1
|
Thiele A, Milner AM, Hall C, Mayhew L, Carter A, Sanjeev S. Effect of muscarinic blockade on the speed of attention shifting, read-out delays and learning. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06757-3. [PMID: 39953295 DOI: 10.1007/s00213-025-06757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
The study aimed to investigate to what extent blockade of muscarinic receptors affects the speed of endogenous versus exogenous attentional shift times, and how it affects learning of attention shifting, cue detection and signal readout. Subjects viewed an array of 10 moving clocks and reported the time a clock indicated when cued. Target clocks were indicated by peripheral or central cues, including conditions of pre-cuing. For peripheral and central cuing, it yielded a compound measure of how long it took to detect the cue, shift attention to the relevant clock and read the time on the clock. For the pre-cue condition it yielded a measure of how long it took to detect the cue and read the time on the clock when attention could have been pre-allocated to the target clock. In study 1, each subject participated in 2 sessions (scopolamine/placebo), whereby the order of drug intake was counterbalanced across subjects, and subjects were blinded to conditions. Scopolamine/placebo was administered before a psychophysical experiment was conducted. In study 2, the effect of muscarinic blockade on learning induced improvements of cue detection, attention shift times (for exogenous and endogenous conditions), and signal readout was investigated. Here scopolamine/placebo was administered immediately after the first (of two) psychophysical sessions, whereby a given subject either received scopolamine or placebo pills. Confirming previous results, we show that pre-cuing resulted in the shortest read-out delays, followed by exogenous cuing, with endogenous read-out delays being slowest. Scopolamine application increased readout-delays in a dose dependent manner. This was mainly driven by increased readout-delays for pre-cue conditions, and to some extent for exogenous cue conditions. It suggests that muscarinic blockade affected the ability to pre-allocated attention to a cued location, as well as to react to peripheral cues. Additionally, blockade of muscarinic receptors immediately after the first session reduced learning dependent improvement of read-out delays. These results demonstrate that muscarinic receptors play an important in detecting cues, and fast read-out of cued information, and they contribute to the learning thereof.
Collapse
Affiliation(s)
- Alexander Thiele
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | - Agnes McDonald Milner
- School of Psychology, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Corwyn Hall
- School of Psychology, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Lucy Mayhew
- School of Psychology, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Anthony Carter
- School of Psychology, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Sidharth Sanjeev
- School of Psychology, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
2
|
Brown T, Kanel P, Griggs A, Carli G, Vangel R, Albin RL, Bohnen NI. Regional cerebral cholinergic vesicular transporter correlates of visual contrast sensitivity in Parkinson's disease: Implications for visual and cognitive function. Parkinsonism Relat Disord 2025; 131:107229. [PMID: 39693855 DOI: 10.1016/j.parkreldis.2024.107229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024]
Abstract
Visual and visual processing deficits are implicated in freezing, falling, and cognitive impairments in Parkinson's disease (PD). In particular, contrast sensitivity deficits are common and may be related to cognitive impairment in PD. While dopaminergic deficits play a role in PD-related visual dysfunction, brain cholinergic systems also modulate many aspects of visual processing. The aim of this study was to explore regional cerebral cholinergic terminal density correlates of contrast sensitivity in PD. Ninety-one PD subjects underwent contrast sensitivity testing, motor testing, cognitive testing, and brain MRI and [18F]-fluoroethoxybenzovesamicol [18F]-FEOBV PET imaging. Whole brain false discovery error-corrected (p < 0.05) correlations revealed significant associations between VAChT deficits in pericentral, limbic, and visual processing regions and contrast sensitivity performance, independent of disease duration and dopaminergic medication doses. These results suggest that brain cholinergic deficits correlate with contrast sensitivity deficits in PD. Additionally, decreased Rabin contrast sensitivity scores were associated with lower total scores in the Parkinson's Disease Cognitive Rating Scale. These findings suggest that diminished cognitive performance correlated with contrast sensitivity partly reflects underlying vulnerabilities of brain cholinergic systems.
Collapse
Affiliation(s)
- Taylor Brown
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Functional Neuroimaging, Cognitive, and Mobility Laboratory, University of Michigan, Ann Arbor, MI, USA
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA; Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA; Functional Neuroimaging, Cognitive, and Mobility Laboratory, University of Michigan, Ann Arbor, MI, USA.
| | - Alexis Griggs
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Functional Neuroimaging, Cognitive, and Mobility Laboratory, University of Michigan, Ann Arbor, MI, USA
| | - Giulia Carli
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA; Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA; Functional Neuroimaging, Cognitive, and Mobility Laboratory, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Robert Vangel
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Functional Neuroimaging, Cognitive, and Mobility Laboratory, University of Michigan, Ann Arbor, MI, USA
| | - Roger L Albin
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA; Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA; Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA; Functional Neuroimaging, Cognitive, and Mobility Laboratory, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Mishra W, Kheradpezhouh E, Arabzadeh E. Activation of M1 cholinergic receptors in mouse somatosensory cortex enhances information processing and detection behaviour. Commun Biol 2024; 7:3. [PMID: 38168628 PMCID: PMC10761830 DOI: 10.1038/s42003-023-05699-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
To optimise sensory representations based on environmental demands, the activity of cortical neurons is regulated by neuromodulators such as Acetylcholine (ACh). ACh is implicated in cognitive functions including attention, arousal and sleep cycles. However, it is not clear how specific ACh receptors shape the activity of cortical neurons in response to sensory stimuli. Here, we investigate the role of a densely expressed muscarinic ACh receptor M1 in information processing in the mouse primary somatosensory cortex and its influence on the animal's sensitivity to detect vibrotactile stimuli. We show that M1 activation results in faster and more reliable neuronal responses, manifested by a significant reduction in response latencies and the trial-to-trial variability. At the population level, M1 activation reduces the network synchrony, and thus enhances the capacity of cortical neurons in conveying sensory information. Consistent with the neuronal findings, we show that M1 activation significantly improves performances in a vibriotactile detection task.
Collapse
Affiliation(s)
- Wricha Mishra
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Ehsan Kheradpezhouh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
4
|
Moberg S, Takahashi N. Neocortical layer 5 subclasses: From cellular properties to roles in behavior. Front Synaptic Neurosci 2022; 14:1006773. [PMID: 36387773 PMCID: PMC9650089 DOI: 10.3389/fnsyn.2022.1006773] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 09/08/2024] Open
Abstract
Layer 5 (L5) serves as the main output layer of cortical structures, where long-range projecting pyramidal neurons broadcast the columnar output to other cortical and extracortical regions of the brain. L5 pyramidal neurons are grouped into two subclasses based on their projection targets; while intratelencephalic (IT) neurons project to cortical areas and the striatum, extratelencephalic (ET) neurons project to subcortical areas such as the thalamus, midbrain, and brainstem. Each L5 subclass possesses distinct morphological and electrophysiological properties and is incorporated into a unique synaptic network. Thanks to recent advances in genetic tools and methodologies, it has now become possible to distinguish between the two subclasses in the living brain. There is increasing evidence indicating that each subclass plays a unique role in sensory processing, decision-making, and learning. This review first summarizes the anatomical and physiological properties as well as the neuromodulation of IT and ET neurons in the rodent neocortex, and then reviews recent literature on their roles in sensory processing and rodent behavior. Our ultimate goal is to provide a comprehensive understanding of the role of each subclass in cortical function by examining their operational regimes based on their cellular properties.
Collapse
Affiliation(s)
- Sara Moberg
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Naoya Takahashi
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| |
Collapse
|
5
|
Tsolias A, Medalla M. Muscarinic Acetylcholine Receptor Localization on Distinct Excitatory and Inhibitory Neurons Within the ACC and LPFC of the Rhesus Monkey. Front Neural Circuits 2022; 15:795325. [PMID: 35087381 PMCID: PMC8786743 DOI: 10.3389/fncir.2021.795325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Acetylcholine (ACh) can act on pre- and post-synaptic muscarinic receptors (mAChR) in the cortex to influence a myriad of cognitive processes. Two functionally-distinct regions of the prefrontal cortex-the lateral prefrontal cortex (LPFC) and the anterior cingulate cortex (ACC)-are differentially innervated by ascending cholinergic pathways yet, the nature and organization of prefrontal-cholinergic circuitry in primates are not well understood. Using multi-channel immunohistochemical labeling and high-resolution microscopy, we found regional and laminar differences in the subcellular localization and the densities of excitatory and inhibitory subpopulations expressing m1 and m2 muscarinic receptors, the two predominant cortical mAChR subtypes, in the supragranular layers of LPFC and ACC in rhesus monkeys (Macaca mulatta). The subset of m1+/m2+ expressing SMI-32+ pyramidal neurons labeled in layer 3 (L3) was denser in LPFC than in ACC, while m1+/m2+ SMI-32+ neurons co-expressing the calcium-binding protein, calbindin (CB) was greater in ACC. Further, we found between-area differences in laminar m1+ dendritic expression, and m2+ presynaptic localization on cortico-cortical (VGLUT1+) and sub-cortical inputs (VGLUT2+), suggesting differential cholinergic modulation of top-down vs. bottom-up inputs in the two areas. While almost all inhibitory interneurons-identified by their expression of parvalbumin (PV+), CB+, and calretinin (CR+)-expressed m1+, the localization of m2+ differed by subtype and area. The ACC exhibited a greater proportion of m2+ inhibitory neurons compared to the LPFC and had a greater density of presynaptic m2+ localized on inhibitory (VGAT+) inputs targeting proximal somatodendritic compartments and axon initial segments of L3 pyramidal neurons. These data suggest a greater capacity for m2+-mediated cholinergic suppression of inhibition in the ACC compared to the LPFC. The anatomical localization of muscarinic receptors on ACC and LPFC micro-circuits shown here contributes to our understanding of diverse cholinergic neuromodulation of functionally-distinct prefrontal areas involved in goal-directed behavior, and how these interactions maybe disrupted in neuropsychiatric and neurological conditions.
Collapse
Affiliation(s)
- Alexandra Tsolias
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
6
|
Trautmann EM, O'Shea DJ, Sun X, Marshel JH, Crow A, Hsueh B, Vesuna S, Cofer L, Bohner G, Allen W, Kauvar I, Quirin S, MacDougall M, Chen Y, Whitmire MP, Ramakrishnan C, Sahani M, Seidemann E, Ryu SI, Deisseroth K, Shenoy KV. Dendritic calcium signals in rhesus macaque motor cortex drive an optical brain-computer interface. Nat Commun 2021; 12:3689. [PMID: 34140486 PMCID: PMC8211867 DOI: 10.1038/s41467-021-23884-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/19/2021] [Indexed: 02/05/2023] Open
Abstract
Calcium imaging is a powerful tool for recording from large populations of neurons in vivo. Imaging in rhesus macaque motor cortex can enable the discovery of fundamental principles of motor cortical function and can inform the design of next generation brain-computer interfaces (BCIs). Surface two-photon imaging, however, cannot presently access somatic calcium signals of neurons from all layers of macaque motor cortex due to photon scattering. Here, we demonstrate an implant and imaging system capable of chronic, motion-stabilized two-photon imaging of neuronal calcium signals from macaques engaged in a motor task. By imaging apical dendrites, we achieved optical access to large populations of deep and superficial cortical neurons across dorsal premotor (PMd) and gyral primary motor (M1) cortices. Dendritic signals from individual neurons displayed tuning for different directions of arm movement. Combining several technical advances, we developed an optical BCI (oBCI) driven by these dendritic signalswhich successfully decoded movement direction online. By fusing two-photon functional imaging with CLARITY volumetric imaging, we verified that many imaged dendrites which contributed to oBCI decoding originated from layer 5 output neurons, including a putative Betz cell. This approach establishes new opportunities for studying motor control and designing BCIs via two photon imaging.
Collapse
Affiliation(s)
- Eric M Trautmann
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Daniel J O'Shea
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Xulu Sun
- Department of Biology, Stanford University, Stanford, CA, USA.
| | - James H Marshel
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Ailey Crow
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Brian Hsueh
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Sam Vesuna
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Lucas Cofer
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Gergő Bohner
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Will Allen
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Isaac Kauvar
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Sean Quirin
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Yuzhi Chen
- Center for Perceptual Systems, University of Texas, Austin, TX, USA
- Department of Psychology, University of Texas, Austin, TX, USA
- Department of Neuroscience, University of Texas, Austin, TX, USA
| | - Matthew P Whitmire
- Center for Perceptual Systems, University of Texas, Austin, TX, USA
- Department of Psychology, University of Texas, Austin, TX, USA
- Department of Neuroscience, University of Texas, Austin, TX, USA
| | | | - Maneesh Sahani
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Eyal Seidemann
- Center for Perceptual Systems, University of Texas, Austin, TX, USA
- Department of Psychology, University of Texas, Austin, TX, USA
- Department of Neuroscience, University of Texas, Austin, TX, USA
| | - Stephen I Ryu
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Palo Alto Medical Foundation, Palo Alto, CA, USA
| | - Karl Deisseroth
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Psychiatry and Behavioral Science, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA.
| | - Krishna V Shenoy
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA.
- Department of Neurobiology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Dasilva M, Brandt C, Alwin Gieselmann M, Distler C, Thiele A. Contribution of Ionotropic Glutamatergic Receptors to Excitability and Attentional Signals in Macaque Frontal Eye Field. Cereb Cortex 2021; 31:3266-3284. [PMID: 33626129 PMCID: PMC8196243 DOI: 10.1093/cercor/bhab007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 11/27/2022] Open
Abstract
Top-down attention, controlled by frontal cortical areas, is a key component of cognitive operations. How different neurotransmitters and neuromodulators flexibly change the cellular and network interactions with attention demands remains poorly understood. While acetylcholine and dopamine are critically involved, glutamatergic receptors have been proposed to play important roles. To understand their contribution to attentional signals, we investigated how ionotropic glutamatergic receptors in the frontal eye field (FEF) of male macaques contribute to neuronal excitability and attentional control signals in different cell types. Broad-spiking and narrow-spiking cells both required N-methyl-D-aspartic acid and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor activation for normal excitability, thereby affecting ongoing or stimulus-driven activity. However, attentional control signals were not dependent on either glutamatergic receptor type in broad- or narrow-spiking cells. A further subdivision of cell types into different functional types using cluster-analysis based on spike waveforms and spiking characteristics did not change the conclusions. This can be explained by a model where local blockade of specific ionotropic receptors is compensated by cell embedding in large-scale networks. It sets the glutamatergic system apart from the cholinergic system in FEF and demonstrates that a reduction in excitability is not sufficient to induce a reduction in attentional control signals.
Collapse
Affiliation(s)
- Miguel Dasilva
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,College of Medicine and Health, University of Exeter, EX1 2LU, UK
| | - Christian Brandt
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,Institute of Clinical Research, University of Southern Denmark, DK-5230 Odense, Denmark
| | | | - Claudia Distler
- Allgemeine Zoologie und Neurobiologie, Ruhr-Universität Bochum, Bochum 44801 Germany
| | - Alexander Thiele
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
8
|
Herrero JL, Thiele A. Effects of muscarinic and nicotinic receptors on contextual modulation in macaque area V1. Sci Rep 2021; 11:8384. [PMID: 33863988 PMCID: PMC8052350 DOI: 10.1038/s41598-021-88044-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 04/05/2021] [Indexed: 02/02/2023] Open
Abstract
Context affects the salience and visibility of image elements in visual scenes. Collinear flankers can enhance or decrease the perceptual and neuronal sensitivity to flanked stimuli. These effects are mediated through lateral interactions between neurons in the primary visual cortex (area V1), in conjunction with feedback from higher visual areas. The strength of lateral interactions is affected by cholinergic neuromodulation. Blockade of muscarinic receptors should increase the strength of lateral intracortical interactions, while nicotinic blockade should reduce thalamocortical feed-forward drive. Here we test this proposal through local iontophoretic application of the muscarinic receptor antagonist scopolamine and the nicotinic receptor antagonist mecamylamine, while recording single cells in parafoveal representations in awake fixating macaque V1. Collinear flankers generally reduced neuronal contrast sensitivity. Muscarinic and nicotinic receptor blockade equally reduced neuronal contrast sensitivity. Contrary to our hypothesis, flanker interactions were not systematically affected by either receptor blockade.
Collapse
Affiliation(s)
| | - Alexander Thiele
- Biosciences Institute, Newcastle University, Henry Wellcome Building, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
9
|
Vaucher E, Laliberté G, Higgins MC, Maheux M, Jolicoeur P, Chamoun M. Cholinergic potentiation of visual perception and vision restoration in rodents and humans. Restor Neurol Neurosci 2020; 37:553-569. [PMID: 31839615 DOI: 10.3233/rnn-190947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The cholinergic system is a potent neuromodulator system that plays a critical role in cortical plasticity, attention, and learning. Recently, it was found that boosting this system during perceptual learning robustly enhances sensory perception in rodents. In particular, pairing cholinergic activation with visual stimulation increases neuronal responses, cue detection ability, and long-term facilitation in the primary visual cortex. The mechanisms of cholinergic enhancement are closely linked to attentional processes, long-term potentiation, and modulation of the excitatory/inhibitory balance. Some studies currently examine this effect in humans. OBJECTIVE The present article reviews the research from our laboratory, examining whether potentiating the central cholinergic system could help visual perception and restoration. METHODS Electrophysiological or pharmacological enhancement of the cholinergic system are administered during a visual training. Electrophysiological responses and perceptual learning performance are investigated before and after the training in rats and humans. This approach's ability to restore visual capacities following a visual deficit induced by a partial optic nerve crush is also investigated in rats. RESULTS The coupling of visual training to cholinergic stimulation improved visual discrimination and visual acuity in rats, and improved residual vision after a deficit. These changes were due to muscarinic and nicotinic transmissions and were associated with a functional improvement of evoked potentials. In humans, potentiation of cholinergic transmission with 5 mg of donepezil showed improved learning and ocular dominance plasticity, although this treatment was ineffective in augmenting the perceptual threshold and electroencephalography. CONCLUSIONS Potential therapeutic outcomes ought to facilitate vision restoration using commercially available cholinergic agents combined with visual stimulation in order to prevent irreversible vision loss in patients. This approach has the potential to help a large population of visually impaired individuals.
Collapse
Affiliation(s)
- Elvire Vaucher
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada.,Centre de recherche en neuropsychologie et cognition (CERNEC), Montréal, Québec, Canada
| | - Guillaume Laliberté
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada
| | - Marie-Charlotte Higgins
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada
| | - Manon Maheux
- Centre de recherche en neuropsychologie et cognition (CERNEC), Montréal, Québec, Canada.,Département de Psychologie, Université de Montréal, Montréal, Québec, Canada
| | - Pierre Jolicoeur
- Centre de recherche en neuropsychologie et cognition (CERNEC), Montréal, Québec, Canada.,Département de Psychologie, Université de Montréal, Montréal, Québec, Canada
| | - Mira Chamoun
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
10
|
Liu J, Wang M, Sun L, Pan NC, Zhang C, Zhang J, Zuo Z, He S, Wu Q, Wang X. Integrative analysis of in vivo recording with single-cell RNA-seq data reveals molecular properties of light-sensitive neurons in mouse V1. Protein Cell 2020; 11:417-432. [PMID: 32350740 PMCID: PMC7251024 DOI: 10.1007/s13238-020-00720-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/09/2020] [Indexed: 01/09/2023] Open
Abstract
Vision formation is classically based on projections from retinal ganglion cells (RGC) to the lateral geniculate nucleus (LGN) and the primary visual cortex (V1). Neurons in the mouse V1 are tuned to light stimuli. Although the cellular information of the retina and the LGN has been widely studied, the transcriptome profiles of single light-stimulated neuron in V1 remain unknown. In our study, in vivo calcium imaging and whole-cell electrophysiological patch-clamp recording were utilized to identify 53 individual cells from layer 2/3 of V1 as light-sensitive (LS) or non-light-sensitive (NS) by single-cell light-evoked calcium evaluation and action potential spiking. The contents of each cell after functional tests were aspirated in vivo through a patch-clamp pipette for mRNA sequencing. Moreover, the three-dimensional (3-D) morphological characterizations of the neurons were reconstructed in a live mouse after the whole-cell recordings. Our sequencing results indicated that V1 neurons with a high expression of genes related to transmission regulation, such as Rtn4r and Rgs7, and genes involved in membrane transport, such as Na+/K+ ATPase and NMDA-type glutamatergic receptors, preferentially responded to light stimulation. Furthermore, an antagonist that blocks Rtn4r signals could inactivate the neuronal responses to light stimulation in live mice. In conclusion, our findings of the vivo-seq analysis indicate the key role of the strength of synaptic transmission possesses neurons in V1 of light sensory.
Collapse
Affiliation(s)
- Jianwei Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Le Sun
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Clara Pan
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Changjiang Zhang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjing Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sheng He
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
11
|
Shirani F. Transient neocortical gamma oscillations induced by neuronal response modulation. J Comput Neurosci 2020; 48:103-122. [PMID: 31989403 DOI: 10.1007/s10827-019-00738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 11/04/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
In this paper a mean field model of spatio-temporal electroencephalographic activity in the neocortex is used to computationally study the emergence of neocortical gamma oscillations as a result of neuronal response modulation. It is shown using a numerical bifurcation analysis that gamma oscillations emerge robustly in the solutions of the model and transition to beta oscillations through coordinated modulation of the responsiveness of inhibitory and excitatory neuronal populations. The spatio-temporal pattern of the propagation of these oscillations across the neocortex is illustrated by solving the equations of the model using a finite element software package. Thereby, it is shown that the gamma oscillations remain localized to the regions of neuronal modulation. Moreover, it is discussed that the inherent spatial averaging effect of commonly used electrocortical measurement techniques can significantly alter the amplitude and pattern of fast oscillations in neocortical recordings, and hence can potentially affect physiological interpretations of these recordings.
Collapse
Affiliation(s)
- Farshad Shirani
- Department of Mathematics and Statistics, Georgetown University, Washington, DC, 20057, USA.
| |
Collapse
|
12
|
Mechanisms underlying gain modulation in the cortex. Nat Rev Neurosci 2020; 21:80-92. [PMID: 31911627 DOI: 10.1038/s41583-019-0253-y] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2019] [Indexed: 01/19/2023]
Abstract
Cortical gain regulation allows neurons to respond adaptively to changing inputs. Neural gain is modulated by internal and external influences, including attentional and arousal states, motor activity and neuromodulatory input. These influences converge to a common set of mechanisms for gain modulation, including GABAergic inhibition, synaptically driven fluctuations in membrane potential, changes in cellular conductance and changes in other biophysical neural properties. Recent work has identified GABAergic interneurons as targets of neuromodulatory input and mediators of state-dependent gain modulation. Here, we review the engagement and effects of gain modulation in the cortex. We highlight key recent findings that link phenomenological observations of gain modulation to underlying cellular and circuit-level mechanisms. Finally, we place these cellular and circuit interactions in the larger context of their impact on perception and cognition.
Collapse
|
13
|
Harrison LA, Kats A, Williams ME, Aziz-Zadeh L. The Importance of Sensory Processing in Mental Health: A Proposed Addition to the Research Domain Criteria (RDoC) and Suggestions for RDoC 2.0. Front Psychol 2019; 10:103. [PMID: 30804830 PMCID: PMC6370662 DOI: 10.3389/fpsyg.2019.00103] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022] Open
Abstract
The time is ripe to integrate burgeoning evidence of the important role of sensory and motor functioning in mental health within the National Institute of Mental Health's [NIMH] Research Domain Criteria [RDoC] framework (National Institute of Mental Health, n.d.a), a multi-dimensional method of characterizing mental functioning in health and disease across all neurobiological levels of analysis ranging from genetic to behavioral. As the importance of motor processing in psychopathology has been recognized (Bernard and Mittal, 2015; Garvey and Cuthbert, 2017; National Institute of Mental Health, 2019), here we focus on sensory processing. First, we review the current design of the RDoC matrix, noting sensory features missing despite their prevalence in multiple mental illnesses. We identify two missing classes of sensory symptoms that we widely define as (1) sensory processing, including sensory sensitivity and active sensing, and (2) domains of perceptual signaling, including interoception and proprioception, which are currently absent or underdeveloped in the perception construct of the cognitive systems domain. Then, we describe the neurobiological basis of these psychological constructs and examine why these sensory features are important for understanding psychopathology. Where appropriate, we examine links between sensory processing and the domains currently included in the RDoC matrix. Throughout, we emphasize how the addition of these sensory features to the RDoC matrix is important for understanding a range of mental health disorders. We conclude with the suggestion that a separate sensation and perception domain can enhance the current RDoC framework, while discussing what we see as important principles and promising directions for the future development and use of the RDoC.
Collapse
Affiliation(s)
- Laura A. Harrison
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
| | - Anastasiya Kats
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
| | - Marian E. Williams
- Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Lisa Aziz-Zadeh
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
14
|
Groleau M, Chamoun M, Vaucher E. Stimulation of Acetylcholine Release and Pharmacological Potentiation of Cholinergic Transmission Affect Cholinergic Receptor Expression Differently during Visual Conditioning. Neuroscience 2018; 386:79-90. [PMID: 29958942 DOI: 10.1016/j.neuroscience.2018.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 11/30/2022]
Abstract
Cholinergic stimulation coupled with visual conditioning enhances the visual acuity and cortical responses in the primary visual cortex. To determine which cholinergic receptors are involved in these processes, qRT-PCR was used. Two modes of cholinergic enhancement were tested: a phasic increase of acetylcholine release by an electrical stimulation of the basal forebrain cholinergic nucleus projecting to the visual cortex, or a tonic pharmacological potentiation of the cholinergic transmission by the acetylcholine esterase inhibitor, donepezil. A daily visual exposure to sine-wave gratings (training) was paired with the cholinergic enhancement, up to 14 days. qRT-PCR was performed at rest, 10 min, one week or two weeks of visual/cholinergic training with samples of the visual and somatosensory cortices, and the BF for determining mRNA expression of muscarinic receptor subtypes (m1, m2, m3, m4, m5), nicotinic receptor subunits (α3, α4, α7, β2, β4), and NMDA receptors, GAD65 and ChAT, as indexes of cortical plasticity. A Kruskal-Wallis test showed a modulation of the expression in the visual cortex of m2, m3, m4, m5, α7, β4, NMDA and GAD65, but only β4 within the basal forebrain and none of these mRNA within the somatosensory cortex. The two modes of cholinergic enhancement induced different effects on mRNA expression, related to the number of visual conditioning sessions and receptor specificity. This study suggests that the combination of cholinergic enhancement and visual conditioning is specific to the visual cortex and varies between phasic or tonic manipulation of acetylcholine levels.
Collapse
Affiliation(s)
- Marianne Groleau
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada.
| | - Mira Chamoun
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada.
| | - Elvire Vaucher
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|