1
|
Zwergal A, Grabova D, Schöberl F. Vestibular contribution to spatial orientation and navigation. Curr Opin Neurol 2024; 37:52-58. [PMID: 38010039 PMCID: PMC10779452 DOI: 10.1097/wco.0000000000001230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
PURPOSE OF REVIEW The vestibular system provides three-dimensional idiothetic cues for updating of one's position in space during head and body movement. Ascending vestibular signals reach entorhinal and hippocampal networks via head-direction pathways, where they converge with multisensory information to tune the place and grid cell code. RECENT FINDINGS Animal models have provided insight to neurobiological consequences of vestibular lesions for cerebral networks controlling spatial cognition. Multimodal cerebral imaging combined with behavioural testing of spatial orientation and navigation performance as well as strategy in the last years helped to decipher vestibular-cognitive interactions also in humans. SUMMARY This review will update the current knowledge on the anatomical and cellular basis of vestibular contributions to spatial orientation and navigation from a translational perspective (animal and human studies), delineate the behavioural and functional consequences of different vestibular pathologies on these cognitive domains, and will lastly speculate on a potential role of vestibular dysfunction for cognitive aging and impeding cognitive impairment in analogy to the well known effects of hearing loss.
Collapse
Affiliation(s)
- Andreas Zwergal
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Denis Grabova
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich
| | - Florian Schöberl
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
2
|
Breinbauer HA, Arévalo-Romero C, Villarroel K, Lavin C, Faúndez F, Garrido R, Alarcón K, Stecher X, Zamorano F, Billeke P, Delano PH. Functional Dizziness as a Spatial Cognitive Dysfunction. Brain Sci 2023; 14:16. [PMID: 38248231 PMCID: PMC10813051 DOI: 10.3390/brainsci14010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
(1) Background: Persistent postural-perceptual dizziness (PPPD) is a common chronic dizziness disorder with an unclear pathophysiology. It is hypothesized that PPPD may involve disrupted spatial cognition processes as a core feature. (2) Methods: A cohort of 19 PPPD patients underwent psycho-cognitive testing, including assessments for anxiety, depression, memory, attention, planning, and executive functions, with an emphasis on spatial navigation via a virtual Morris water maze. These patients were compared with 12 healthy controls and 20 individuals with other vestibular disorders but without PPPD. Vestibular function was evaluated using video head impulse testing and vestibular evoked myogenic potentials, while brain magnetic resonance imaging was used to exclude confounding pathology. (3) Results: PPPD patients demonstrated unique impairments in allocentric spatial navigation (as evidenced by the virtual Morris water maze) and in other high-demand visuospatial cognitive tasks that involve executive functions and planning, such as the Towers of London and Trail Making B tests. A factor analysis highlighted spatial navigation and advanced visuospatial functions as being central to PPPD, with a strong correlation to symptom severity. (4) Conclusions: PPPD may broadly impair higher cognitive functions, especially in spatial cognition. We discuss a disruption in the creation of enriched cognitive spatial maps as a possible pathophysiology for PPPD.
Collapse
Affiliation(s)
- Hayo A. Breinbauer
- Laboratory for Clinical Neuro-Otology and Balance-Neuroscience, Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8331150, Chile; (C.A.-R.); (K.V.); (F.F.); (R.G.); (K.A.); (P.H.D.)
- Department of Otolaryngology, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610615, Chile
| | - Camilo Arévalo-Romero
- Laboratory for Clinical Neuro-Otology and Balance-Neuroscience, Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8331150, Chile; (C.A.-R.); (K.V.); (F.F.); (R.G.); (K.A.); (P.H.D.)
| | - Karen Villarroel
- Laboratory for Clinical Neuro-Otology and Balance-Neuroscience, Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8331150, Chile; (C.A.-R.); (K.V.); (F.F.); (R.G.); (K.A.); (P.H.D.)
| | - Claudio Lavin
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago 7610615, Chile (P.B.)
| | - Felipe Faúndez
- Laboratory for Clinical Neuro-Otology and Balance-Neuroscience, Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8331150, Chile; (C.A.-R.); (K.V.); (F.F.); (R.G.); (K.A.); (P.H.D.)
| | - Rosario Garrido
- Laboratory for Clinical Neuro-Otology and Balance-Neuroscience, Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8331150, Chile; (C.A.-R.); (K.V.); (F.F.); (R.G.); (K.A.); (P.H.D.)
| | - Kevin Alarcón
- Laboratory for Clinical Neuro-Otology and Balance-Neuroscience, Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8331150, Chile; (C.A.-R.); (K.V.); (F.F.); (R.G.); (K.A.); (P.H.D.)
| | - Ximena Stecher
- Department of Radiology, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610615, Chile; (X.S.); (F.Z.)
| | - Francisco Zamorano
- Department of Radiology, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610615, Chile; (X.S.); (F.Z.)
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago 8420524, Chile
| | - Pablo Billeke
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago 7610615, Chile (P.B.)
| | - Paul H. Delano
- Laboratory for Clinical Neuro-Otology and Balance-Neuroscience, Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8331150, Chile; (C.A.-R.); (K.V.); (F.F.); (R.G.); (K.A.); (P.H.D.)
- Centro Avanzado de Ingeniería Eléctrica y Electrónica, AC3E, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
- Servicio de Otorrinolaringología, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile
| |
Collapse
|
3
|
Stammler B, Rosenzopf H, Röhrig L, Smaczny S, Matuz T, Schenk T, Karnath HO. [Clinical examination of spatial neglect and other disorders of spatial cognition]. DER NERVENARZT 2023; 94:744-756. [PMID: 37535111 DOI: 10.1007/s00115-023-01525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 08/04/2023]
Abstract
Neglect occurring after stroke, neoplasms or degenerative processes can lead to considerable disability in everyday life as can other disorders of spatial orientation. Therefore, a dedicated examination and early diagnostic classification are obligatory. Behavioral tests are helpful in this respect, enabling the clinician to obtain an initial overview of the existing deficits even at the patient's bedside. The clinical (bedside) examination of spatial neglect as well as the corresponding differential diagnostic procedure for the clarification of (possibly additionally or exclusively existing) hemianopia and extinction, as well as the examination of disorders of visuospatial perception, visuoconstructive disorders, topographic disorders, Bálint's syndrome, simultanagnosia, and optic ataxia are presented. The presentation is based on the newly revised (year 2023) guidelines of the Association of the Scientific Medical Societies in Germany (AWMF) on this subject area.
Collapse
Affiliation(s)
- Britta Stammler
- Zentrum für Neurologie, Sektion für Neuropsychologie, Hertie-Institut für klinische Hirnforschung, Universität Tübingen, 72076, Tübingen, Deutschland
| | - Hannah Rosenzopf
- Zentrum für Neurologie, Sektion für Neuropsychologie, Hertie-Institut für klinische Hirnforschung, Universität Tübingen, 72076, Tübingen, Deutschland
| | - Lisa Röhrig
- Zentrum für Neurologie, Sektion für Neuropsychologie, Hertie-Institut für klinische Hirnforschung, Universität Tübingen, 72076, Tübingen, Deutschland
| | - Stefan Smaczny
- Zentrum für Neurologie, Sektion für Neuropsychologie, Hertie-Institut für klinische Hirnforschung, Universität Tübingen, 72076, Tübingen, Deutschland
| | - Tamara Matuz
- Zentrum für Neurologie, Sektion für Neuropsychologie, Hertie-Institut für klinische Hirnforschung, Universität Tübingen, 72076, Tübingen, Deutschland
| | - Thomas Schenk
- Ludwig-Maximilians-Universität München, Department Psychologie - Neuropsychologie, Leopoldstraße 13, 80802, München, Deutschland
| | - Hans-Otto Karnath
- Zentrum für Neurologie, Sektion für Neuropsychologie, Hertie-Institut für klinische Hirnforschung, Universität Tübingen, 72076, Tübingen, Deutschland.
- Zentrum für Neurologie, Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland.
| |
Collapse
|
4
|
Gerb J, Brandt T, Dieterich M. Different approaches to test orientation of self in space: comparison of a 2D pen-and-paper test and a 3D real-world pointing task. J Neurol 2023; 270:642-650. [PMID: 36342523 PMCID: PMC9886631 DOI: 10.1007/s00415-022-11446-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
Spatial orientation is based on a complex cortical network with input from multiple sensory systems. It is affected by training, sex and age as well as cultural and psychological factors, resulting in different individual skill levels in healthy subjects. Various neurological disorders can lead to different patterns or specific deficits of spatial orientation and navigation. Accordingly, numerous tests have been proposed to assess these abilities. Here, we compare the results of (1) a validated questionnaire-based self-estimate of orientation/navigation ability (Santa Barbara Sense of Direction Scale, SBSODS) and (2) a validated pen-and-paper two-dimensional perspective test (Perspective Taking Spatial Orientation Test, SOT) with (3) a newly developed test of finger-arm pointing performance in a 3D real-world (3D-RWPT) paradigm using a recently established pointing device. A heterogeneous group of 121 participants (mean age 56.5 ± 17.7 years, 52 females), including 16 healthy volunteers and 105 patients with different vestibular, ocular motor and degenerative brain disorders, was included in this study. A high correlation was found between 2D perspective task and 3D pointing along the horizontal (azimuth) but not along the vertical (polar) plane. Self-estimated navigation ability (SBSODS) could not reliably predict actual performance in either 2D- or 3D-tests. Clinical assessment of spatial orientation and memory should therefore include measurements of actual performance, based on a 2D pen-and-paper test or a 3D pointing task, rather than memory-based questionnaires, since solely relying on the patient's history of self-estimated navigation ability results in misjudgments. The 3D finger-arm pointing test (3D-RWPT) reveals additional information on vertical (polar) spatial performance which goes undetected in conventional 2D pen-and-paper tests. Diseases or age-specific changes of spatial orientation in the vertical plane should not be clinically neglected. The major aim of this pilot study was to compare the practicability and capability of the three tests but not yet to prove their use for differential diagnosis. The next step will be to establish a suitable clinical bedside test for spatial memory and orientation.
Collapse
Affiliation(s)
- J Gerb
- Department of Neurology, University Hospital, Ludwig-Maximilians University, Munich, Germany.
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians University, Munich, Germany.
| | - T Brandt
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians University, Munich, Germany
- Hertie Senior Professor for Clinical Neuroscience, Ludwig-Maximilians University, Munich, Germany
| | - M Dieterich
- Department of Neurology, University Hospital, Ludwig-Maximilians University, Munich, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
5
|
Gerb J, Brandt T, Dieterich M. Different strategies in pointing tasks and their impact on clinical bedside tests of spatial orientation. J Neurol 2022; 269:5738-5745. [PMID: 35258851 PMCID: PMC9553832 DOI: 10.1007/s00415-022-11015-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/27/2022] [Accepted: 02/05/2022] [Indexed: 11/24/2022]
Abstract
Deficits in spatial memory, orientation, and navigation are often early or neglected signs of degenerative and vestibular neurological disorders. A simple and reliable bedside test of these functions would be extremely relevant for diagnostic routine. Pointing at targets in the 3D environment is a basic well-trained common sensorimotor ability that provides a suitable measure. We here describe a smartphone-based pointing device using the built-in inertial sensors for analysis of pointing performance in azimuth and polar spatial coordinates. Interpretation of the vectors measured in this way is not trivial, since the individuals tested may use at least two different strategies: first, they may perform the task in an egocentric eye-based reference system by aligning the fingertip with the target retinotopically or second, by aligning the stretched arm and the index finger with the visual line of sight in allocentric world-based coordinates similar to using a rifle. The two strategies result in considerable differences of target coordinates. A pilot test with a further developed design of the device and an app for a standardized bedside utilization in five healthy volunteers revealed an overall mean deviation of less than 5° between the measured and the true coordinates. Future investigations of neurological patients comparing their performance before and after changes in body position (chair rotation) may allow differentiation of distinct orientational deficits in peripheral (vestibulopathy) or central (hippocampal or cortical) disorders.
Collapse
Affiliation(s)
- J. Gerb
- Department of Neurology, University Hospital, Ludwig-Maximilians University, Marchioninistrasse 15, 81377 Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians University, Marchioninistrasse 15, 81377 Munich, Germany
| | - T. Brandt
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians University, Marchioninistrasse 15, 81377 Munich, Germany
- Hertie Senior Professor for Clinical Neuroscience, Ludwig-Maximilians University, Munich, Germany
| | - M. Dieterich
- Department of Neurology, University Hospital, Ludwig-Maximilians University, Marchioninistrasse 15, 81377 Munich, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians University, Marchioninistrasse 15, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
6
|
The Role of the Precuneus in Human Spatial Updating in a Real Environment Setting-A cTBS Study. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081239. [PMID: 36013418 PMCID: PMC9410530 DOI: 10.3390/life12081239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 08/13/2022] [Indexed: 11/23/2022]
Abstract
As we move through an environment, we update positions of our body relative to other objects, even when some objects temporarily or permanently leave our field of view—this ability is termed egocentric spatial updating and plays an important role in everyday life. Still, our knowledge about its representation in the brain is still scarce, with previous studies using virtual movements in virtual environments or patients with brain lesions suggesting that the precuneus might play an important role. However, whether this assumption is also true when healthy humans move in real environments where full body-based cues are available in addition to the visual cues typically used in many VR studies is unclear. Therefore, in this study we investigated the role of the precuneus in egocentric spatial updating in a real environment setting in 20 healthy young participants who underwent two conditions in a cross-over design: (a) stimulation, achieved through applying continuous theta-burst stimulation (cTBS) to inhibit the precuneus and (b) sham condition (activated coil turned upside down). In both conditions, participants had to walk back with blindfolded eyes to objects they had previously memorized while walking with open eyes. Simplified trials (without spatial updating) were used as control condition, to make sure the participants were not affected by factors such as walking blindfolded, vestibular or working memory deficits. A significant interaction was found, with participants performing better in the sham condition compared to real stimulation, showing smaller errors both in distance and angle. The results of our study reveal evidence of an important role of the precuneus in a real-environment egocentric spatial updating; studies on larger samples are necessary to confirm and further investigate this finding.
Collapse
|
7
|
Danek A, König N, Brandt T, Dieterich M. [Autonomous Neurology within the University Hospital of LMU at 50 years]. MMW Fortschr Med 2022; 164:23-31. [PMID: 35831745 DOI: 10.1007/s15006-022-1231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Establishment of the Chair of Neurology at the University of Munich in 1971 as well as the opening of the Neurology Department at the newly built Großhadern campus (1974) provide an occasion to review the 50 years that have passed since. Further, the early history of Munich neurology is described, with its slow pace of separation (in comparison to e.g. Heidelberg, Frankfurt and Hamburg) from the parent disciplines, psychiatry and internal medicine. In Munich, they were long shaped by psychiatrists such as Bernhard von Gudden, Emil Kraepelin, Kurt Kolle and Hanns Hippius and by Friedrich von Müller and, in particular, by Gustav Bodechtel in internal medicine.Once independent, further development of neurology in Munich was characterized by fast-paced, almost revolutionary changes in neuroimaging, electrophysiology, sonography, and engineering as well as in basic neuroscience, neurogenetics included. The new department thrived under the leadership of Adolf Schrader (from 1971), Thomas Brandt (from 1984) and Marianne Dieterich (from 2008) who enjoyed the support of an ever-increasing specialised clinical-scientific staff.Evidence-based treatment of neurological disorders became the overarching and internationally visible focus of Munich neurology, with respect to both practical implementation and to research. The exemplary diseases and syndromes of multiple sclerosis, epilepsy, stroke, movement disorders, dizziness and disorders of balance and gait as well as diseases of the musculature and peripheral nerves are cared for not only within the inpatient and outpatient sections of the Neurology Department but also by units such as the Friedrich Baur Institute (FBI), the German Dizziness and Balance Centre (DSGZ), the Institutes for Stroke and Dementia Research (ISD) and for Clinical Neuroimmunology as well as in the interdisciplinary Department of Palliative Care.
Collapse
Affiliation(s)
- Adrian Danek
- LMU München, Neurologische Klinik und Poliklinik, Marchioninistraße 15, 81377, München, Deutschland.
| | - Nicolaus König
- Neurologische Klinik, Klinikum der Universität München, München, Deutschland
| | - Thomas Brandt
- LMU München, Neurologische Klinik und Poliklinik, Marchioninistraße 15, 81377, München, Deutschland
| | - Marianne Dieterich
- LMU München, Neurologische Klinik und Poliklinik, Marchioninistraße 15, 81377, München, Deutschland
| |
Collapse
|
8
|
Gammeri R, Léonard J, Toupet M, Hautefort C, van Nechel C, Besnard S, Machado ML, Nakul E, Montava M, Lavieille JP, Lopez C. Navigation strategies in patients with vestibular loss tested in a virtual reality T-maze. J Neurol 2022; 269:4333-4348. [PMID: 35306619 DOI: 10.1007/s00415-022-11069-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 01/09/2023]
Abstract
During navigation, humans mainly rely on egocentric and allocentric spatial strategies, two different frames of reference working together to build a coherent representation of the environment. Spatial memory deficits during navigation have been repeatedly reported in patients with vestibular disorders. However, little is known about how vestibular disorders can change the use of spatial navigation strategies. Here, we used a new reverse T-maze paradigm in virtual reality to explore whether vestibular loss specifically modifies the use of egocentric or allocentric spatial strategies in patients with unilateral (n = 23) and bilateral (n = 23) vestibular loss compared to healthy volunteers (n = 23) matched for age, sex and education level. Results showed that the odds of selecting and using a specific strategy in the T-maze were significantly reduced in both unilateral and bilateral vestibular loss. An exploratory analysis suggests that only right vestibular loss decreased the odds of adopting a spatial strategy, indicating an asymmetry of vestibular functions. When considering patients who used strategies to navigate, we observed that a bilateral vestibular loss reduced the odds to use an allocentric strategy, whereas a unilateral vestibular loss decreased the odds to use an egocentric strategy. Age was significantly associated with an overall lower chance to adopt a navigation strategy and, more specifically, with a decrease in the odds of using an allocentric strategy. We did not observe any sex difference in the ability to select and use a specific navigation strategy. Findings are discussed in light of previous studies on visuo-spatial abilities and studies of vestibulo-hippocampal interactions in peripheral vestibular disorders. We discuss the potential impact of the history of the disease (chronic stage in patients with a bilateral vestibulopathy vs. subacute stage in patients with a unilateral vestibular loss), of hearing impairment and non-specific attentional deficits in patients with vestibular disorders.
Collapse
Affiliation(s)
- Roberto Gammeri
- Aix Marseille University, CNRS, LNC, FR3C, Marseille, France.,Department of Psychology, University of Turin, Torino, Italy
| | - Jacques Léonard
- Aix Marseille University, CNRS, LNC, FR3C, Marseille, France
| | - Michel Toupet
- IRON, Institut de Recherche en Oto-Neurologie, Paris, France.,Centre d'Explorations Fonctionnelles Oto-Neurologiques, Paris, France
| | - Charlotte Hautefort
- IRON, Institut de Recherche en Oto-Neurologie, Paris, France.,Service ORL, Hôpital Lariboisière, Paris, France
| | - Christian van Nechel
- IRON, Institut de Recherche en Oto-Neurologie, Paris, France.,Unité Troubles de L'Équilibre Et Vertiges, CHU Brugmann, Bruxelles, Belgium.,Unité de Neuro-Ophtalmologie, CHU Erasme, Bruxelles, Belgium.,Clinique Des Vertiges, Bruxelles, Belgium
| | | | | | - Estelle Nakul
- Aix Marseille University, CNRS, LNC, FR3C, Marseille, France
| | - Marion Montava
- Department of Otorhinolaryngology, Head and Neck Surgery, Hôpital La Conception, APHM, Marseille, France
| | - Jean-Pierre Lavieille
- Department of Otorhinolaryngology, Head and Neck Surgery, Hôpital La Conception, APHM, Marseille, France
| | | |
Collapse
|
9
|
Performance in Real World- and Virtual Reality-Based Spatial Navigation Tasks in Patients With Vestibular Dysfunction. Otol Neurotol 2021; 42:e1524-e1531. [PMID: 34766948 DOI: 10.1097/mao.0000000000003289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study evaluated whether vestibular dysfunction is associated with reduced spatial navigation performance. STUDY DESIGN Cross-sectional study. SETTING Otolaryngology Clinic in the Johns Hopkins Outpatient Center and an analogous virtual reality (VR) environment. PATIENTS Eligible patients had diagnosis of unilateral or bilateral vestibular loss. Matched healthy controls were recruited at 1:1 ratio. INTERVENTIONS The navigation task involved a route-based or place-based strategy in both real world and VR environments. MAIN OUTCOME MEASURES Navigation performance was measured by distance travelled relative to optimal distance (i.e., path ratio) and the Judgments of Relative Direction (JRD) task, whereby participants had to recall relative angular distances between landmarks. RESULTS The study sample included 20 patients with vestibular loss (mean age: 61 yrs, SD: 10.2 yrs) and 20 matched controls (mean age: 60 yrs, SD: 10.4 yrs). Patients with vestibular loss travelled significantly greater distance using both route-based (path ratio 1.3 vs. 1.0, p = 0.02) and place-based (path ratio 2.6 vs. 2.0, p = 0.03) strategies in the real world. Overall, participants performed worse in virtual reality compared to real world in both path ratio (2.2 vs. 1.7; p = 0.04) and JRD error (78° vs. 67°; p < 0.01). Furthermore, while controls exhibited significant positive correlations between real world and VR performance in place-based (β = 0.75; p < 0.001) and JRD tasks (β = 0.70; p < 0.001), patients with vestibular loss exhibited no similar correlations. CONCLUSIONS The vestibular system appears to play a role in navigation ability during both actual and virtual navigation, suggesting a role for static vestibular signals in navigation performance.
Collapse
|
10
|
Schöberl F, Pradhan C, Grosch M, Brendel M, Jostes F, Obermaier K, Sowa C, Jahn K, Bartenstein P, Brandt T, Dieterich M, Zwergal A. Bilateral vestibulopathy causes selective deficits in recombining novel routes in real space. Sci Rep 2021; 11:2695. [PMID: 33514827 PMCID: PMC7846808 DOI: 10.1038/s41598-021-82427-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/20/2021] [Indexed: 11/28/2022] Open
Abstract
The differential impact of complete and incomplete bilateral vestibulopathy (BVP) on spatial orientation, visual exploration, and navigation-induced brain network activations is still under debate. In this study, 14 BVP patients (6 complete, 8 incomplete) and 14 age-matched healthy controls performed a navigation task requiring them to retrace familiar routes and recombine novel routes to find five items in real space. [18F]-fluorodeoxyglucose-PET was used to determine navigation-induced brain activations. Participants wore a gaze-controlled, head-fixed camera that recorded their visual exploration behaviour. Patients performed worse, when recombining novel routes (p < 0.001), whereas retracing of familiar routes was normal (p = 0.82). These deficits correlated with the severity of BVP. Patients exhibited higher gait fluctuations, spent less time at crossroads, and used a possible shortcut less often (p < 0.05). The right hippocampus and entorhinal cortex were less active and the bilateral parahippocampal place area more active during navigation in patients. Complete BVP showed reduced activations in the pontine brainstem, anterior thalamus, posterior insular, and retrosplenial cortex compared to incomplete BVP. The navigation-induced brain activation pattern in BVP is compatible with deficits in creating a mental representation of a novel environment. Residual vestibular function allows recruitment of brain areas involved in head direction signalling to support navigation.
Collapse
Affiliation(s)
- Florian Schöberl
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany.,German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Cauchy Pradhan
- German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Maximilian Grosch
- German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Florian Jostes
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Katrin Obermaier
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Chantal Sowa
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Klaus Jahn
- German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.,Neurological Hospital, Schön Klinik Bad Aibling, Bad Aibling, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Brandt
- German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.,Clinical Neurosciences, University Hospital, LMU Munich, Munich, Germany
| | - Marianne Dieterich
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany.,German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.,Munich Cluster of Systems Neurology, SyNergy, Munich, Germany
| | - Andreas Zwergal
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany. .,German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.
| |
Collapse
|
11
|
Pai MC, Jan SS. Have I Been Here? Sense of Location in People With Alzheimer's Disease. Front Aging Neurosci 2020; 12:582525. [PMID: 33362529 PMCID: PMC7756125 DOI: 10.3389/fnagi.2020.582525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/10/2020] [Indexed: 11/30/2022] Open
Abstract
Background: When navigating in a particular space, a sense of being at a current location is of great help for the navigators in reaching their destination or getting back to the start. To accomplish this work, interwoven neural structures and neurons are called into play. This system is called the heading direction cell-place cell-grid cell circuit. Evidence from various neuroscience studies has revealed that the regions responsible for this circuit are damaged in the early stages of Alzheimer's disease (AD). This may explain why wayfinding difficulty is one of the most frequent symptoms in persons with AD. The aim of this study was to examine the sense of location (SoL) in persons with mild AD, persons with prodromal AD (prAD), and those who were cognitively unimpaired (CU). Methods: We invited people with mild AD, prAD, and CU to participate in this study. The venue of the core experiment to assess SoL was a 660-m path located on the university campus. The participants were instructed to take a walk on the path and press a device to indicate their arrival at each of the five carefully chosen targets. The linear deviations from the target site were compared among the groups. Results: A total of 20 AD, 28 prAD, and 29 CU persons completed the study. Their Mini-Mental State Examination scores were on average 20 (SD 3), 24 (SD 3), and 28 (SD 2). The groups were well differentiated regarding several measurements for cognitive ability and spatial navigation. As for the SoL, the hit rates of exact location with linear deviation of 16 m or less were 0.05, 0.54, and 0.86 for AD, prAD, and CU persons, respectively. The hit rates were well correlated with the presence of getting lost. Also, SoL differentiated well among CU, PrAD, and AD in terms of average linear deviation. Conclusions: Our employing linear deviation by utilizing a grid-cell function device as an assessment for SoL showed distinct features among the three groups. This model can be used to develop more delicate devices or instruments to detect, monitor, and aid spatial navigation in persons with prAD and AD.
Collapse
Affiliation(s)
- Ming-Chyi Pai
- Division of Behavioral Neurology, Department of Neurology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
- Alzheimer's Disease Research Center, National Cheng Kung University Hospital, Tainan, Taiwan
- Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shau-Shiun Jan
- Alzheimer's Disease Research Center, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
12
|
Penkava J, Bardins S, Brandt T, Wuehr M, Huppert D. Spontaneous visual exploration during locomotion in patients with phobic postural vertigo. J Neurol 2020; 267:223-230. [PMID: 32852578 PMCID: PMC7718196 DOI: 10.1007/s00415-020-10151-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 11/29/2022]
Abstract
Background Earlier studies on stance and gait with posturographic and EMG-recordings and automatic gait analysis in patients with phobic postural vertigo (PPV) or visual height intolerance (vHI) revealed similar patterns of body stiffening with muscle co-contraction and a slow, cautious gait. Visual exploration in vHI patients was characterized by a freezing of gaze-in-space when standing and reduced horizontal eye and head movements during locomotion. Objective Based on the findings in vHI patients, the current study was performed with a focus on visual control of locomotion in patients with PPV while walking along a crowded hospital hallway. Methods Twelve patients with PPV and eleven controls were recruited. Participants wore a mobile infrared video eye-tracking system that continuously measured eye-in-head movements in the horizontal and vertical planes and head orientation and motion in the yaw, pitch, and roll planes. Visual exploration behavior of participants was recorded at the individually preferred speed for a total walking distance of 200 m. Gaze-in-space directions were determined by combining eye-in-head and head-in-space orientation. Walking speeds were calculated based on the trial duration and the total distance traversed. Participants were asked to rate their feelings of discomfort during the walk on a 4-point numeric rating scale. The examiners rated the crowdedness of the hospital hallway on a 4-point numeric rating scale. Results The major results of visual exploration behavior in patients with PPV in comparison to healthy controls were: eye and head positions were directed more downward in the vertical plane towards the ground ahead with increased frequency of large amplitude vertical orientation movements towards the destination, the end of the ground straight ahead. The self-adjusted speed of locomotion was significantly lower in PPV. Particularly those patients that reported high levels of discomfort exhibited a specific visual exploration of their horizontal surroundings. The durations of fixating targets in the visual surroundings were significantly shorter as compared to controls. Conclusion Gaze control of locomotion in patients with PPV is characterized by a preferred deviation of gaze more downward and by horizontal explorations for suitable auxiliary means for potential postural support in order to prevent impending falls. These eye movements have shorter durations of fixation as compared to healthy controls and patients with vHI. Finally, the pathological alterations in eye–head coordination during locomotion correlate with a higher level of discomfort and anxiety about falling.
Collapse
Affiliation(s)
- J Penkava
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University, Marchioninistr. 15, 81377, Munich, Germany.
| | - S Bardins
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University, Marchioninistr. 15, 81377, Munich, Germany
| | - T Brandt
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University, Marchioninistr. 15, 81377, Munich, Germany
- Institute for Clinical Neurosciences, Ludwig-Maximilians-University, Munich, Germany
| | - M Wuehr
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University, Marchioninistr. 15, 81377, Munich, Germany
| | - D Huppert
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University, Marchioninistr. 15, 81377, Munich, Germany
- Institute for Clinical Neurosciences, Ludwig-Maximilians-University, Munich, Germany
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
13
|
Ladyka-Wojcik N, Barense MD. Reframing spatial frames of reference: What can aging tell us about egocentric and allocentric navigation? WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2020; 12:e1549. [PMID: 33188569 DOI: 10.1002/wcs.1549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 02/02/2023]
Abstract
Representations of space in mind are crucial for navigation, facilitating processes such as remembering landmark locations, understanding spatial relationships between objects, and integrating routes. A significant problem, however, is the lack of consensus on how these representations are encoded and stored in memory. Specifically, the nature of egocentric and allocentric frames of reference in human memory is widely debated. Yet, in recent investigations of the spatial domain across the lifespan, these distinctions in mnemonic spatial frames of reference have identified age-related impairments. In this review, we survey the ways in which different terms related to spatial representations in memory have been operationalized in past aging research and suggest a taxonomy to provide a common language for future investigations and theoretical discussion. This article is categorized under: Psychology > Memory Neuroscience > Cognition Psychology > Development and Aging.
Collapse
Affiliation(s)
| | - Morgan D Barense
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Rotman Research Institute, Baycrest Hospital, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Agathos CP, Ramanoël S, Bécu M, Bernardin D, Habas C, Arleo A. Postural Control While Walking Interferes With Spatial Learning in Older Adults Navigating in a Real Environment. Front Aging Neurosci 2020; 12:588653. [PMID: 33281600 PMCID: PMC7689348 DOI: 10.3389/fnagi.2020.588653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/16/2020] [Indexed: 11/21/2022] Open
Abstract
Cognitive demands for postural control increase with aging and cognitive-motor interference (CMI) exists for a number of walking situations, especially with visuo-spatial cognitive tasks. Such interference also influences spatial learning abilities among older adults; however, this is rarely considered in research on aging in spatial navigation. We posited that visually and physically exploring an unknown environment may be subject to CMI for older adults. We investigated potential indicators of postural control interfering with spatial learning. Given known associations between age-related alterations in gait and brain structure, we also examined potential neuroanatomical correlates of this interference. Fourteen young and 14 older adults had to find an invisible goal in an unfamiliar, real, ecological environment. We measured walking speed, trajectory efficiency (direct route over taken route) and goal fixations (proportion of visual fixations toward the goal area). We calculated the change in walking speed between the first and last trials and adaptation indices for all three variables to quantify their modulation across learning trials. All participants were screened with a battery of visuo-cognitive tests. Eighteen of our participants (10 young, 8 older) also underwent a magnetic resonance imaging (MRI) examination. Older adults reduced their walking speed considerably on the first, compared to the last trial. The adaptation index of walking speed correlated positively with those of trajectory efficiency and goal fixations, indicating a reduction in resource sharing between walking and encoding the environment. The change in walking speed correlated negatively with gray matter volume in superior parietal and occipital regions and the precuneus. We interpret older adults’ change in walking speed as indicative of CMI, similar to dual task costs. This is supported by the correlations between the adaptation indices and between the change in walking speed and gray matter volume in brain regions that are important for navigation, given that they are involved in visual attention, sensory integration and encoding of space. These findings under ecological conditions in a natural spatial learning task question what constitutes dual tasking in older adults and they can lead future research to reconsider the actual cognitive burden of postural control in aging navigation research.
Collapse
Affiliation(s)
| | - Stephen Ramanoël
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,University of Côte d'Azur, LAMHESS, Nice, France
| | - Marcia Bécu
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Delphine Bernardin
- Vision Sciences Department, Essilor International R&D, Paris, France.,Essilor Canada Ltd., Montreal, QC, Canada
| | | | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|