1
|
Takeuchi N, Fujita K, Taniguchi T, Kinukawa T, Sugiyama S, Kanemoto K, Nishihara M, Inui K. Mechanisms of Short- and Long-Latency Sensory Suppression: Magnetoencephalography Study. Neuroscience 2023; 514:92-99. [PMID: 36435478 DOI: 10.1016/j.neuroscience.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
Prepulse inhibition (PPI) is sensory suppression whose mechanism (i.e., whether PPI originates from specific inhibitory mechanisms) remains unclear. In this study, we applied the combination of short-latency PPI and long-latency paired pulse suppression in 17 healthy subjects using magnetoencephalography to investigate the mechanisms of sensory suppression. Repeats of a 25-ms pure tone without a blank at 800 Hz and 70 dB were used for a total duration of 1600 ms. To elicit change-related cortical responses, the sound pressure of two consecutive tones in this series at 1300 ms was increased to 80 dB (Test). For the conditioning stimuli, the sound pressure was increased to 73 dB at 1250 ms (Pre 1) and 80 dB at 700 ms (Pre 2). Six stimuli were randomly presented as follows: (1) Test alone, (2) Pre 1 alone, (3) Pre 1 + Test, (4) Pre 2 + Test, (5) Pre 2 + Pre 1, and (6) Pre 2 + Pre 1 + Test. The inhibitory effects of the conditioning stimuli were evaluated using N100m/P200m components. The results showed that both Pre 1 and Pre 2 significantly suppressed the Test response. Moreover, the inhibitory effects of Pre 1 and Pre 2 were additive. However, when both prepulses were present, Pre 2 significantly suppressed the Pre 1 response, suggesting that the Pre 1 response amplitude was not a determining factor for the degree of suppression. These results suggested that the suppression originated from a specific inhibitory circuit independent of the excitatory pathway.
Collapse
Affiliation(s)
- Nobuyuki Takeuchi
- Neuropsychiatric Department, Aichi Medical University, Nagakute 480-1195, Japan; Department of Psychiatry, Okazaki City Hospital, Okazaki 444-8553, Japan.
| | - Kohei Fujita
- Neuropsychiatric Department, Aichi Medical University, Nagakute 480-1195, Japan
| | - Tomoya Taniguchi
- Department of Anesthesiology, Nagoya University, Nagoya 466-8550, Japan
| | - Tomoaki Kinukawa
- Department of Anesthesiology, Nagoya University, Nagoya 466-8550, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry and Psychotherapy, Gifu University, Gifu 501-1193, Japan
| | - Kousuke Kanemoto
- Neuropsychiatric Department, Aichi Medical University, Nagakute 480-1195, Japan
| | - Makoto Nishihara
- Neuropsychiatric Department, Aichi Medical University, Nagakute 480-1195, Japan; Multidisciplinary Pain Center, Aichi Medical University, Nagakute 480-1195, Japan
| | - Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Japan
| |
Collapse
|
2
|
Shen S, Jiang X, Scala F, Fu J, Fahey P, Kobak D, Tan Z, Zhou N, Reimer J, Sinz F, Tolias AS. Distinct organization of two cortico-cortical feedback pathways. Nat Commun 2022; 13:6389. [PMID: 36302912 PMCID: PMC9613627 DOI: 10.1038/s41467-022-33883-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/06/2022] [Indexed: 12/25/2022] Open
Abstract
Neocortical feedback is critical for attention, prediction, and learning. To mechanically understand its function requires deciphering its cell-type wiring. Recent studies revealed that feedback between primary motor to primary somatosensory areas in mice is disinhibitory, targeting vasoactive intestinal peptide-expressing interneurons, in addition to pyramidal cells. It is unknown whether this circuit motif represents a general cortico-cortical feedback organizing principle. Here we show that in contrast to this wiring rule, feedback between higher-order lateromedial visual area to primary visual cortex preferentially activates somatostatin-expressing interneurons. Functionally, both feedback circuits temporally sharpen feed-forward excitation eliciting a transient increase-followed by a prolonged decrease-in pyramidal cell activity under sustained feed-forward input. However, under feed-forward transient input, the primary motor to primary somatosensory cortex feedback facilitates bursting while lateromedial area to primary visual cortex feedback increases time precision. Our findings argue for multiple cortico-cortical feedback motifs implementing different dynamic non-linear operations.
Collapse
Affiliation(s)
- Shan Shen
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Xiaolong Jiang
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Federico Scala
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jiakun Fu
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Paul Fahey
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Dmitry Kobak
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Zhenghuan Tan
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Na Zhou
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jacob Reimer
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Fabian Sinz
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Andreas S Tolias
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Electrical and Computational Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
3
|
Urban-Ciecko J, Jouhanneau JS, Myal SE, Poulet JFA, Barth AL. Precisely Timed Nicotinic Activation Drives SST Inhibition in Neocortical Circuits. Neuron 2018; 97:611-625.e5. [PMID: 29420933 PMCID: PMC6588401 DOI: 10.1016/j.neuron.2018.01.037] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 10/30/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022]
Abstract
Sleep, waking, locomotion, and attention are associated with cell-type-specific changes in neocortical activity. The effect of brain state on circuit output requires understanding of how neuromodulators influence specific neuronal classes and their synapses, with normal patterns of neuromodulator release from endogenous sources. We investigated the state-dependent modulation of a ubiquitous feedforward inhibitory motif in mouse sensory cortex, local pyramidal (Pyr) inputs onto somatostatin (SST)-expressing interneurons. Paired whole-cell recordings in acute brain slices and in vivo showed that Pyr-to-SST synapses are remarkably weak, with failure rates approaching 80%. Pharmacological screening revealed that cholinergic agonists uniquely enhance synaptic efficacy. Brief, optogenetically gated acetylcholine release dramatically enhanced Pyr-to-SST input, via nicotinic receptors and presynaptic PKA signaling. Importantly, endogenous acetylcholine release preferentially activated nicotinic, not muscarinic, receptors, thus differentiating drug effects from endogenous neurotransmission. Brain state- and synapse-specific unmasking of synapses may be a powerful way to functionally rewire cortical circuits dependent on behavioral demands.
Collapse
Affiliation(s)
- Joanna Urban-Ciecko
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Pasteur str. 3, 02-093 Warsaw, Poland
| | - Jean-Sebastien Jouhanneau
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Robert-Rössle-Str. 10, 13092 Berlin, Germany; Cluster of Excellence NeuroCure, Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Stephanie E Myal
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - James F A Poulet
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Robert-Rössle-Str. 10, 13092 Berlin, Germany; Cluster of Excellence NeuroCure, Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Alison L Barth
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
4
|
Takeuchi N, Sugiyama S, Inui K, Kanemoto K, Nishihara M. New paradigm for auditory paired pulse suppression. PLoS One 2017; 12:e0177747. [PMID: 28542290 PMCID: PMC5436751 DOI: 10.1371/journal.pone.0177747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/02/2017] [Indexed: 11/19/2022] Open
Abstract
Sensory gating is a mechanism of sensory processing used to prevent an overflow of irrelevant information, with some indexes, such as prepulse inhibition (PPI) and P50 suppression, often utilized for its evaluation. In addition, those are clinically important for diseases such as schizophrenia. In the present study, we investigated long-latency paired-pulse suppression of change-related cortical responses using magnetoencephalography. The test change-related response was evoked by an abrupt increase in sound pressure by 15 dB in a continuous sound composed of a train of 25-ms pure tones at 65 dB. By inserting a leading change stimulus (prepulse), we observed suppression of the test response. In Experiment 1, we examined the effects of conditioning-test intervals (CTI) using a 25-ms pure tone at 80 dB as both the test and prepulse. Our results showed clear suppression of the test response peaking at a CTI of 600 ms, while maximum inhibition was approximately 30%. In Experiment 2, the effects of sound pressure on prepulse were examined by inserting prepulses 600 ms prior to the test stimulus. We found that a paired-pulse suppression greater than 25% was obtained by prepulses larger than 77 dB, i.e., 12 dB louder than the background, suggesting that long latency suppression requires a relatively strong prepulse to obtain adequate suppression, different than short-latency paired-pulse suppression reported in previous studies. In Experiment 3, we confirmed similar levels of suppression using electroencephalography. These results suggested that two identical change stimuli spaced by 600 ms were appropriate for observing the long-latency inhibition. The present method requires only a short inspection time and is non-invasive.
Collapse
Affiliation(s)
- Nobuyuki Takeuchi
- Neuropsychiatric Department, Aichi Medical University, Nagakute, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry and Psychotherapy, Gifu University, Gifu, Japan
| | - Koji Inui
- Institute of Human Developmental Research, Aichi Human Service Center, Kasugai, Japan
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kousuke Kanemoto
- Neuropsychiatric Department, Aichi Medical University, Nagakute, Japan
| | - Makoto Nishihara
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
5
|
Abstract
The responses of neurons in mouse primary visual cortex (V1) to visual stimuli depend on behavioral states. Specifically, surround suppression is reduced during locomotion. Although locomotion-induced vasoactive intestinal polypeptide positive (VIP) interneuron depolarization can account for the reduction of surround suppression, the functions of VIP cell depolarization are not fully understood. Here we utilize a firing rate model and a computational model to elucidate the potential functions of VIP cell depolarization during locomotion. Our analyses suggest 1) that surround suppression sharpens the visual responses in V1 to a stationary scene, 2) that depolarized VIP cells enhance V1 responses to moving objects by reducing self-induced surround suppression and 3) that during locomotion V1 neuron responses to some features of the moving objects can be selectively enhanced. Thus, VIP cells regulate surround suppression to allow pyramidal neurons to optimally encode visual information independent of behavioral state.
Collapse
|
6
|
Lee JH, Koch C, Mihalas S. A Computational Analysis of the Function of Three Inhibitory Cell Types in Contextual Visual Processing. Front Comput Neurosci 2017; 11:28. [PMID: 28487644 PMCID: PMC5403882 DOI: 10.3389/fncom.2017.00028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 04/04/2017] [Indexed: 01/08/2023] Open
Abstract
Most cortical inhibitory cell types exclusively express one of three genes, parvalbumin, somatostatin and 5HT3a. We conjecture that these three inhibitory neuron types possess distinct roles in visual contextual processing based on two observations. First, they have distinctive synaptic sources and targets over different spatial extents and from different areas. Second, the visual responses of cortical neurons are affected not only by local cues, but also by visual context. We use modeling to relate structural information to function in primary visual cortex (V1) of the mouse, and investigate their role in contextual visual processing. Our findings are three-fold. First, the inhibition mediated by parvalbumin positive (PV) cells mediates local processing and could underlie their role in boundary detection. Second, the inhibition mediated by somatostatin-positive (SST) cells facilitates longer range spatial competition among receptive fields. Third, non-specific top-down modulation to interneurons expressing vasoactive intestinal polypeptide (VIP), a subclass of 5HT3a neurons, can selectively enhance V1 responses.
Collapse
Affiliation(s)
- Jung H Lee
- Allen Institute for Brain ScienceSeattle, WA, USA
| | | | | |
Collapse
|