1
|
Krishnan V, Wade-Kleyn LC, Israeli RR, Pelled G. Peripheral Nerve Injury Induces Changes in the Activity of Inhibitory Interneurons as Visualized in Transgenic GAD1-GCaMP6s Rats. BIOSENSORS 2022; 12:bios12060383. [PMID: 35735531 PMCID: PMC9221547 DOI: 10.3390/bios12060383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 01/11/2023]
Abstract
Peripheral nerve injury induces cortical remapping that can lead to sensory complications. There is evidence that inhibitory interneurons play a role in this process, but the exact mechanism remains unclear. Glutamate decarboxylase-1 (GAD1) is a protein expressed exclusively in inhibitory interneurons. Transgenic rats encoding GAD1–GCaMP were generated to visualize the activity in GAD1 neurons through genetically encoded calcium indicators (GCaMP6s) in the somatosensory cortex. Forepaw denervation was performed in adult rats, and fluorescent Ca2+ imaging on cortical slices was obtained. Local, intrahemispheric stimulation (cortical layers 2/3 and 5) induced a significantly higher fluorescence change of GAD1-expressing neurons, and a significantly higher number of neurons were responsive to stimulation in the denervated rats compared to control rats. However, remote, interhemispheric stimulation of the corpus callosum induced a significantly lower fluorescence change of GAD1-expressing neurons, and significantly fewer neurons were deemed responsive to stimulation within layer 5 in denervated rats compared to control rats. These results suggest that injury impacts interhemispheric communication, leading to an overall decrease in the activity of inhibitory interneurons in layer 5. Overall, our results provide direct evidence that inhibitory interneuron activity in the deprived S1 is altered after injury, a phenomenon likely to affect sensory processing.
Collapse
Affiliation(s)
- Vijai Krishnan
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA;
| | | | - Ron R. Israeli
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
| | - Galit Pelled
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: ; Tel.: +1-(517)-884-7464
| |
Collapse
|
2
|
Zhong M, Cywiak C, Metto AC, Liu X, Qian C, Pelled G. Multi-session delivery of synchronous rTMS and sensory stimulation induces long-term plasticity. Brain Stimul 2021; 14:884-894. [PMID: 34029768 DOI: 10.1016/j.brs.2021.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/17/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Combining training or sensory stimulation with non-invasive brain stimulation has shown to improve performance in healthy subjects and improve brain function in patients after brain injury. However, the plasticity mechanisms and the optimal parameters to induce long-term and sustainable enhanced performance remain unknown. OBJECTIVE This work was designed to identify the protocols of which combining sensory stimulation with repetitive transcranial magnetic stimulation (rTMS) will facilitate the greatest changes in fMRI activation maps in the rat's primary somatosensory cortex (S1). METHODS Several protocols of combining forepaw electrical stimulation with rTMS were tested, including a single stimulation session compared to multiple, daily stimulation sessions, as well as synchronous and asynchronous delivery of both modalities. High-resolution fMRI was used to determine how pairing sensory stimulation with rTMS induced short and long-term plasticity in the rat S1. RESULTS All groups that received a single session of rTMS showed short-term increases in S1 activity, but these increases did not last three days after the session. The group that received a stimulation protocol of 10 Hz forepaw stimulation that was delivered simultaneously with 10 Hz rTMS for five consecutive days demonstrated the greatest increases in the extent of the evoked fMRI responses compared to groups that received other stimulation protocols. CONCLUSIONS Our results provide direct indication that pairing peripheral stimulation with rTMS induces long-term plasticity, and this phenomenon appears to follow a time-dependent plasticity mechanism. These results will be important to lead the design of new training and rehabilitation paradigms and training towards achieving maximal performance in healthy subjects.
Collapse
Affiliation(s)
- Ming Zhong
- Neuroengineering Division, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Carolina Cywiak
- Neuroengineering Division, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Abigael C Metto
- Neuroengineering Division, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Xiang Liu
- Neuroengineering Division, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Galit Pelled
- Neuroengineering Division, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA; Department of Radiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
3
|
Gleichgerrcht E, Greenblatt AS, Kellermann TS, Rowland N, Vandergrift WA, Edwards J, Davis KA, Bonilha L. Patterns of seizure spread in temporal lobe epilepsy are associated with distinct white matter tracts. Epilepsy Res 2021; 171:106571. [PMID: 33582534 PMCID: PMC7981262 DOI: 10.1016/j.eplepsyres.2021.106571] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE It is commonly hypothesized that seizure spread patterns in patients with focal epilepsy are associated with structural brain pathways. However, this relationship is poorly understood and has not been fully demonstrated in patients with temporal lobe epilepsy. Here, we sought to determine whether directionality of seizure spread (DSS) is associated with specific cerebral white matter tracts in patients with temporal lobe epilepsy. METHODS Thirty-three adult patients with temporal lobe epilepsy who underwent stereoelectroencephalography (sEEG) and magnetic resonance diffusion tensor imaging (MR-DTI) as part of their standard-of-care clinical evaluation were included in the study. DSS was defined as anterior-posterior (AP) or medial-lateral (ML) spread based upon sEEG evaluation by two independent specialists who demonstrated excellent inter-rater agreement (Cohen's kappa = .92). DTI connectometry was used to assess differences between seizure spread pattern groups along major fiber pathways regarding fractional anisotropy (FA). RESULTS Twenty-four participants showed seizures with AP spread and nine participants showed seizures with ML spread. There were no significant differences between the groups on their demographic and clinical profile. Patients with ML seizures had higher FA along the corpus callosum and, to a lesser degree, some portions of the bilateral cingulate tracts. In contrast, patients with AP seizures had higher FA along several anterior-posterior white matter projections bundles, including the cingulate fasciculus and the inferior longitudinal, with significantly less involvement of the corpus callosum compared with ML seizures. SIGNIFICANCE This study confirms the hypothesis that the anatomical pattern of electrophysiological ictal propagation is associated with the structural reinforcement of supporting pathways in temporal lobe epilepsy. This observation can help elucidate mechanisms of ictal propagation and may guide future translational approaches to curtail seizure spread.
Collapse
Affiliation(s)
| | - Adam S Greenblatt
- Medical University of South Carolina, Charleston, SC, USA; University of Pennsylvania, Philadelphia, PA, USA
| | | | - Nathan Rowland
- Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | |
Collapse
|
4
|
Cywiak C, Ashbaugh RC, Metto AC, Udpa L, Qian C, Gilad AA, Reimers M, Zhong M, Pelled G. Non-invasive neuromodulation using rTMS and the electromagnetic-perceptive gene (EPG) facilitates plasticity after nerve injury. Brain Stimul 2020; 13:1774-1783. [PMID: 33068795 DOI: 10.1016/j.brs.2020.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Twenty million Americans suffer from peripheral nerve injury. These patients often develop chronic pain and sensory dysfunctions. In the past decade, neuroimaging studies showed that these changes are associated with altered cortical excitation-inhibition balance and maladaptive plasticity. We tested if neuromodulation of the deprived sensory cortex could restore the cortical balance, and whether it would be effective in alleviating sensory complications. OBJECTIVE We tested if non-invasive repetitive transcranial magnetic stimulation (rTMS) which induces neuronal excitability, and cell-specific magnetic activation via the Electromagnetic-perceptive gene (EPG) which is a novel gene that was identified and cloned from glass catfish and demonstrated to evoke neural responses when magnetically stimulated, can restore cortical excitability. METHODS A rat model of forepaw denervation was used. rTMS was delivered every other day for 30 days, starting at the acute or at the chronic post-injury phase. A minimally-invasive neuromodulation via EPG was performed every day for 30 days starting at the chronic phase. A battery of behavioral tests was performed in the days and weeks following limb denervation in EPG-treated rats, and behavioral tests, fMRI and immunochemistry were performed in rTMS-treated rats. RESULTS The results demonstrate that neuromodulation significantly improved long-term mobility, decreased anxiety and enhanced neuroplasticity. The results identify that both acute and delayed rTMS intervention facilitated rehabilitation. Moreover, the results implicate EPG as an effective cell-specific neuromodulation approach. CONCLUSION Together, these results reinforce the growing amount of evidence from human and animal studies that are establishing neuromodulation as an effective strategy to promote plasticity and rehabilitation.
Collapse
Affiliation(s)
- Carolina Cywiak
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA; The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Ryan C Ashbaugh
- The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA
| | - Abigael C Metto
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA; The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Lalita Udpa
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Assaf A Gilad
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA; The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Mark Reimers
- The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Ming Zhong
- The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Galit Pelled
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA; The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Radiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
5
|
Delaney SL, Gendreau JL, D'Souza M, Feng AY, Ho AL. Optogenetic Modulation for the Treatment of Traumatic Brain Injury. Stem Cells Dev 2020; 29:187-197. [DOI: 10.1089/scd.2019.0187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
| | | | | | - Austin Y. Feng
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, Georgia
| | - Allen L. Ho
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, Georgia
| |
Collapse
|
6
|
Lefebvre S, Jann K, Schmiesing A, Ito K, Jog M, Schweighofer N, Wang DJJ, Liew SL. Differences in high-definition transcranial direct current stimulation over the motor hotspot versus the premotor cortex on motor network excitability. Sci Rep 2019; 9:17605. [PMID: 31772347 PMCID: PMC6879500 DOI: 10.1038/s41598-019-53985-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/06/2019] [Indexed: 01/07/2023] Open
Abstract
The effectiveness of transcranial direct current stimulation (tDCS) placed over the motor hotspot (thought to represent the primary motor cortex (M1)) to modulate motor network excitability is highly variable. The premotor cortex-particularly the dorsal premotor cortex (PMd)-may be a promising alternative target to reliably modulate motor excitability, as it influences motor control across multiple pathways, one independent of M1 and one with direct connections to M1. This double-blind, placebo-controlled preliminary study aimed to differentially excite motor and premotor regions using high-definition tDCS (HD-tDCS) with concurrent functional magnetic resonance imaging (fMRI). HD-tDCS applied over either the motor hotspot or the premotor cortex demonstrated high inter-individual variability in changes on cortical motor excitability. However, HD-tDCS over the premotor cortex led to a higher number of responders and greater changes in local fMRI-based complexity than HD-tDCS over the motor hotspot. Furthermore, an analysis of individual motor hotspot anatomical locations revealed that, in more than half of the participants, the motor hotspot is not located over anatomical M1 boundaries, despite using a canonical definition of the motor hotspot. This heterogeneity in stimulation site may contribute to the variability of tDCS results. Altogether, these preliminary findings provide new considerations to enhance tDCS reliability.
Collapse
Affiliation(s)
- Stephanie Lefebvre
- Neural Plasticity and Neurorehabilitation Laboratory, Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Kay Jann
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Allie Schmiesing
- Neural Plasticity and Neurorehabilitation Laboratory, Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Kaori Ito
- Neural Plasticity and Neurorehabilitation Laboratory, Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Mayank Jog
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Nicolas Schweighofer
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Sook-Lei Liew
- Neural Plasticity and Neurorehabilitation Laboratory, Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States.
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Ansado J, Blunt A, Chen JK, Koski L, Ptito A. Impact of non-invasive brain stimulation on transcallosal modulation in mild traumatic brain injury: a multimodal pilot investigation. Brain Inj 2019; 33:1021-1031. [DOI: 10.1080/02699052.2019.1605620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jennyfer Ansado
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Aaron Blunt
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jen-Kai Chen
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Lisa Koski
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Alain Ptito
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Psychology, McGill University Health Centre, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Krishnan VS, Shin SS, Belegu V, Celnik P, Reimers M, Smith KR, Pelled G. Multimodal Evaluation of TMS - Induced Somatosensory Plasticity and Behavioral Recovery in Rats With Contusion Spinal Cord Injury. Front Neurosci 2019; 13:387. [PMID: 31068784 PMCID: PMC6491761 DOI: 10.3389/fnins.2019.00387] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Introduction: Spinal cord injury (SCI) causes partial or complete damage to sensory and motor pathways and induces immediate changes in cortical function. Current rehabilitative strategies do not address this early alteration, therefore impacting the degree of neuroplasticity and subsequent recovery. The following study aims to test if a non-invasive brain stimulation technique such as repetitive transcranial magnetic stimulation (rTMS) is effective in promoting plasticity and rehabilitation, and can be used as an early intervention strategy in a rat model of SCI. Methods: A contusion SCI was induced at segment T9 in adult rats. An rTMS coil was positioned over the brain to deliver high frequency stimulation. Behavior, motor and sensory functions were tested in three groups: SCI rats that received high-frequency (20 Hz) rTMS within 10 min post-injury (acute-TMS; n = 7); SCI rats that received TMS starting 2 weeks post-injury (chronic-TMS; n = 5), and SCI rats that received sham TMS (no-TMS, n = 5). Locomotion was evaluated by the Basso, Beattie, and Bresnahan (BBB) and gridwalk tests. Motor evoked potentials (MEP) were recorded from the forepaw across all groups to measure integrity of motor pathways. Functional MRI (fMRI) responses to contralateral tactile hindlimb stimulation were measured in an 11.7T horizontal bore small-animal scanner. Results: The acute-TMS group demonstrated the fastest improvements in locomotor performance in both the BBB and gridwalk tests compared to chronic and no-TMS groups. MEP responses from forepaw showed significantly greater difference in the inter-peak latency between acute-TMS and no-TMS groups, suggesting increases in motor function. Finally, the acute-TMS group showed increased fMRI-evoked responses to hindlimb stimulation over the right and left hindlimb (LHL) primary somatosensory representations (S1), respectively; the chronic-TMS group showed moderate sensory responses in comparison, and the no-TMS group exhibited the lowest sensory responses to both hindlimbs. Conclusion: The results suggest that rTMS therapy beginning in the acute phase after SCI promotes neuroplasticity and is an effective rehabilitative approach in a rat model of SCI.
Collapse
Affiliation(s)
- Vijai S Krishnan
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States.,The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Samuel S Shin
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Visar Belegu
- Department of Neurology and Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,International Center for Spinal Cord Injury, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Pablo Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark Reimers
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States.,The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Kylie R Smith
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States.,The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Galit Pelled
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States.,The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Radiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
9
|
Siddiqi SH, Trapp NT, Hacker CD, Laumann TO, Kandala S, Hong X, Trillo L, Shahim P, Leuthardt EC, Carter AR, Brody DL. Repetitive Transcranial Magnetic Stimulation with Resting-State Network Targeting for Treatment-Resistant Depression in Traumatic Brain Injury: A Randomized, Controlled, Double-Blinded Pilot Study. J Neurotrauma 2019; 36:1361-1374. [PMID: 30381997 PMCID: PMC6909726 DOI: 10.1089/neu.2018.5889] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has demonstrated antidepressant efficacy but has limited evidence in depression associated with traumatic brain injury (TBI). Here, we investigate the use of rTMS targeted with individualized resting-state network mapping (RSNM) of dorsal attention network (DAN) and default mode network (DMN) in subjects with treatment-resistant depression associated with concussive or moderate TBI. The planned sample size was 50 with first interim analysis planned at 20, but only 15 were enrolled before the study was terminated for logistical reasons. Subjects were randomized to 20 sessions of bilateral rTMS (4000 left-sided excitatory pulses, 1000 right-sided inhibitory pulses) or sham. Treatment was targeted to the dorsolateral prefrontal cluster with maximal difference between DAN and DMN correlations based on resting-state functional magnetic resonance imaging with individualized RSNM. Mean improvement in the primary outcome, Montgomery-Asberg Depression Rating Scale (MADRS), was 56% ± 14% (n = 9) with active treatment and 27% ± 25% (n = 5) with sham (Cohen's d = 1.43). One subject randomized to sham withdrew before starting treatment. There were no seizures or other significant adverse events. MADRS improvement was inversely correlated with functional connectivity between the right-sided stimulation site and the subgenual anterior cingulate cortex (sgACC; r = -0.68, 95% confidence interval 0.03-0.925). Active treatment led to increased sgACC-DMN connectivity (d = 1.55) and increased sgACC anti-correlation with the left- and right-sided stimulation sites (d = -1.26 and -0.69, respectively). This pilot study provides evidence that RSNM-targeted rTMS is feasible in TBI patients with depression. Given the dearth of existing evidence-based treatments for depression in this patient population, these preliminarily encouraging results indicate that larger controlled trials are warranted.
Collapse
Affiliation(s)
- Shan H. Siddiqi
- Department of Neurology, McLean Hospital, Belmont, Massachusetts
- Center for Neuroscience and Regenerative Medicine, National Institutes of Health/Uniformed Services University of Health Sciences Traumatic Brain Injury Research Group, Bethesda, Maryland
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Nicholas T. Trapp
- Department of Psychiatry, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Carl D. Hacker
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Timothy O. Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Sridhar Kandala
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Xin Hong
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Ludwig Trillo
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Pashtun Shahim
- Center for Neuroscience and Regenerative Medicine, National Institutes of Health/Uniformed Services University of Health Sciences Traumatic Brain Injury Research Group, Bethesda, Maryland
| | - Eric C. Leuthardt
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Alexandre R. Carter
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - David L. Brody
- Center for Neuroscience and Regenerative Medicine, National Institutes of Health/Uniformed Services University of Health Sciences Traumatic Brain Injury Research Group, Bethesda, Maryland
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
10
|
Shin SS, Krishnan V, Stokes W, Robertson C, Celnik P, Chen Y, Song X, Lu H, Liu P, Pelled G. Transcranial magnetic stimulation and environmental enrichment enhances cortical excitability and functional outcomes after traumatic brain injury. Brain Stimul 2018; 11:1306-1313. [PMID: 30082198 DOI: 10.1016/j.brs.2018.07.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Therapeutic strategies for traumatic brain injury (TBI) in the last three decades have failed to show significant benefit in large scale studies. Given the multitude of pathological mechanisms involved in TBI, strategies focusing on multimodality regimen have gained interest as promising future interventions. HYPOTHESIS We hypothesized that combining noninvasive transcranial magnetic stimulation (TMS) with rehabilitative training in an environmental enrichment (EE) can facilitate post-TBI recovery in rats via cortical excitability and reorganization. METHODS We subjected rats to controlled cortical impact, and then assigned them to one of four groups: 1. No treatments (TBI), 2. EE after injury (TBI + EE), 3. TMS for one week (TBI + TMS), and 4. TMS for one week combined with EE (TBI + TMS/EE). For TMS, a 10 Hz repetitive TMS protocol was used. RESULTS At 7 days, TBI + TMS and TBI + TMS/EE groups had significantly increased primary somatosensory cortex local field potential (LFP) compared to TBI and TBI + EE groups (P < 0.05). Also, TBI + TMS/EE group had significantly improved performance on beam walk test compared to TBI group (P < 0.005). At 6 weeks, there was significantly higher response in TBI + TMS/EE group compared to TBI + TMS for somatosensory cortex LFP (P < 0.05), bicep motor evoked potentials (MEP) (P < 0.05), challenge ladder test performance (P < 0.01), and fMRI responses to tactile forepaw stimulation. CONCLUSIONS We demonstrate here for the first time the mechanism by which combined therapy using TMS and EE after TBI leads to functional improvement, possibly via cortical excitability and reorganization.
Collapse
Affiliation(s)
- Samuel S Shin
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vijai Krishnan
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA; The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - William Stokes
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Courtney Robertson
- Department of Anesthesiology/Critical Care Medicine and Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pablo Celnik
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Physical Medicine and Rehabilitation, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yanrong Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaolei Song
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peiying Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Galit Pelled
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA; The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Radiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
11
|
Coyle HL, Ponsford J, Hoy KE. Understanding individual variability in symptoms and recovery following mTBI: A role for TMS-EEG? Neurosci Biobehav Rev 2018; 92:140-149. [PMID: 29885426 DOI: 10.1016/j.neubiorev.2018.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 05/15/2018] [Accepted: 05/25/2018] [Indexed: 10/14/2022]
Abstract
The pathophysiology associated with mild traumatic brain injury (mTBI) includes neurometabolic and cytoskeletal changes that have been shown to impair structural and functional connectivity. Evidence that persistent neuropsychological impairments post injury are linked to structural and functional connectivity changes is increasing. However, to date the relationship between connectivity changes, heterogeneity of persistent symptoms and recovery post mTBI has been poorly characterised. Recent innovations in neuroimaging provide new ways of exploring connectivity changes post mTBI. Namely, combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) offers several advantages over traditional approaches for studying connectivity changes post TBI. Its ability to perturb neural function in a controlled manner allows for measurement of causal interactions or effective connectivity between brain regions. We review the current literature assessing structural and functional connectivity following mTBI and outline the rationale for the use of TMS-EEG as an ideal tool for investigating the neural substrates of connectivity dysfunction and reorganisation post mTBI. The diagnostic, prognostic and potential therapeutic implications will also be explored.
Collapse
Affiliation(s)
- Hannah L Coyle
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Melbourne, Australia.
| | - Jennie Ponsford
- School of Psychological Sciences, Monash University, Clayton, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Melbourne, Australia
| |
Collapse
|
12
|
van Dokkum LEH, le Bars E, Mottet D, Bonafé A, Menjot de Champfleur N, Laffont I. Modified Brain Activations of the Nondamaged Hemisphere During Ipsilesional Upper-Limb Movement in Persons With Initial Severe Motor Deficits Poststroke. Neurorehabil Neural Repair 2017; 32:34-45. [PMID: 29276841 DOI: 10.1177/1545968317746783] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Poststroke, the ipsilesional upper limb shows slight but substantial and long-term motor deficits. OBJECTIVE To define brain activation patterns during a gross motor flexion/extension task of the ipsilesional elbow early poststroke before and after rehabilitation, in relation to the corresponding kinematic characteristics at each time point. METHOD Simultaneous analysis of kinematic features (amplitude, frequency, smoothness, and trajectory of movement) and of corresponding functional magnetic resonance imaging activations (block-design). A total of 21 persons with subacute initial severe stroke (Fugl-Meyer score <30/66) participated twice: within the first 2 months poststroke (V0) and after 6 weeks of rehabilitation (V1). Results at both time points were compared with activation patterns and kinematics of 13 healthy controls. RESULTS Compared with controls ( a) movements of the ipsilesional upper-limb poststroke were smaller (V0 + V1) and less smooth (V0 + V1) and ( b) participants poststroke showed additional recruitment of the contralesional middle temporal gyrus (V0) and rolandic opercularis involved in movement visualization (V0 + V1), whereas they lacked activation of the supramarginal gyrus (V0 + V1). Over time, participants poststroke showed an extended activation of the contralesional sensorimotor cortex at V0. CONCLUSION Movements of the ipsilesional upper limb within an initially severe stroke group were not only atypical in motor outcome, but seemed to be controlled differently. Together the observed changes pointed toward an overall disturbance of the bihemispheric motor network poststroke, marked by ( a) a possible despecialization of the nondamaged hemisphere and ( b) the employment of alternative control strategies to ensure optimal task execution.
Collapse
Affiliation(s)
- Liesjet E H van Dokkum
- 1 Montpellier University Hospital, Montpellier, France.,2 Charles Coulomb Laboratory, Montpellier University, Montpellier, France
| | | | - Denis Mottet
- 3 EuroMov, of Montpellier University, Montpellier, France
| | - Alain Bonafé
- 1 Montpellier University Hospital, Montpellier, France
| | | | - Isabelle Laffont
- 1 Montpellier University Hospital, Montpellier, France.,3 EuroMov, of Montpellier University, Montpellier, France
| |
Collapse
|
13
|
Gazerani P. Performance Enhancement by Brain Stimulation. J Sports Sci Med 2017; 16:438-439. [PMID: 28912663 PMCID: PMC5592297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/15/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Parisa Gazerani
- Pharm D, PhD Department of Health Science and Technology, Aalborg University, Frederik Bajers Vej 7A2-A2-208, 9220 Aalborg East, Denmark
| |
Collapse
|