1
|
Shi X, Wang Y, Yang Z, Yuan W, Li MD. Identification and validation of a novel gene ARVCF associated with alcohol dependence among Chinese population. iScience 2024; 27:110976. [PMID: 39429782 PMCID: PMC11490727 DOI: 10.1016/j.isci.2024.110976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/24/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024] Open
Abstract
Alcohol dependence is a heritable disorder, yet its genetic basis and underlying mechanisms remain poorly understood, especially in Chinese population. In this study, we conducted gene-based and transcript-based association tests and found a significant association between ARVCF expression in the cortex and hippocampus of the brain and alcohol use in a cohort of 1,329 individuals with Chinese ancestry. Further analysis using the effective-median-based Mendelian randomization framework for inferring the causal genes (EMIC) revealed a causal relationship between ARVCF expression in the frontal cortex and alcohol use. Moreover, leveraging extensive European alcohol dependence data, our gene association tests and EMIC analysis showed that ARVCF expression in the nucleus accumbens was significantly associated with alcohol dependence. Finally, animal studies indicated that Arvcf knockout mice lacked conditioned place preference for alcohol. Together, our combined human genetic and animal studies indicate that ARVCF plays a crucial role in alcohol dependence.
Collapse
Affiliation(s)
- Xiaoqiang Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Srivastava Y, Donta M, Mireles LL, Paulucci-Holthauzen A, Shi L, Bedford MT, Waxham MN, McCrea PD. Exploring the PDZ, DUF, and LIM Domains of Pdlim5 in Dendrite Branching. Int J Mol Sci 2024; 25:8326. [PMID: 39125895 PMCID: PMC11312917 DOI: 10.3390/ijms25158326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The branched architecture of neuronal dendrites is a key factor in how neurons form ordered networks and discoveries continue to be made identifying proteins and protein-protein interactions that direct or execute the branching and extension of dendrites. Our prior work showed that the molecular scaffold Pdlim5 and delta-catenin, in conjunction, are two proteins that help regulate the branching and elongation of dendrites in cultured hippocampal neurons and do so through a phosphorylation-dependent mechanism triggered by upstream glutamate signaling. In this report we have focused on Pdlim5's multiple scaffolding domains and how each contributes to dendrite branching. The three identified regions within Pdlim5 are the PDZ, DUF, and a trio of LIM domains; however, unresolved is the intra-molecular conformation of Pdlim5 as well as which domains are essential to regulate dendritic branching. We address Pdlim5's structure and function by examining the role of each of the domains individually and using deletion mutants in the context of the full-length protein. Results using primary hippocampal neurons reveal that the Pdlim5 DUF domain plays a dominant role in increasing dendritic branching. Neither the PDZ domain nor the LIM domains alone support increased branching. The central role of the DUF domain was confirmed using deletion mutants in the context of full-length Pdlim5. Guided by molecular modeling, additional domain mapping studies showed that the C-terminal LIM domain forms a stable interaction with the N-terminal PDZ domain, and we identified key amino acid residues at the interface of each domain that are needed for this interaction. We posit that the central DUF domain of Pdlim5 may be subject to modulation in the context of the full-length protein by the intra-molecular interaction between the N-terminal PDZ and C-terminal LIM domains. Overall, our studies reveal a novel mechanism for the regulation of Pdlim5's function in the regulation of neuronal branching and highlight the critical role of the DUF domain in mediating these effects.
Collapse
Affiliation(s)
- Yogesh Srivastava
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maxsam Donta
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Program in Genetics & Epigenetics, University of Texas MD Anderson Cancer Center, UT Health GSBS, Houston, TX 77030, USA
| | - Lydia L. Mireles
- Department of Neurobiology & Anatomy, University of Texas MD Anderson Cancer Center, UT Health GSBS, Houston, TX 77030, USA
| | | | - Leilei Shi
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark T. Bedford
- Program in Genetics & Epigenetics, University of Texas MD Anderson Cancer Center, UT Health GSBS, Houston, TX 77030, USA
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - M. Neal Waxham
- Department of Neurobiology & Anatomy, University of Texas MD Anderson Cancer Center, UT Health GSBS, Houston, TX 77030, USA
- Program in Neuroscience, University of Texas MD Anderson Cancer Center, UT Health GSBS, Houston, TX 77030, USA
| | - Pierre D. McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Program in Genetics & Epigenetics, University of Texas MD Anderson Cancer Center, UT Health GSBS, Houston, TX 77030, USA
- Program in Neuroscience, University of Texas MD Anderson Cancer Center, UT Health GSBS, Houston, TX 77030, USA
| |
Collapse
|
3
|
Srivastava Y, Donta M, Mireles LL, Paulucci-Holthauzen A, Waxham MN, McCrea PD. Role of a Pdlim5:PalmD complex in directing dendrite morphology. Front Cell Neurosci 2024; 18:1315941. [PMID: 38414752 PMCID: PMC10896979 DOI: 10.3389/fncel.2024.1315941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024] Open
Abstract
Neuronal connectivity is regulated during normal brain development with the arrangement of spines and synapses being dependent on the morphology of dendrites. Further, in multiple neurodevelopmental and aging disorders, disruptions of dendrite formation or shaping is associated with atypical neuronal connectivity. We showed previously that Pdlim5 binds delta-catenin and promotes dendrite branching. We report here that Pdlim5 interacts with PalmD, a protein previously suggested by others to interact with the cytoskeleton (e.g., via adducin/spectrin) and to regulate membrane shaping. Functionally, the knockdown of PalmD or Pdlim5 in rat primary hippocampal neurons dramatically reduces branching and conversely, PalmD exogenous expression promotes dendrite branching as does Pdlim5. Further, we show that each proteins' effects are dependent on the presence of the other. In summary, using primary rat hippocampal neurons we reveal the contributions of a novel Pdlim5:PalmD protein complex, composed of functionally inter-dependent components responsible for shaping neuronal dendrites.
Collapse
Affiliation(s)
- Yogesh Srivastava
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maxsam Donta
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, University of Texas MD Anderson Cancer Center UT Health GSBS, Houston, TX, United States
| | - Lydia L. Mireles
- Department of Neurobiology and Anatomy, UTHealth, Houston, TX, United States
| | | | - M. Neal Waxham
- Department of Neurobiology and Anatomy, UTHealth, Houston, TX, United States
- Program in Neuroscience, University of Texas MD Anderson Cancer Center UT Health GSBS, Houston, TX, United States
| | - Pierre D. McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, University of Texas MD Anderson Cancer Center UT Health GSBS, Houston, TX, United States
- Program in Neuroscience, University of Texas MD Anderson Cancer Center UT Health GSBS, Houston, TX, United States
| |
Collapse
|
4
|
Srivastava Y, Donta M, Mireles LL, Paulucci-Holthauzen A, Waxham MN, McCrea PD. Role of a Pdlim5:PalmD complex in directing dendrite morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.553334. [PMID: 37662414 PMCID: PMC10473622 DOI: 10.1101/2023.08.22.553334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Neuronal connectivity is regulated during normal brain development with the arrangement of spines and synapses being dependent on the morphology of dendrites. Further, in multiple neurodevelopmental and aging disorders, disruptions of dendrite formation or shaping is associated with atypical neuronal connectivity. We showed previously that Pdlim5 binds delta-catenin and promotes dendrite branching (Baumert et al., J Cell Biol 2020). We report here that Pdlim5 interacts with PalmD, a protein previously suggested by others to interact with the cytoskeleton (e.g., via adducin/ spectrin) and to regulate membrane shaping. Functionally, the knockdown of PalmD or Pdlim5 in rat primary hippocampal neurons dramatically reduces branching and conversely, PalmD exogenous expression promotes dendrite branching as does Pdlim5. Further, we show that effects of each protein are dependent on the presence of the other. In summary, using primary rat hippocampal neurons we reveal the contributions of a novel Pdlim5:PalmD protein complex, composed of functionally inter-dependent components responsible for shaping neuronal dendrites.
Collapse
|