1
|
Xu C, Alameri A, Leong W, Johnson E, Chen Z, Xu B, Leong KW. Multiscale engineering of brain organoids for disease modeling. Adv Drug Deliv Rev 2024; 210:115344. [PMID: 38810702 PMCID: PMC11265575 DOI: 10.1016/j.addr.2024.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/23/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Brain organoids hold great potential for modeling human brain development and pathogenesis. They recapitulate certain aspects of the transcriptional trajectory, cellular diversity, tissue architecture and functions of the developing brain. In this review, we explore the engineering strategies to control the molecular-, cellular- and tissue-level inputs to achieve high-fidelity brain organoids. We review the application of brain organoids in neural disorder modeling and emerging bioengineering methods to improve data collection and feature extraction at multiscale. The integration of multiscale engineering strategies and analytical methods has significant potential to advance insight into neurological disorders and accelerate drug development.
Collapse
Affiliation(s)
- Cong Xu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Alia Alameri
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Wei Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Emily Johnson
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Zaozao Chen
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Bin Xu
- Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
2
|
Melkikh AV. Unsolved morphogenesis problems and the hidden order. Biosystems 2024; 239:105218. [PMID: 38653448 DOI: 10.1016/j.biosystems.2024.105218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
In this work, the morphogenesis mechanisms are considered from the complexity perspective. It is shown that both morphogenesis and the functioning of organs should be unstable in the case of short-range interaction potentials. The repeatability of forms during evolution is a strong argument for its directionality. The formation of organs during evolution can occur only in the presence of a priori information about the structure of such an organ. The focus of the discussion is not merely on constraining potential possibilities but on the concept of directed evolution itself. A morphogenesis model was constructed based on nontrivial quantum effects. These interaction effects between biologically important molecules ensure the accurate synthesis of cells, tissues, and organs.
Collapse
Affiliation(s)
- A V Melkikh
- Ural Federal University, Yekaterinburg, Russia.
| |
Collapse
|
3
|
Hunt JE, Pratt KG, Molnár Z. Ocular Necessities: A Neuroethological Perspective on Vertebrate Visual Development. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:96-108. [PMID: 38447544 PMCID: PMC11152017 DOI: 10.1159/000536035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/24/2023] [Indexed: 03/08/2024]
Abstract
BACKGROUND By examining species-specific innate behaviours, neuroethologists have characterized unique neural strategies and specializations from throughout the animal kingdom. Simultaneously, the field of evolutionary developmental biology (informally, "evo-devo") seeks to make inferences about animals' evolutionary histories through careful comparison of developmental processes between species, because evolution is the evolution of development. Yet despite the shared focus on cross-species comparisons, there is surprisingly little crosstalk between these two fields. Insights can be gleaned at the intersection of neuroethology and evo-devo. Every animal develops within an environment, wherein ecological pressures advantage some behaviours and disadvantage others. These pressures are reflected in the neurodevelopmental strategies employed by different animals across taxa. SUMMARY Vision is a system of particular interest for studying the adaptation of animals to their environments. The visual system enables a wide variety of animals across the vertebrate lineage to interact with their environments, presenting a fantastic opportunity to examine how ecological pressures have shaped animals' behaviours and developmental strategies. Applying a neuroethological lens to the study of visual development, we advance a novel theory that accounts for the evolution of spontaneous retinal waves, an important phenomenon in the development of the visual system, across the vertebrate lineage. KEY MESSAGES We synthesize literature on spontaneous retinal waves from across the vertebrate lineage. We find that ethological considerations explain some cross-species differences in the dynamics of retinal waves. In zebrafish, retinal waves may be more important for the development of the retina itself, rather than the retinofugal projections. We additionally suggest empirical tests to determine whether Xenopus laevis experiences retinal waves.
Collapse
Affiliation(s)
- Jasper Elan Hunt
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Kara Geo Pratt
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
- Program in Neuroscience, University of Wyoming, Laramie, WY, USA
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Foubert D, Cookson F, Ruthazer ES. Capturing a rising star: the emerging role of astrocytes in neural circuit wiring and plasticity-lessons from the visual system. NEUROPHOTONICS 2023; 10:044408. [PMID: 37766925 PMCID: PMC10520262 DOI: 10.1117/1.nph.10.4.044408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
The increasingly widespread use of calcium imaging to explore the nature of neuronal activity and circuits has unexpectedly revealed the ubiquitous presence and significance of astrocytic activity. Here, we present a brief review of visual system development, placing it in the context of recently identified roles of astrocytes in the modulation of neuronal responses and circuit plasticity, through their responses to sensory stimuli and the release of gliotransmitters.
Collapse
Affiliation(s)
- David Foubert
- Montreal Neurological Institute-Hospital, Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Finnley Cookson
- Montreal Neurological Institute-Hospital, Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Edward S. Ruthazer
- Montreal Neurological Institute-Hospital, Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Chorghay Z, Li VJ, Schohl A, Ghosh A, Ruthazer ES. The effects of the NMDAR co-agonist D-serine on the structure and function of optic tectal neurons in the developing visual system. Sci Rep 2023; 13:13383. [PMID: 37591903 PMCID: PMC10435543 DOI: 10.1038/s41598-023-39951-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
The N-methyl-D-aspartate type glutamate receptor (NMDAR) is a molecular coincidence detector which converts correlated patterns of neuronal activity into cues for the structural and functional refinement of developing circuits in the brain. D-serine is an endogenous co-agonist of the NMDAR. We investigated the effects of potent enhancement of NMDAR-mediated currents by chronic administration of saturating levels of D-serine on the developing Xenopus retinotectal circuit. Chronic exposure to the NMDAR co-agonist D-serine resulted in structural and functional changes in the optic tectum. In immature tectal neurons, D-serine administration led to more compact and less dynamic tectal dendritic arbors, and increased synapse density. Calcium imaging to examine retinotopy of tectal neurons revealed that animals raised in D-serine had more compact visual receptive fields. These findings provide insight into how the availability of endogenous NMDAR co-agonists like D-serine at glutamatergic synapses can regulate the refinement of circuits in the developing brain.
Collapse
Affiliation(s)
- Zahraa Chorghay
- Montreal Neurological Institute-Hospital and Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montréal, QC, H3A 2B4, Canada
| | - Vanessa J Li
- Montreal Neurological Institute-Hospital and Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montréal, QC, H3A 2B4, Canada
| | - Anne Schohl
- Montreal Neurological Institute-Hospital and Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montréal, QC, H3A 2B4, Canada
| | - Arna Ghosh
- MILA, 6666 Rue St Urbain, Montréal, QC, H2S 3H1, Canada
| | - Edward S Ruthazer
- Montreal Neurological Institute-Hospital and Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
6
|
Johnson KO, Harel L, Triplett JW. Postsynaptic NMDA Receptor Expression Is Required for Visual Corticocollicular Projection Refinement in the Mouse Superior Colliculus. J Neurosci 2023; 43:1310-1320. [PMID: 36717228 PMCID: PMC9987568 DOI: 10.1523/jneurosci.1473-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 01/31/2023] Open
Abstract
Efficient sensory processing of spatial information is facilitated through the organization of neuronal connections into topographic maps of space. In integrative sensory centers, converging topographic maps must be aligned to merge spatially congruent information. The superior colliculus (SC) receives topographically ordered visual inputs from retinal ganglion cells (RGCs) in the eye and layer 5 neurons in the primary visual cortex (L5-V1). Previous studies suggest that RGCs instruct the alignment of later-arriving L5-V1 inputs in an activity-dependent manner. However, the molecular mechanisms underlying this remain unclear. Here, we explored the role of NMDA receptors in visual map alignment in the SC using a conditional genetic knockout approach. We leveraged a novel knock-in mouse line that expresses tamoxifen-inducible Cre recombinase under the control of the Tal1 gene (Tal1CreERT2 ), which we show allows for specific recombination in the superficial layers of the SC. We used Tal1CreERT2 mice of either sex to conditionally delete the obligate GluN1 subunit of the NMDA receptor (SC-cKO) during the period of visual map alignment. We observed a significant disruption of L5-V1 axon terminal organization in the SC of SC-cKO mice. Importantly, retinocollicular topography was unaffected in this context, suggesting that alignment is also disrupted. Time-course experiments suggest that NMDA receptors may play a critical role in the refinement of L5-V1 inputs in the SC. Together, these data implicate NMDA receptors as critical mediators of activity-dependent visual map alignment in the SC.SIGNIFICANCE STATEMENT Alignment of topographic inputs is critical for integration of spatially congruent sensory information; however, little is known about the mechanisms underlying this complex process. Here, we took a conditional genetic approach to explore the role of NMDA receptors in the alignment of retinal and cortical visual inputs in the superior colliculus. We characterize a novel mouse line providing spatial and temporal control of recombination in the superior colliculus and reveal a critical role for NMDA expression in visual map alignment. These data support a role for neuronal activity in visual map alignment and provide mechanistic insight into this complex developmental process.
Collapse
Affiliation(s)
- Kristy O Johnson
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
- Institute for Biomedical Sciences, George Washington University School of Medicine, Washington, DC 20037
| | - Leeor Harel
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
| | - Jason W Triplett
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
- Institute for Biomedical Sciences, George Washington University School of Medicine, Washington, DC 20037
- Department of Pediatrics, George Washington University School of Medicine, Washington, DC 20037
- Department of Pharmacology and Physiology, George Washington University School of Medicine, Washington, DC 20037
| |
Collapse
|
7
|
Li VJ, Chorghay Z, Ruthazer ES. A Guide for the Multiplexed: The Development of Visual Feature Maps in the Brain. Neuroscience 2023; 508:62-75. [PMID: 35952996 DOI: 10.1016/j.neuroscience.2022.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 01/17/2023]
Abstract
Neural maps are found ubiquitously in the brain, where they encode a wide range of behaviourally relevant features into neural space. Developmental studies have shown that animals devote a great deal of resources to establish consistently patterned organization in neural circuits throughout the nervous system, but what purposes maps serve beneath their often intricate appearance and composition is a topic of active debate and exploration. In this article, we review the general mechanisms of map formation, with a focus on the visual system, and then survey notable organizational properties of neural maps: the multiplexing of feature representations through a nested architecture, the interspersing of fine-scale heterogeneity within a globally smooth organization, and the complex integration at the microcircuit level that enables a high dimensionality of information encoding. Finally, we discuss the roles of maps in cortical functions, including input segregation, feature extraction and routing of circuit outputs for higher order processing, as well as the evolutionary basis for the properties we observe in neural maps.
Collapse
Affiliation(s)
- Vanessa J Li
- Montreal Neurological Institute-Hospital, McGill University, 3801 University St. Montreal, Quebec H3A 2B4, Canada
| | - Zahraa Chorghay
- Montreal Neurological Institute-Hospital, McGill University, 3801 University St. Montreal, Quebec H3A 2B4, Canada
| | - Edward S Ruthazer
- Montreal Neurological Institute-Hospital, McGill University, 3801 University St. Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
8
|
Moreland T, Poulain FE. To Stick or Not to Stick: The Multiple Roles of Cell Adhesion Molecules in Neural Circuit Assembly. Front Neurosci 2022; 16:889155. [PMID: 35573298 PMCID: PMC9096351 DOI: 10.3389/fnins.2022.889155] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 01/02/2023] Open
Abstract
Precise wiring of neural circuits is essential for brain connectivity and function. During development, axons respond to diverse cues present in the extracellular matrix or at the surface of other cells to navigate to specific targets, where they establish precise connections with post-synaptic partners. Cell adhesion molecules (CAMs) represent a large group of structurally diverse proteins well known to mediate adhesion for neural circuit assembly. Through their adhesive properties, CAMs act as major regulators of axon navigation, fasciculation, and synapse formation. While the adhesive functions of CAMs have been known for decades, more recent studies have unraveled essential, non-adhesive functions as well. CAMs notably act as guidance cues and modulate guidance signaling pathways for axon pathfinding, initiate contact-mediated repulsion for spatial organization of axonal arbors, and refine neuronal projections during circuit maturation. In this review, we summarize the classical adhesive functions of CAMs in axonal development and further discuss the increasing number of other non-adhesive functions CAMs play in neural circuit assembly.
Collapse
|
9
|
Topographic map formation and the effects of NMDA receptor blockade in the developing visual system. Proc Natl Acad Sci U S A 2022; 119:2107899119. [PMID: 35193956 PMCID: PMC8872792 DOI: 10.1073/pnas.2107899119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 11/18/2022] Open
Abstract
Studying the emergence of topographic organization in sensory maps has been constrained by spatial limitations of traditional anatomical and physiological techniques early in development in many animal models. Here, we have applied a high-resolution, noninvasive, in vivo calcium imaging approach to study the nascent retinotopic map in the larval Xenopus laevis retinotectal system. We performed longitudinal functional imaging of the three-dimensional organization of emerging retinotopic maps and assessed the effects of N-methyl-D-aspartate (NMDA) receptor blockade on map formation. Our results provide insights into early retinotopic map emergence and the role of NMDA receptors in the refinement of topographic gradients. The development of functional topography in the developing brain follows a progression from initially coarse to more precisely organized maps. To examine the emergence of topographically organized maps in the retinotectal system, we performed longitudinal visual receptive field mapping by calcium imaging in the optic tectum of GCaMP6-expressing transgenic Xenopus laevis tadpoles. At stage 42, just 1 d after retinal axons arrived in the optic tectum, a clear retinotopic azimuth map was evident. Animals were imaged over the following week at stages 45 and 48, over which time the tectal neuropil nearly doubled in length and exhibited more precise retinotopic organization. By microinjecting GCaMP6s messenger ribonucleic acid (mRNA) into one blastomere of two-cell stage embryos, we acquired bilateral mosaic tadpoles with GCaMP6s expression in postsynaptic tectal neurons on one side of the animal and in retinal ganglion cell axons crossing to the tectum on the opposite side. Longitudinal observation of retinotopic map emergence revealed the presence of orderly representations of azimuth and elevation as early as stage 42, although presynaptic inputs exhibited relatively less topographic organization than the postsynaptic component for the azimuth axis. Retinotopic gradients in the tectum became smoother between stages 42 and 45. Blocking N-methyl-D-aspartate (NMDA) receptor conductance by rearing tadpoles in MK-801 did not prevent the emergence of retinotopic maps, but it produced more discontinuous topographic gradients and altered receptive field characteristics. These results provide evidence that current through NMDA receptors is dispensable for coarse topographic ordering of retinotectal inputs but does contribute to the fine-scale organization of the retinotectal projection.
Collapse
|
10
|
Spead O, Weaver CJ, Moreland T, Poulain FE. Live imaging of retinotectal mapping reveals topographic map dynamics and a previously undescribed role for Contactin 2 in map sharpening. Development 2021; 148:272618. [PMID: 34698769 DOI: 10.1242/dev.199584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022]
Abstract
Organization of neuronal connections into topographic maps is essential for processing information. Yet, our understanding of topographic mapping has remained limited by our inability to observe maps forming and refining directly in vivo. Here, we used Cre-mediated recombination of a new colorswitch reporter in zebrafish to generate the first transgenic model allowing the dynamic analysis of retinotectal mapping in vivo. We found that the antero-posterior retinotopic map forms early but remains dynamic, with nasal and temporal retinal axons expanding their projection domains over time. Nasal projections initially arborize in the anterior tectum but progressively refine their projection domain to the posterior tectum, leading to the sharpening of the retinotopic map along the antero-posterior axis. Finally, using a CRISPR-mediated mutagenesis approach, we demonstrate that the refinement of nasal retinal projections requires the adhesion molecule Contactin 2. Altogether, our study provides the first analysis of a topographic map maturing in real time in a live animal and opens new strategies for dissecting the molecular mechanisms underlying precise topographic mapping in vertebrates.
Collapse
Affiliation(s)
- Olivia Spead
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Cory J Weaver
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Trevor Moreland
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Fabienne E Poulain
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
11
|
Kesner P, Schohl A, Warren EC, Ma F, Ruthazer ES. Postsynaptic and Presynaptic NMDARs Have Distinct Roles in Visual Circuit Development. Cell Rep 2021; 32:107955. [PMID: 32726620 DOI: 10.1016/j.celrep.2020.107955] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/26/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
To study contributions of N-methyl-D-aspartate receptors (NMDARs) in presynaptic and postsynaptic neurons of the developing visual system, we microinject antisense Morpholino oligonucleotide (MO) against GluN1 into one cell of two-cell-stage Xenopus laevis embryos. The resulting bilateral segregation of MO induces postsynaptic NMDAR (postNMDAR) knockdown in tectal neurons on one side and presynaptic NMDAR (preNMDAR) knockdown in ganglion cells projecting to the other side. PostNMDAR knockdown reduces evoked NMDAR- and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated retinotectal currents. Although the frequency of spontaneous synaptic events is increased, the probability of evoked release is reduced. PreNMDAR knockdown results in larger evoked and unitary synaptic responses. Structurally, postNMDAR and preNMDAR knockdown produce complementary effects. Axonal arbor complexity is reduced by preNMDAR-MO and increased by postNMDAR-MO, whereas tectal dendritic arbors exhibit the inverse. The current study illustrates distinct roles for pre- and postNMDARs in circuit development and reveals extensive transsynaptic regulation of form and function.
Collapse
Affiliation(s)
- Philip Kesner
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal QC H3A 2B4, Canada
| | - Anne Schohl
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal QC H3A 2B4, Canada
| | - Elodie C Warren
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal QC H3A 2B4, Canada
| | - Fan Ma
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal QC H3A 2B4, Canada
| | - Edward S Ruthazer
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal QC H3A 2B4, Canada.
| |
Collapse
|
12
|
Redolfi N, Lodovichi C. Spontaneous Afferent Activity Carves Olfactory Circuits. Front Cell Neurosci 2021; 15:637536. [PMID: 33767612 PMCID: PMC7985084 DOI: 10.3389/fncel.2021.637536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Electrical activity has a key role in shaping neuronal circuits during development. In most sensory modalities, early in development, internally generated spontaneous activity sculpts the initial layout of neuronal wiring. With the maturation of the sense organs, the system relies more on sensory-evoked electrical activity. Stimuli-driven neuronal discharge is required for the transformation of immature circuits in the specific patterns of neuronal connectivity that subserve normal brain function. The olfactory system (OS) differs from this organizational plan. Despite the important role of odorant receptors (ORs) in shaping olfactory topography, odor-evoked activity does not have a prominent role in refining neuronal wiring. On the contrary, afferent spontaneous discharge is required to achieve and maintain the specific diagram of connectivity that defines the topography of the olfactory bulb (OB). Here, we provide an overview of the development of olfactory topography, with a focus on the role of afferent spontaneous discharge in the formation and maintenance of the specific synaptic contacts that result in the topographic organization of the OB.
Collapse
Affiliation(s)
- Nelly Redolfi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Claudia Lodovichi
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Neuroscience Institute CNR, Padua, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy.,Padova Neuroscience Center, University of Padua, Padua, Italy
| |
Collapse
|
13
|
Bush KM, Barber KR, Martinez JA, Tang SJ, Wairkar YP. Drosophila model of anti-retroviral therapy induced peripheral neuropathy and nociceptive hypersensitivity. Biol Open 2021; 10:bio.054635. [PMID: 33504470 PMCID: PMC7860131 DOI: 10.1242/bio.054635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The success of antiretroviral therapy (ART) has improved the survival of HIV-infected patients significantly. However, significant numbers of patients on ART whose HIV disease is well controlled show peripheral sensory neuropathy (PSN), suggesting that ART may cause PSN. Although the nucleoside reverse transcriptase inhibitors (NRTIs), one of the vital components of ART, are thought to contribute to PSN, the mechanisms underlying the PSN induced by NRTIs are unclear. In this study, we developed a Drosophila model of NRTI-induced PSN that recapitulates the salient features observed in patients undergoing ART: PSN and nociceptive hypersensitivity. Furthermore, our data demonstrate that pathways known to suppress PSN induced by chemotherapeutic drugs are ineffective in suppressing the PSN or nociception induced by NRTIs. Instead, we found that increased dynamics of a peripheral sensory neuron may possibly underlie NRTI-induced PSN and nociception. Our model provides a solid platform in which to investigate further mechanisms of ART-induced PSN and nociceptive hypersensitivity. This article has an associated First Person interview with the first author of the paper. Summary: Nucleoside reverse transcriptase inhibitors (NRTIs) that are important components of anti-retroviral therapies also cause peripheral sensory neuropathies (PSN). This article investigates ways in which NRTIs may cause PSN and outlines ways to better understand the mechanisms underlying it.
Collapse
Affiliation(s)
- Keegan M Bush
- Neuroscience Graduate Program, University of. Texas Medical Branch, Galveston, TX 77555, USA.,Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kara R Barber
- Neuroscience Graduate Program, University of. Texas Medical Branch, Galveston, TX 77555, USA.,Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jade A Martinez
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shao-Jun Tang
- Neuroscience Graduate Program, University of. Texas Medical Branch, Galveston, TX 77555, USA .,Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yogesh P Wairkar
- Neuroscience Graduate Program, University of. Texas Medical Branch, Galveston, TX 77555, USA .,Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
14
|
Puñal VM, Ahmed M, Thornton-Kolbe EM, Clowney EJ. Untangling the wires: development of sparse, distributed connectivity in the mushroom body calyx. Cell Tissue Res 2021; 383:91-112. [PMID: 33404837 PMCID: PMC9835099 DOI: 10.1007/s00441-020-03386-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/07/2020] [Indexed: 01/16/2023]
Abstract
Appropriate perception and representation of sensory stimuli pose an everyday challenge to the brain. In order to represent the wide and unpredictable array of environmental stimuli, principle neurons of associative learning regions receive sparse, combinatorial sensory inputs. Despite the broad role of such networks in sensory neural circuits, the developmental mechanisms underlying their emergence are not well understood. As mammalian sensory coding regions are numerically complex and lack the accessibility of simpler invertebrate systems, we chose to focus this review on the numerically simpler, yet functionally similar, Drosophila mushroom body calyx. We bring together current knowledge about the cellular and molecular mechanisms orchestrating calyx development, in addition to drawing insights from literature regarding construction of sparse wiring in the mammalian cerebellum. From this, we formulate hypotheses to guide our future understanding of the development of this critical perceptual center.
Collapse
Affiliation(s)
- Vanessa M. Puñal
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA,Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria Ahmed
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Emma M. Thornton-Kolbe
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA,Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI 48109, USA
| | - E. Josephine Clowney
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Valdes-Aleman J, Fetter RD, Sales EC, Heckman EL, Venkatasubramanian L, Doe CQ, Landgraf M, Cardona A, Zlatic M. Comparative Connectomics Reveals How Partner Identity, Location, and Activity Specify Synaptic Connectivity in Drosophila. Neuron 2020; 109:105-122.e7. [PMID: 33120017 PMCID: PMC7837116 DOI: 10.1016/j.neuron.2020.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/12/2020] [Accepted: 10/05/2020] [Indexed: 01/30/2023]
Abstract
The mechanisms by which synaptic partners recognize each other and establish appropriate numbers of connections during embryonic development to form functional neural circuits are poorly understood. We combined electron microscopy reconstruction, functional imaging of neural activity, and behavioral experiments to elucidate the roles of (1) partner identity, (2) location, and (3) activity in circuit assembly in the embryonic nerve cord of Drosophila. We found that postsynaptic partners are able to find and connect to their presynaptic partners even when these have been shifted to ectopic locations or silenced. However, orderly positioning of axon terminals by positional cues and synaptic activity is required for appropriate numbers of connections between specific partners, for appropriate balance between excitatory and inhibitory connections, and for appropriate functional connectivity and behavior. Our study reveals with unprecedented resolution the fine connectivity effects of multiple factors that work together to control the assembly of neural circuits.
Collapse
Affiliation(s)
- Javier Valdes-Aleman
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Richard D Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Emily C Sales
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Emily L Heckman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | | | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Marta Zlatic
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
16
|
Caspase inhibition rescues F1Fo ATP synthase dysfunction-mediated dendritic spine elimination. Sci Rep 2020; 10:17589. [PMID: 33067541 PMCID: PMC7568535 DOI: 10.1038/s41598-020-74613-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/23/2020] [Indexed: 12/26/2022] Open
Abstract
Dendritic spine injury underlies synaptic failure in many neurological disorders. Mounting evidence suggests a mitochondrial pathway of local nonapoptotic caspase signaling in mediating spine pruning. However, it remains unclear whether this caspase signaling plays a key role in spine loss when severe mitochondrial functional defects are present. The answer to this question is critical especially for some pathological states, in which mitochondrial deficits are prominent and difficult to fix. F1Fo ATP synthase is a pivotal mitochondrial enzyme and the dysfunction of this enzyme involves in diseases with spinopathy. Here, we inhibited F1Fo ATP synthase function in primary cultured hippocampal neurons by using non-lethal oligomycin A treatment. Oligomycin A induced mitochondrial defects including collapsed mitochondrial membrane potential, dissipated ATP production, and elevated reactive oxygen species (ROS) production. In addition, dendritic mitochondria underwent increased fragmentation and reduced positioning to dendritic spines along with increased caspase 3 cleavage in dendritic shaft and spines in response to oligomycin A. Concurring with these dendritic mitochondrial changes, oligomycin A-insulted neurons displayed spine loss and altered spine architecture. Such oligomycin A-mediated changes in dendritic spines were substantially prevented by the inhibition of caspase activation by using a pan-caspase inhibitor, quinolyl-valyl-O-methylaspartyl-[-2,6-difluorophenoxy]-methyl ketone (Q-VD-OPh). Of note, the administration of Q-VD-OPh showed no protective effect on oligomycin A-induced mitochondrial dysfunction. Our findings suggest a pivotal role of caspase 3 signaling in mediating spine injury and the modulation of caspase 3 activation may benefit neurons from spine loss in diseases, at least, in those with F1Fo ATP synthase defects.
Collapse
|
17
|
Letzner S, Manns M, Güntürkün O. Light-dependent development of the tectorotundal projection in pigeons. Eur J Neurosci 2020; 52:3561-3571. [PMID: 32386351 DOI: 10.1111/ejn.14775] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Left-right differences in the structural and functional organization of the brain are widespread in the animal kingdom and develop in close gene-environment interactions. The visual system of birds like chicks and pigeons exemplifies how sensory experience shapes lateralized visual processing. Owing to an asymmetrical posture of the embryo in the egg, the right eye/ left brain side is more strongly light-stimulated what triggers asymmetrical differentiation processes leading to a left-hemispheric dominance for visuomotor control. In pigeons (Columba livia), a critical neuroanatomical element is the asymmetrically organized tectofugal pathway. Here, more fibres cross from the right tectum to the left rotundus than vice versa. In the current study, we tested whether the emergence of this projection asymmetry depends on embryonic light stimulation by tracing tectorotundal neurons in pigeons with and without lateralized embryonic light experience. The quantitative tracing pattern confirmed higher bilateral innervation of the left rotundus in light-exposed and thus, asymmetrically light-stimulated pigeons. This was the same in light-deprived pigeons. Here, however, also the right rotundus received an equally strong bilateral input. This suggests that embryonic light stimulation does not increase bilateral tectal innervation of the stronger stimulated left but rather decreases such an input pattern to the right brain side. Combined with a morphometric analysis, our data indicate that embryonic photic stimulation specifically affects differentiation of the contralateral cell population. Differential modification of ipsi- and contralateral tectorotundal connections could have important impact on the regulation of intra- and interhemispheric information transfer and ultimately on hemispheric dominance pattern during visual processing.
Collapse
Affiliation(s)
- Sara Letzner
- Department of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University of Bochum, Bochum, Germany
| | - Martina Manns
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, Ruhr-University Bochum, Bochum, Germany
| | - Onur Güntürkün
- Department of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University of Bochum, Bochum, Germany
| |
Collapse
|
18
|
Abstract
In a small fraction of Xenopus tadpoles, a single retinal ganglion cell (RGC) axon misprojects to the ipsilateral optic tectum. Presenting flashes of light to the ipsilateral eye causes that ipsilateral axon to fire, whereas stimulating the contralateral eye excites all other RGC inputs to the tectum. We performed time-lapse imaging of individual ipsilaterally projecting axons while stimulating either the ipsilateral or contralateral eye. Stimulating either eye alone reduced axon elaboration by increasing branch loss. New branch additions in the ipsi axon were exclusively increased by contralateral eye stimulation, which was enhanced by expressing tetanus neurotoxin (TeNT) in the ipsilateral axon, to prevent Hebbian stabilization. Together, our results reveal the existence of a non-cell-autonomous "Stentian" signal, engaged by activation of neighboring RGCs, that promotes exploratory axon branching in response to noncorrelated firing.
Collapse
|
19
|
Neuroprotective Strategies for Retinal Ganglion Cell Degeneration: Current Status and Challenges Ahead. Int J Mol Sci 2020; 21:ijms21072262. [PMID: 32218163 PMCID: PMC7177277 DOI: 10.3390/ijms21072262] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
The retinal ganglion cells (RGCs) are the output cells of the retina into the brain. In mammals, these cells are not able to regenerate their axons after optic nerve injury, leaving the patients with optic neuropathies with permanent visual loss. An effective RGCs-directed therapy could provide a beneficial effect to prevent the progression of the disease. Axonal injury leads to the functional loss of RGCs and subsequently induces neuronal death, and axonal regeneration would be essential to restore the neuronal connectivity, and to reestablish the function of the visual system. The manipulation of several intrinsic and extrinsic factors has been proposed in order to stimulate axonal regeneration and functional repairing of axonal connections in the visual pathway. However, there is a missing point in the process since, until now, there is no therapeutic strategy directed to promote axonal regeneration of RGCs as a therapeutic approach for optic neuropathies.
Collapse
|
20
|
Robinson S, Courtney MJ. Spatial quantification of the synaptic activity phenotype across large populations of neurons with Markov random fields. Bioinformatics 2019; 34:3196-3204. [PMID: 29897415 DOI: 10.1093/bioinformatics/bty322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/25/2018] [Indexed: 11/12/2022] Open
Abstract
Motivation The collective and co-ordinated synaptic activity of large neuronal populations is relevant to neuronal development as well as a range of neurological diseases. Quantification of synaptically-mediated neuronal signalling permits further downstream analysis as well as potential application in target validation and in vitro screening assays. Our aim is to develop a phenotypic quantification for neuronal activity imaging data of large populations of neurons, in particular relating to the spatial component of the activity. Results We extend the use of Markov random field (MRF) models to achieve this aim. In particular, we consider Bayesian posterior densities of model parameters in Gaussian MRFs to directly model changes in calcium fluorescence intensity rather than using spike trains. The basis of our model is defining neuron 'neighbours' by the relative spatial positions of the neuronal somata as obtained from the image data whereas previously this has been limited to defining an artificial square grid across the field of view and spike binning. We demonstrate that our spatial phenotypic quantification is applicable for both in vitro and in vivo data consisting of thousands of neurons over hundreds of time points. We show how our approach provides insight beyond that attained by conventional spike counting and discuss how it could be used to facilitate screening assays for modifiers of disease-associated defects of communication between cells. Availability and implementation We supply the MATLAB code and data to obtain all of the results in the paper. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sean Robinson
- Department of Mathematics and Statistics, University of Turku, Turku, Finland.,Université Grenoble Alpes, CEA, INSERM, Biology of Cancer and Infection UMR S 1036, Grenoble, France
| | - Michael J Courtney
- Neuronal Signalling Lab, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Screening Unit, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, and Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Brain and Mind Center, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
21
|
Pradhan J, Noakes PG, Bellingham MC. The Role of Altered BDNF/TrkB Signaling in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2019; 13:368. [PMID: 31456666 PMCID: PMC6700252 DOI: 10.3389/fncel.2019.00368] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Brain derived neurotrophic factor (BDNF) is well recognized for its neuroprotective functions, via activation of its high affinity receptor, tropomysin related kinase B (TrkB). In addition, BDNF/TrkB neuroprotective functions can also be elicited indirectly via activation of adenosine 2A receptors (A2aRs), which in turn transactivates TrkB. Evidence suggests that alterations in BDNF/TrkB, including TrkB transactivation by A2aRs, can occur in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Although enhancing BDNF has been a major goal for protection of dying motor neurons (MNs), this has not been successful. Indeed, there is emerging in vitro and in vivo evidence suggesting that an upregulation of BDNF/TrkB can cause detrimental effects on MNs, making them more vulnerable to pathophysiological insults. For example, in ALS, early synaptic hyper-excitability of MNs is thought to enhance BDNF-mediated signaling, thereby causing glutamate excitotoxicity, and ultimately MN death. Moreover, direct inhibition of TrkB and A2aRs has been shown to protect MNs from these pathophysiological insults, suggesting that modulation of BDNF/TrkB and/or A2aRs receptors may be important in early disease pathogenesis in ALS. This review highlights the relevance of pathophysiological actions of BDNF/TrkB under certain circumstances, so that manipulation of BDNF/TrkB and A2aRs may give rise to alternate neuroprotective therapeutic strategies in the treatment of neural diseases such as ALS.
Collapse
Affiliation(s)
- Jonu Pradhan
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Peter G Noakes
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Mark C Bellingham
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Galazyuk A, Longenecker R, Voytenko S, Kristaponyte I, Nelson G. Residual inhibition: From the putative mechanisms to potential tinnitus treatment. Hear Res 2019; 375:1-13. [DOI: 10.1016/j.heares.2019.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 01/04/2023]
|
23
|
Gambrill AC, Faulkner RL, McKeown CR, Cline HT. Enhanced visual experience rehabilitates the injured brain in Xenopus tadpoles in an NMDAR-dependent manner. J Neurophysiol 2018; 121:306-320. [PMID: 30517041 DOI: 10.1152/jn.00664.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Traumatic brain injuries introduce functional and structural circuit deficits that must be repaired for an organism to regain function. We developed an injury model in which Xenopus laevis tadpoles are given a penetrating stab wound that damages the optic tectal circuit and impairs visuomotor behavior. In tadpoles, as in other systems, injury induces neurogenesis. The newly generated neurons are thought to integrate into the existing circuit; however, whether they integrate via the same mechanisms that govern normal neuronal maturation during development is not understood. Development of the functional visuomotor circuit in Xenopus is driven by sensory activity. We hypothesized that enhanced visual experience would improve recovery from injury by facilitating integration of newly generated neurons into the tectal circuit. We labeled newly generated neurons in the injured tectum by green fluorescent protein expression and examined their circuit integration using electrophysiology and in vivo imaging. Providing animals with brief bouts of enhanced visual experience starting 24 h after injury increased synaptogenesis and circuit integration of new neurons and facilitated behavioral recovery. To investigate mechanisms of neuronal integration and behavioral recovery after injury, we interfered with N-methyl-d-aspartate (NMDA) receptor function. Ifenprodil, which blocks GluN2B-containing NMDA receptors, impaired dendritic arbor elaboration. GluN2B blockade inhibited functional integration of neurons generated in response to injury and prevented behavioral recovery. Furthermore, tectal GluN2B knockdown blocked the beneficial effects of enhanced visual experience on functional plasticity and behavioral recovery. We conclude that visual experience-mediated rehabilitation of the injured tectal circuit occurs by GluN2B-containing NMDA receptor-dependent integration of newly generated neurons. NEW & NOTEWORTHY Recovery from brain injury is difficult in most systems. The study of regenerative animal models that are capable of injury repair can provide insight into cellular and circuit mechanisms underlying repair. Using Xenopus tadpoles, we show enhanced sensory experience rehabilitates the injured visual circuit and that this experience-dependent recovery depends on N-methyl-d-aspartate receptor function. Understanding the mechanisms of rehabilitation in this system may facilitate recovery in brain regions and systems where repair is currently impossible.
Collapse
Affiliation(s)
- Abigail C Gambrill
- Department of Neuroscience, the Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| | - Regina L Faulkner
- Department of Neuroscience, the Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| | - Caroline R McKeown
- Department of Neuroscience, the Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| | - Hollis T Cline
- Department of Neuroscience, the Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| |
Collapse
|
24
|
Du XF, Xu B, Zhang Y, Chen MJ, Du JL. A transgenic zebrafish model for in vivo long-term imaging of retinotectal synaptogenesis. Sci Rep 2018; 8:14077. [PMID: 30232367 PMCID: PMC6145912 DOI: 10.1038/s41598-018-32409-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/04/2018] [Indexed: 01/07/2023] Open
Abstract
The retinotectal synapse in larval zebrafish, combined with live time-lapse imaging, provides an advantageous model for study of the development and remodelling of central synapses in vivo. In previous studies, these synapses were labelled by transient expression of fluorescence-tagged synaptic proteins, which resulted in the dramatic variation of labelling patterns in each larva. Here, using GAL4-Upstream Activating Sequence (GAL4-UAS) methodology, we generated stable transgenic lines, which express EGFP-tagged synaptophysin (a presynaptic protein) in retinal ganglion cells (RGCs), to reliably label the pre-synaptic site of retinotectal synapses. This tool avoids the variable labelling of RGCs that occurs in transient transgenic larvae. We obtained several stable transgenic lines that differ consistently in the number of labelled RGCs. Using stable lines that consistently had a single labelled RGC, we could trace synaptogenic dynamics on an individual RGC axonal arbor across different developmental stages. In the stable lines that consistently had multiple labelled RGCs, we could simultaneously monitor both pre- and post-synaptic compartments by combining transient labelling of post-synaptic sites on individual tectal neurons. These tools allowed us to investigate molecular events underlying synaptogenesis and found that the microRNA-132 (miR-132) is required for developmental synaptogenesis. Thus, these transgenic zebrafish stable lines provide appropriate tools for studying central synaptogenesis and underlying molecular mechanisms in intact vertebrate brain.
Collapse
Affiliation(s)
- Xu-Fei Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
| | - Bing Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Yu Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.,School of Future Technology, University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing, 100049, China
| | - Min-Jia Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, 319 Yue-Yang Road, Shanghai, 200031, China
| | - Jiu-Lin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China. .,School of Future Technology, University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing, 100049, China. .,School of Life Science and Technology, ShanghaiTech University, 319 Yue-Yang Road, Shanghai, 200031, China.
| |
Collapse
|
25
|
Ady V, Toscano-Márquez B, Nath M, Chang PK, Hui J, Cook A, Charron F, Larivière R, Brais B, McKinney RA, Watt AJ. Altered synaptic and firing properties of cerebellar Purkinje cells in a mouse model of ARSACS. J Physiol 2018; 596:4253-4267. [PMID: 29928778 DOI: 10.1113/jp275902] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative human disease characterized in part by ataxia and Purkinje cell loss in anterior cerebellar lobules. A knock-out mouse model has been developed that recapitulates several features of ARSACS. Using this ARSACS mouse model, we report changes in synaptic input and intrinsic firing in cerebellar Purkinje cells, as well as in their synaptic output in the deep cerebellar nuclei. Changes in firing are observed in anterior lobules that later exhibit Purkinje cell death, but not in posterior lobules that do not. Our results show that both synaptic and intrinsic alterations in Purkinje cell properties likely contribute to disease manifestation in ARSACS; these findings resemble pathophysiological changes reported in several other ataxias. ABSTRACT Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease that includes a pronounced and progressive cerebellar dysfunction. ARSACS is caused by an autosomal recessive loss-of-function mutation in the Sacs gene that encodes the protein sacsin. To better understand the cerebellar pathophysiology in ARSACS, we studied synaptic and firing properties of Purkinje cells from a mouse model of ARSACS, Sacs-/- mice. We found that excitatory synaptic drive was reduced onto Sacs-/- Purkinje cells, and that Purkinje cell firing rate, but not regularity, was reduced at postnatal day (P)40, an age when ataxia symptoms were first reported. Firing rate deficits were limited to anterior lobules that later display Purkinje cell death, and were not observed in posterior lobules where Purkinje cells are not lost. Mild firing deficits were observed as early as P20, prior to the manifestation of motor deficits, suggesting that a critical level of cerebellar dysfunction is required for motor coordination to emerge. Finally, we observed a reduction in Purkinje cell innervation onto target neurons in the deep cerebellar nuclei (DCN) in Sacs-/- mice. Together, these findings suggest that multiple alterations in the cerebellar circuit including Purkinje cell input and output contribute to cerebellar-related disease onset in ARSACS.
Collapse
Affiliation(s)
- Visou Ady
- Department of Biology, McGill University, Montréal, Canada
| | | | - Moushumi Nath
- Department of Biology, McGill University, Montréal, Canada
| | - Philip K Chang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Jeanette Hui
- Department of Biology, McGill University, Montréal, Canada
| | - Anna Cook
- Department of Biology, McGill University, Montréal, Canada
| | - François Charron
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Roxanne Larivière
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Alanna J Watt
- Department of Biology, McGill University, Montréal, Canada
| |
Collapse
|
26
|
Sugie A, Marchetti G, Tavosanis G. Structural aspects of plasticity in the nervous system of Drosophila. Neural Dev 2018; 13:14. [PMID: 29960596 PMCID: PMC6026517 DOI: 10.1186/s13064-018-0111-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/12/2018] [Indexed: 12/15/2022] Open
Abstract
Neurons extend and retract dynamically their neurites during development to form complex morphologies and to reach out to their appropriate synaptic partners. Their capacity to undergo structural rearrangements is in part maintained during adult life when it supports the animal's ability to adapt to a changing environment or to form lasting memories. Nonetheless, the signals triggering structural plasticity and the mechanisms that support it are not yet fully understood at the molecular level. Here, we focus on the nervous system of the fruit fly to ask to which extent activity modulates neuronal morphology and connectivity during development. Further, we summarize the evidence indicating that the adult nervous system of flies retains some capacity for structural plasticity at the synaptic or circuit level. For simplicity, we selected examples mostly derived from studies on the visual system and on the mushroom body, two regions of the fly brain with extensively studied neuroanatomy.
Collapse
Affiliation(s)
- Atsushi Sugie
- Center for Transdisciplinary Research, Niigata University, Niigata, 951-8585 Japan
- Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
| | | | - Gaia Tavosanis
- Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| |
Collapse
|
27
|
The Midline Axon Crossing Decision Is Regulated through an Activity-Dependent Mechanism by the NMDA Receptor. eNeuro 2018; 5:eN-NWR-0389-17. [PMID: 29766040 PMCID: PMC5952305 DOI: 10.1523/eneuro.0389-17.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/03/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023] Open
Abstract
Axon guidance in vertebrates is controlled by genetic cascades as well as by intrinsic activity-dependent refinement of connections. Midline axon crossing is one of the best studied pathfinding models and is fundamental to the establishment of bilaterally symmetric nervous systems. However, it is not known whether crossing requires intrinsic activity in axons, and what controls that activity. Further, a mechanism linking neuronal activity and gene expression has not been identified for axon pathfinding. Using embryonic zebrafish, we found that the NMDA receptor (NMDAR) NR1.1 subunit (grin1a) is expressed in commissural axons. Pharmacological inhibition of grin1a, hypoxia exposure reduction of grin1a expression, or CRISPR knock-down of grin1a leads to defects in midline crossing. Inhibition of neuronal activity phenocopies the effects of grin1a loss on midline crossing. By combining pharmacological inhibition of the NMDAR with optogenetic stimulation to precisely restore neuronal activity, we observed rescue of midline crossing. This suggests that the NMDAR controls pathfinding by an activity-dependent mechanism. We further show that the NMDAR may act, via modulating activity, on the transcription factor arxa (mammalian Arx), a known regulator of midline pathfinding. These findings uncover a novel role for the NMDAR in controlling activity to regulate commissural pathfinding and identify arxa as a key link between the genetic and activity-dependent regulation of midline axon guidance.
Collapse
|
28
|
The Gliotransmitter d-Serine Promotes Synapse Maturation and Axonal Stabilization In Vivo. J Neurosci 2017; 37:6277-6288. [PMID: 28550169 DOI: 10.1523/jneurosci.3158-16.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 04/29/2017] [Accepted: 05/18/2017] [Indexed: 01/05/2023] Open
Abstract
The NMDAR is thought to play a key role in the refinement of connectivity in developing neural circuits. Pharmacological blockade or genetic loss-of-function manipulations that prevent NMDAR function during development result in the disorganization of topographic axonal projections. However, because NMDARs contribute to overall glutamatergic neurotransmission, such loss-of-function experiments fail to adequately distinguish between the roles played by NMDARs and neural activity in general. The gliotransmitter d-serine is a coagonist of the NMDAR that is required for NMDAR channel opening, but which cannot mediate neurotransmission on its own. Here we demonstrate that acute administration of d-serine has no immediate effect on glutamate release or AMPA-mediated neurotransmission. We show that endogenous d-serine is normally present below saturating levels in the developing visual system of the Xenopus tadpole. Using an amperometric enzymatic biosensor, we demonstrate that glutamatergic activation elevates ambient endogenous d-serine levels in the optic tectum. Chronically elevating levels of d-serine promoted synaptic maturation and resulted in the hyperstabilization of developing axon branches in the tadpole visual system. Conversely, treatment with an enzyme that degrades endogenous d-serine resulted in impaired synaptic maturation. Despite the reduction in axon arbor complexity seen in d-serine-treated animals, tectal neuron visual receptive fields were expanded, suggesting a failure to prune divergent retinal inputs. Together, these findings positively implicate NMDAR-mediated neurotransmission in developmental synapse maturation and the stabilization of axonal inputs and reveal a potential role for d-serine as an endogenous modulator of circuit refinement.SIGNIFICANCE STATEMENT Activation of NMDARs is critical for the activity-dependent development and maintenance of highly organized topographic maps. d-Serine, a coagonist of the NMDAR, plays a significant role in modulating NMDAR-mediated synaptic transmission and plasticity in many brain areas. However, it remains unknown whether d-serine participates in the establishment of precise neuronal connections during development. Using an in vivo model, we show that glutamate receptor activation can evoke endogenous d-serine release, which promotes glutamatergic synapse maturation and stabilizes axonal structural and functional inputs. These results reveal a pivotal modulatory role for d-serine in neurodevelopment.
Collapse
|