordingly, sugammadex administration is beneficial for most older patients undergoing surgery.
Collapse
Affiliation(s)
- Brandon M Togioka
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA. .,Department of Obstetrics and Gynecology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Mail Code: UHN-2, Portland, OR, 97239-3098, USA.
| | - Katie J Schenning
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|