1
|
Fu Y, Wang C, Zhang L, Ji D, Xiang A, Qi J, Zhao R, Wu L, Jin S, Zhang Q. The effectiveness of theta burst stimulation for motor recovery after stroke: a systematic review. Eur J Med Res 2024; 29:568. [PMID: 39609900 PMCID: PMC11605871 DOI: 10.1186/s40001-024-02170-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Stroke is the second leading cause of death and the third leading cause of disability worldwide. Motor dysfunction is a common sequela, which seriously affects the lives of patients. Theta burst stimulation (TBS) is a new transcranial magnetic therapy for improving motor dysfunction after stroke. However, there remains a lack of studies on the mechanism, theoretical model, and effectiveness of TBS in improving motor dysfunction following stroke. OBJECTIVE This paper provides a comprehensive overview and assessment of the current impact of TBS on motor rehabilitation following stroke and analyzes potential factors contributing to treatment effect disparities. The aim is to offer recommendations for further refining the TBS treatment approach in subsequent clinical studies while also furnishing evidence for devising tailored rehabilitation plans for stroke patients. METHODS This study was conducted following PRISMA guidelines. PubMed, Embase, Web of Science, and the Cochrane Library were searched systematically from the establishment of the database to February 2024. Relevant studies using TBS to treat patients with motor dysfunction after stroke will be included. Data on study characteristics, interventions, outcome measures, and primary outcomes were extracted. The Modified Downs and Black Checklist was used to assess the potential bias of the included studies, and a narrative synthesis of the key findings was finally conducted. RESULTS The specific mechanism of TBS in improving motor dysfunction after stroke has not been fully elucidated, but it is generally believed that TBS can improve the functional prognosis of patients by regulating motor cortical excitability, inducing neural network reorganization, and regulating cerebral circulation metabolism. Currently, most relevant clinical studies are based on the interhemispheric inhibition model (IHI), the vicariation model, and the bimodal balance-recovery model. Many studies have verified the effectiveness of TBS in improving the motor function of stroke patients, but the therapeutic effect of some studies is controversial. CONCLUSION Our results show that TBS has a good effect on improving motor function in stroke patients, but more large-scale, high-quality, multicenter studies are still necessary in the future to further clarify the mechanism of TBS and explore the optimal TBS treatment.
Collapse
Affiliation(s)
- Yanxin Fu
- Beijing Xiaotangshan Hospital, Beijing, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
| | - Chengshuo Wang
- Beijing Xiaotangshan Hospital, Beijing, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
| | - Linli Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
| | - Dongqi Ji
- Beijing Xiaotangshan Hospital, Beijing, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
| | - Aomeng Xiang
- Beijing Xiaotangshan Hospital, Beijing, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
| | - Jingman Qi
- Beijing Xiaotangshan Hospital, Beijing, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
| | - Ruoxuan Zhao
- Beijing Xiaotangshan Hospital, Beijing, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
| | - Liang Wu
- Beijing Xiaotangshan Hospital, Beijing, China.
| | - Shasha Jin
- Beijing Xiaotangshan Hospital, Beijing, China.
| | - Qin Zhang
- Beijing Xiaotangshan Hospital, Beijing, China.
| |
Collapse
|
2
|
Zhang JJY, Ang J, Saffari SE, Tor PC, Lo YL, Wan KR. Repetitive Transcranial Magnetic Stimulation for Motor Recovery After Stroke: A Systematic Review and Meta-Analysis of Randomized Controlled Trials With Low Risk of Bias. Neuromodulation 2024:S1094-7159(24)00665-2. [PMID: 39320286 DOI: 10.1016/j.neurom.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/07/2024] [Accepted: 07/29/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVES Repetitive transcranial magnetic stimulation (rTMS) has shown promising results in enhancing motor recovery after stroke, but nuances regarding its use, such as the impact of the type and site of stimulation, are not yet established. We aimed to perform a systematic review and meta-analysis of randomized controlled trials (RCTs) with low risk of bias to investigate the effect of rTMS on motor recovery after both ischemic and hemorrhagic stroke. MATERIALS AND METHODS Three databases were searched systematically for all RCTs reporting comparisons between rTMS (including theta-burst stimulation) and either no stimulation or sham stimulation up to August 19, 2022. The primary outcome measure was the Fugl-Meyer Assessment for Upper Extremity (FMA-UE). Secondary outcome measures comprised the Action Research Arm Test, Box and Block Test, Modified Ashworth Scale for the wrist, and modified Rankin Scale (mRS). RESULTS A total of 37 articles reporting 48 unique comparisons were included. Pooled mean FMA-UE scores were significantly higher in the experimental group than the control group after intervention (MD = 5.4 [MD = 10.7 after correction of potential publication bias], p < 0.001) and at the last follow-up (MD = 5.2, p = 0.031). On subgroup analysis, the improvements in FMA-UE scores, both after intervention and at the last follow-up, were significant in the acute/subacute stage of stroke (within six months) and for patients with more severe baseline motor impairment. Both contralesional and ipsilesional stimulation yielded significant improvements in FMA-UE at the first assessment after rTMS but not at the last follow-up, while the improvements from bilateral rTMS only achieved statistical significance at the last follow-up. Among the secondary outcome measures, only mRS was significantly improved in the rTMS group after intervention (MD = -0.5, p = 0.013) and at the last follow-up (MD = -0.9, p = 0.001). CONCLUSIONS Current literature supports the use of rTMS for motor recovery after stroke, especially when done within six months and for patients with more severe stroke at baseline. Future studies with larger sample sizes may be helpful in clarifying the potential of rTMS in poststroke rehabilitation.
Collapse
Affiliation(s)
- John J Y Zhang
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Department of Neurosurgery, National Neuroscience Institute, Singapore General Hospital, Singapore.
| | - Jensen Ang
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Department of Neurosurgery, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Seyed Ehsan Saffari
- Centre for Quantitative Medicine, Duke-National University of Singapore Medical School, Singapore; Program in Health Services and Systems Research, Duke-National University of Singapore Medical School, Singapore
| | - Phern-Chern Tor
- Department of Mood and Anxiety, Institute of Mental Health, Singapore
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore; Duke-National University of Singapore Medical School, Singapore
| | - Kai Rui Wan
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Department of Neurosurgery, National Neuroscience Institute, Singapore General Hospital, Singapore
| |
Collapse
|
3
|
Lee HS, Kim S, Kim H, Baik SM, Kim DH, Chang WH. No Additional Effects of Sequential Facilitatory Cerebral and Cerebellar rTMS in Subacute Stroke Patients. J Pers Med 2024; 14:687. [PMID: 39063941 PMCID: PMC11278256 DOI: 10.3390/jpm14070687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of this study was to investigate the additional effects of cerebellar rTMS on the motor recovery of facilitatory rTMS over affected primary motor cortex (M1) in subacute stroke patients. Twenty-eight subacute stroke patients were recruited in this single-blind, randomized, controlled trial. The Cr-Cbll group received Cr-Cbll rTMS stimulation consisting of high-frequency rTMS over affected M1 (10 min), motor training (10 min), and high-frequency rTMS over contralesional Cbll (10 min). The Cr-sham group received sham rTMS instead of high-frequency rTMS over the cerebellum. Ten daily sessions were performed for 2 weeks. A Fugl-Meyer Assessment (FMA) was measured before (T0), immediately after (T1), and 2 months after the intervention (T2). A total of 20 participants (10 in the Cr-Cbll group and 10 in the Cr-sham group) completed the intervention. There was no significant difference in clinical characteristics between the two groups at T0. FMA was significantly improved after the intervention in both Cr-Cbll and Cr-sham groups (p < 0.05). However, there was no significant interaction in FMA between time and group. In conclusion, these results could not demonstrate that rTMS over the contralesional cerebellum has additional effects to facilitatory rTMS over the affected M1 for improving motor function in subacute stroke patients.
Collapse
Affiliation(s)
- Ho Seok Lee
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Sungwon Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Heegoo Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Seung-min Baik
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Dae Hyun Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Department of Health Sciences and Technology, Department of Medical Device Management & Research, Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul 06355, Republic of Korea
| |
Collapse
|
4
|
Liu Q, Liu Y, Zhang Y. Effects of Cerebellar Non-Invasive Stimulation on Neurorehabilitation in Stroke Patients: An Updated Systematic Review. Biomedicines 2024; 12:1348. [PMID: 38927555 PMCID: PMC11201496 DOI: 10.3390/biomedicines12061348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The cerebellum is emerging as a promising target for noninvasive brain stimulation (NIBS). A systematic review was conducted to evaluate the effects of cerebellar NIBS on both motor and other symptoms in stroke rehabilitation, its impact on functional ability, and potential side effects (PROSPERO number: CRD42022365697). A systematic electronic database search was performed by using PubMed Central (PMC), EMBASE, and Web of Science, with a cutoff date of November 2023. Data extracted included study details, NIBS methodology, outcome measures, and results. The risk of bias in eligible studies was also assessed. Twenty-two clinical studies involving 1016 participants were finally included, with a focus on outcomes related to post-stroke motor recovery (gait and balance, muscle spasticity, and upper limb dexterity) and other functions (dysphagia and aphasia). Positive effects were observed, especially on motor functions like gait and balance. Some efficiency was also observed in dysphagia rehabilitation. However, findings on language recovery were preliminary and inconsistent. A slight improvement in functional ability was noted, with no serious adverse effects reported. Further studies are needed to explore the effects of cerebellar NIBS on post-stroke non-motor deficits and to understand how cerebellar engagement can facilitate more precise treatment strategies for stroke rehabilitation.
Collapse
Affiliation(s)
- Qi Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yang Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yumei Zhang
- Department of Rehabilitation, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
5
|
Wang J, Wu Z, Hong S, Ye H, Zhang Y, Lin Q, Chen Z, Zheng L, Qin J. Cerebellar transcranial magnetic stimulation for improving balance capacity and activity of daily living in stroke patients: a systematic review and meta-analysis. BMC Neurol 2024; 24:205. [PMID: 38879485 PMCID: PMC11179288 DOI: 10.1186/s12883-024-03720-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND The application of cerebellar transcranial magnetic stimulation (TMS) in stroke patients has received increasing attention due to its neuromodulation mechanisms. However, studies on the effect and safety of cerebellar TMS to improve balance capacity and activity of daily living (ADL) for stroke patients are limited. This systematic review and meta-analysis aimed to investigate the effect and safety of cerebellar TMS on balance capacity and ADL in stroke patients. METHOD A systematic search of seven electronic databases (PubMed, Embase, Web of Science, Cochrane Central Register of Controlled Trials, China National Knowledge Infrastructure, Wanfang and Chinese Scientific Journal) were conducted from their inception to October 20, 2023. The randomized controlled trials (RCTs) of cerebellar TMS on balance capacity and/or ADL in stroke patients were enrolled. The quality of included studies were assessed by Physiotherapy Evidence Database (PEDro) scale. RESULTS A total of 13 studies involving 542 participants were eligible. The pooled results from 8 studies with 357 participants showed that cerebellar TMS could significantly improve the post-intervention Berg balance scale (BBS) score (MD = 4.24, 95%CI = 2.19 to 6.29, P < 0.00001; heterogeneity, I2 = 74%, P = 0.0003). The pooled results from 4 studies with 173 participants showed that cerebellar TMS could significantly improve the post-intervention Time Up and Go (TUG) (MD=-1.51, 95%CI=-2.8 to -0.22, P = 0.02; heterogeneity, I2 = 0%, P = 0.41). The pooled results from 6 studies with 280 participants showed that cerebellar TMS could significantly improve the post-intervention ADL (MD = 7.75, 95%CI = 4.33 to 11.17, P < 0.00001; heterogeneity, I2 = 56%, P = 0.04). The subgroup analysis showed that cerebellar TMS could improve BBS post-intervention and ADL post-intervention for both subacute and chronic stage stroke patients. Cerebellar high frequency TMS could improve BBS post-intervention and ADL post-intervention. Cerebellar TMS could still improve BBS post-intervention and ADL post-intervention despite of different cerebellar TMS sessions (less and more than 10 TMS sessions), different total cerebellar TMS pulse per week (less and more than 4500 pulse/week), and different cerebellar TMS modes (repetitive TMS and Theta Burst Stimulation). None of the studies reported severe adverse events except mild side effects in three studies. CONCLUSIONS Cerebellar TMS is an effective and safe technique for improving balance capacity and ADL in stroke patients. Further larger-sample, higher-quality, and longer follow-up RCTs are needed to explore the more reliable evidence of cerebellar TMS in the balance capacity and ADL, and clarify potential mechanisms.
Collapse
Affiliation(s)
- Jingfeng Wang
- Department of Rehabilitation Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Zhisheng Wu
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Shanshan Hong
- Department of Obstetrics and Gynecology, Quan Zhou Women's and Children's Hospital, Quanzhou, China
| | - Honghong Ye
- Department of Rehabilitation Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Yi Zhang
- Department of Rehabilitation Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Qiuxiang Lin
- Department of Rehabilitation Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Zehuang Chen
- Huada Street Community Health Service Center, Quanzhou, China
| | - Liling Zheng
- Department of Cardiovascular Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China.
| | - Jiawei Qin
- Department of Rehabilitation Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China.
| |
Collapse
|
6
|
Jemna N, Zdrenghea AC, Frunza G, Demea AD, Hapca GE, Grad DA, Muresanu IA, Chereches RM, Muresanu FD. Theta-burst stimulation as a therapeutic tool in neurological pathology: a systematic review. Neurol Sci 2024; 45:911-940. [PMID: 37882997 DOI: 10.1007/s10072-023-07144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
TBS (theta-burst stimulation) is a novel therapeutic approach in a wide range of neurological diseases. The present systematic review aims to identify the various protocols used in the last years, to assess study quality and to offer a general overview of the current state of the literature. The systematic review was conducted according to the Preferred Reporting Item for Systematic Review and Meta-Analyses (PRISMA) guidelines. We applied the following inclusion criteria: (1) population over 18 years old with diagnosed neurological disorders, (2) patients treated with sessions of theta-burst stimulation, (3) randomized-controlled clinical trials, (4) articles in the English language, and (5) studies that report response and score reduction on a validated scale of the investigated disorder or remission rates. We included in the final analysis 56 randomized controlled trials focusing on different neurological pathologies (stroke, Parkinson`s disease, multiple sclerosis, tinnitus, dystonia, chronic pain, essential tremor and tic disorder), and we extracted data regarding study design, groups and comparators, sample sizes, type of coil, stimulation parameters (frequency, number of pulses, intensity, stimulation site etc.), number of sessions, follow-up, assessment through functional connectivity and neurological scales used. We observed a great interstudy heterogenicity that leads to a difficulty in drawing plain conclusions. TBS protocols have shown promising results in improving various symptoms in patients with neurological disorders, but larger and more coherent studies, using similar stimulation protocols and evaluation scales, are needed to establish guideline recommendations.
Collapse
Affiliation(s)
- Nicoleta Jemna
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj Napoca, Romania
| | - Ana Calina Zdrenghea
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj Napoca, Romania.
- Department of Neurosciences, Clinical County Emergency Hospital, Cluj Napoca, Romania.
| | - Georgiana Frunza
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj Napoca, Romania
- Department of Neurosciences, Clinical County Emergency Hospital, Cluj Napoca, Romania
| | - Anca Diana Demea
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj Napoca, Romania
- Department of Neurosciences, Clinical County Emergency Hospital, Cluj Napoca, Romania
| | - Gheorghe Elian Hapca
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj Napoca, Romania
- Department of Neurosciences, Clinical County Emergency Hospital, Cluj Napoca, Romania
| | | | | | - Razvan Mircea Chereches
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj Napoca, Romania
- Department of Public Health, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Fior Dafin Muresanu
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj Napoca, Romania
- Department of Neurosciences, Clinical County Emergency Hospital, Cluj Napoca, Romania
- University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj Napoca, Romania
| |
Collapse
|
7
|
Jiang T, Wei X, Wang M, Xu J, Xia N, Lu M. Theta burst stimulation: what role does it play in stroke rehabilitation? A systematic review of the existing evidence. BMC Neurol 2024; 24:52. [PMID: 38297193 PMCID: PMC10832248 DOI: 10.1186/s12883-023-03492-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 12/06/2023] [Indexed: 02/02/2024] Open
Abstract
Various post-stroke dysfunctions often result in poor long-term outcomes for stroke survivors, but the effect of conventional treatments is limited. In recent years, lots of studies have confirmed the effect of repetitive transcranial magnetic stimulation (rTMS) in stroke rehabilitation. As a new pattern of rTMS, theta burst stimulation (TBS) was proved recently to yield more pronounced and long-lasting after-effects than the conventional pattern at a shorter stimulation duration. To explore the role of TBS in stroke rehabilitation, this review summarizes the existing evidence from all the randomized controlled trials (RCTs) so far on the efficacy of TBS applied to different post-stroke dysfunctions, including cognitive impairment, visuospatial neglect, aphasia, dysphagia, spasticity, and motor dysfunction. Overall, TBS promotes the progress of stroke rehabilitation and may serve as a preferable alternative to traditional rTMS. However, it's hard to recommend a specific paradigm of TBS due to the limited number of current studies and their heterogeneity. Further high-quality clinical RCTs are needed to determine the optimal technical settings and intervention time in stroke survivors.
Collapse
Affiliation(s)
- Tingting Jiang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiupan Wei
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingzhu Wang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Xu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Xia
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Lu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Fox-Hesling J, Wisseman D, Kantak S. Noninvasive cerebellar stimulation and behavioral interventions: A crucial synergy for post-stroke motor rehabilitation. NeuroRehabilitation 2024; 54:521-542. [PMID: 38943401 DOI: 10.3233/nre-230371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
BACKGROUND Improvement of functional movements after supratentorial stroke occurs through spontaneous biological recovery and training-induced reorganization of remnant neural networks. The cerebellum, through its connectivity with the cortex, brainstem and spinal cord, is actively engaged in both recovery and reorganization processes within the cognitive and sensorimotor systems. Noninvasive cerebellar stimulation (NiCBS) offers a safe, clinically feasible and potentially effective way to modulate the excitability of spared neural networks and promote movement recovery after supratentorial stroke. NiCBS modulates cerebellar connectivity to the cerebral cortex and brainstem, as well as influences the sensorimotor and frontoparietal networks. OBJECTIVE Our objective was twofold: (a) to conduct a scoping review of studies that employed NiCBS to influence motor recovery and learning in individuals with stroke, and (b) to present a theory-driven framework to inform the use of NiCBS to target distinct stroke-related deficits. METHODS A scoping review of current research up to August 2023 was conducted to determine the effect size of NiCBS effect on movement recovery of upper extremity function, balance, walking and motor learning in humans with stroke. RESULTS Calculated effect sizes were moderate to high, offering promise for improving upper extremity, balance and walking outcomes after stroke. We present a conceptual framework that capitalizes on cognitive-motor specialization of the cerebellum to formulate a synergy between NiCBS and behavioral interventions to target specific movement deficits. CONCLUSION NiCBS enhances recovery of upper extremity impairments, balance and walking after stroke. Physiologically-informed synergies between NiCBS and behavioral interventions have the potential to enhance recovery. Finally, we propose future directions in neurophysiological, behavioral, and clinical research to move NiCBS through the translational pipeline and augment motor recovery after stroke.
Collapse
Affiliation(s)
| | - Darrell Wisseman
- Moss Rehabilitation, Elkins Park, PA, USA
- Department of Physical Therapy, Arcadia University, Glenside, PA, USA
| | - Shailesh Kantak
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
- Department of Physical Therapy, Arcadia University, Glenside, PA, USA
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
9
|
Guder S, Sadeghi F, Zittel S, Quandt F, Choe C, Bönstrup M, Cheng B, Thomalla G, Gerloff C, Schulz R. Disability and persistent motor deficits are linked to structural crossed cerebellar diaschisis in chronic stroke. Hum Brain Mapp 2023; 44:5336-5345. [PMID: 37471691 PMCID: PMC10543354 DOI: 10.1002/hbm.26434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/15/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
Brain imaging has significantly contributed to our understanding of the cerebellum being involved in recovery after non-cerebellar stroke. Due to its connections with supratentorial brain networks, acute stroke can alter the function and structure of the contralesional cerebellum, known as crossed cerebellar diaschisis (CCD). Data on the spatially precise distribution of structural CCD and their implications for persistent deficits after stroke are notably limited. In this cross-sectional study, structural MRI and clinical data were analyzed from 32 chronic stroke patients, at least 6 months after the event. We quantified lobule-specific contralesional atrophy, as a surrogate of structural CCD, in patients and healthy controls. Volumetric data were integrated with clinical scores of disability and motor deficits. Diaschisis-outcome models were adjusted for the covariables age, lesion volume, and damage to the corticospinal tract. We found that structural CCD was evident for the whole cerebellum, and particularly for lobules V and VI. Lobule VI diaschisis was significantly correlated with clinical scores, that is, volume reductions in contralesional lobule VI were associated with higher levels of disability and motor deficits. Lobule V and the whole cerebellum did not show similar diaschisis-outcome relationships across the spectrum of the clinical scores. These results provide novel insights into stroke-related cerebellar plasticity and might thereby promote lobule VI as a key area prone to structural CCD and potentially involved in recovery and residual motor functioning.
Collapse
Affiliation(s)
- Stephanie Guder
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Fatemeh Sadeghi
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Simone Zittel
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Fanny Quandt
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Chi‐un Choe
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Marlene Bönstrup
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Department of NeurologyUniversity Medical Center LeipzigLeipzigGermany
| | - Bastian Cheng
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Götz Thomalla
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Christian Gerloff
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Robert Schulz
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
10
|
Chen S, Zhang S, Yang W, Chen Y, Wang B, Chen J, Li X, Xie L, Huang H, Zeng Y, Tian L, Ji W, Wei X, Lan Y, Li H. The effectiveness of intermittent theta burst stimulation for upper limb motor recovery after stroke: a systematic review and meta-analysis of randomized controlled trials. Front Neurosci 2023; 17:1272003. [PMID: 37901439 PMCID: PMC10602812 DOI: 10.3389/fnins.2023.1272003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
Background Intermittent theta burst stimulation (iTBS) is a promising noninvasive therapy to restore the excitability of the cortex, and subsequently improve the function of the upper extremities. Several studies have demonstrated the effectiveness of iTBS in restoring upper limb function and modulating cortical excitability. We aimed to evaluate the effects of iTBS on upper limb motor recovery after stroke. Objective The purpose of this article is to evaluate the influence of intermittent theta-burst stimulation on upper limb motor recovery and improve the quality of life. Method A literature search was conducted using PubMed, EMBASE, MEDLINE, The Cochrane Library, Web of Science, and CBM, including only English studies, to identify studies that investigated the effects of iTBS on upper limb recovery, compared with sham iTBS used in control groups. Effect size was reported as standardized mean difference (SMD) or weighted mean difference (WMD). Results Ten studies were included in the meta-analysis. The results of the meta-analysis indicated that when compared to the control group, the iTBS group had a significant difference in the Fugl-Meyer Assessment (FMA) and Action Research Arm Test (ARAT) (WMD: 3.20, 95% CI: 1.42 to 4.97; WMD: 3.72, 95% CI: 2.13 to 5.30, respectively). In addition, there was also a significant improvement in the modified Ashworth scale (MAS) compared to the sham group (WMD: -0.56; 95% CI: -0.85 to -0.28). More evidence is still needed to confirm the effect of Barthel Index (BI) scores after interventions. However, no significant effect was found for the assessment of Motor Evoked Potential (MEP) amplitude and MEP latency (SMD: 0.35; 95% CI: -0.21 to 0.90; SMD: 0.35, 95% CI: -0.18 to 0.87; SMD: 0.03, 95% CI: -0.49 to 0.55; respectively). Conclusion Our results showed that iTBS significantly improved motor impairment, functional activities, and reduced muscle tone of upper limbs, thereby increasing the ability to perform Activities of Daily Living (ADL) in stroke patients, while there were no significant differences in MEPs. In conclusion, iTBS is a promising non-invasive brain stimulation as an adjunct to therapy and enhances the therapeutic effect of conventional physical therapy. In the future, more randomized controlled trials with large sample sizes, high quality, and follow-up are necessary to explore the neurophysiological effects. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023392739.
Collapse
Affiliation(s)
- Songbin Chen
- Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shunxi Zhang
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wenqing Yang
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yujie Chen
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Bingshui Wang
- Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jixiang Chen
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaotong Li
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lanfang Xie
- Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Huangjie Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yangkang Zeng
- Department of Rehabilitation Medicine, Shenzhen University General Hospital, Shenzhen, China
| | - Lingling Tian
- Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Wenxue Ji
- Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xijun Wei
- Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yue Lan
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hai Li
- Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
11
|
Xia Y, Wang M, Zhu Y. The Effect of Cerebellar rTMS on Modulating Motor Dysfunction in Neurological Disorders: a Systematic Review. CEREBELLUM (LONDON, ENGLAND) 2023; 22:954-972. [PMID: 36018543 DOI: 10.1007/s12311-022-01465-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The effectiveness of cerebellar repetitive transcranial magnetic stimulation (rTMS) on motor dysfunction in patients with neurological disorders has received increasing attention because of its potential for neuromodulation. However, studies on the neuromodulatory effects, parameters, and safety of rTMS implementation in the cerebellum to alleviate motor dysfunction are limited. This systematic review aimed to evaluate the effectiveness and safety of cerebellar rTMS treatment for motor dysfunction caused by neurological disorders and to review popular stimulation parameters. Five electronic databases-Medline, Web of Science, Scopus, Cochrane Library, and Embase-were searched for relevant research published from inception to July 2022. All randomized controlled trials (RCTs) that reported the effects of cerebellar rTMS combined with behavioral rating scales on motor dysfunction were eligible for enrollment. Additionally, reference lists of the enrolled studies were manually checked. Among 1156 articles screened, 21 RCTs with 666 subjects were included. rTMS conducted on the cerebellum showed an improvement in stroke (spasticity, balance, and gait), cervical dystonia, Parkinson's disease (tremor), cerebellar ataxia, and essential tremor but not in multiple sclerosis. The 8-shaped coil with a diameter of 70 mm was determined as the most common therapeutic choice. None of the studies reported severe adverse events except mild side effects in three. Therefore, rTMS appears to be a promising and safe technique for the treatment of motor dysfunction, targeting the cerebellum to induce motor behavioral improvement. Further rigorous RCTs, including more samples and longer follow-up periods, are required to precisely explore the effective stimulation parameters and possible mechanisms.
Collapse
Affiliation(s)
- Yifei Xia
- School of Kinesiology, Shanghai University of Sport, Yangpu District, No. 200 Hengren Road, Shanghai, China
| | - Mingqi Wang
- School of Kinesiology, Shanghai University of Sport, Yangpu District, No. 200 Hengren Road, Shanghai, China
| | - Yulian Zhu
- School of Kinesiology, Shanghai University of Sport, Yangpu District, No. 200 Hengren Road, Shanghai, China.
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Jing'an District, No. 12 Wulumuqi road, Shanghai, 200040, China.
| |
Collapse
|
12
|
Yoo YJ, Lim SH, Kim Y, Kim JS, Hong BY, Yoon MJ, Rim H, Park GY. Structural Integrity of the Cerebellar Outflow Tract Predicts Long-Term Motor Function After Middle Cerebral Artery Ischemic Stroke. Neurorehabil Neural Repair 2023; 37:554-563. [PMID: 37269119 DOI: 10.1177/15459683231177607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
BACKGROUND The cerebellum plays a crucial role in functional movement by influencing sensorimotor coordination and learning. However, the effects of cortico-cerebellar connectivity on the recovery of upper extremity motor function after stroke have not been investigated. We hypothesized that the integrity of the cortico-cerebellar connections would be reduced in patients with a subacute middle cerebral artery (MCA) stroke, and that this reduction may help to predict chronic upper extremity motor function. METHODS We retrospectively analyzed the diffusion-tensor imaging of 25 patients with a subacute MCA stroke (mean age: 62.2 ± 2.7 years; 14 females) and 25 age- and sex-matched healthy controls. We evaluated the microstructural integrity of the corticospinal tract (CST), dentatothalamocortical tract (DTCT), and corticopontocerebellar tract (CPCT). Furthermore, we created linear regression models to predict chronic upper extremity motor function based on the structural integrity of each tract. RESULTS In stroke patients, the affected DTCT and CST showed significantly impaired structural integrity compared to unaffected tracts and the tracts in controls. When all models were compared, the model that used the fractional anisotropy (FA) asymmetry indices of CST and DTCT as independent variables best predicted chronic upper extremity motor function (R2 = .506, P = .001). The extent of structural integrity of the CPCT did not significantly differ between hemispheres or groups and was not predictive of motor function. CONCLUSIONS We found evidence that microstructural integrity of the DTCT in the subacute phase of an MCA stroke helped to predict chronic upper extremity motor function, independent of CST status.
Collapse
Affiliation(s)
- Yeun Jie Yoo
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Gyeonggi-do, Republic of Korea
| | - Seong Hoon Lim
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Gyeonggi-do, Republic of Korea
| | - Youngkook Kim
- Department of Rehabilitation Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Gyeonggi-do, Republic of Korea
| | - Joon-Sung Kim
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Gyeonggi-do, Republic of Korea
| | - Bo Young Hong
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Gyeonggi-do, Republic of Korea
| | - Mi-Jeong Yoon
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Gyeonggi-do, Republic of Korea
| | - Hanee Rim
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Gyeonggi-do, Republic of Korea
| | - Geun-Young Park
- Department of Rehabilitation Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Gyeonggi-do, Republic of Korea
| |
Collapse
|
13
|
Gong Q, Yan R, Chen H, Duan X, Wu X, Zhang X, Zhou Y, Feng Z, Chen Y, Liu J, Xu P, Qiu J, Liu H, Hou J. Effects of cerebellar transcranial direct current stimulation on rehabilitation of upper limb motor function after stroke. Front Neurol 2023; 14:1044333. [PMID: 37006504 PMCID: PMC10060824 DOI: 10.3389/fneur.2023.1044333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
BackgroundThe cerebellum is involved in the control and coordination of movements but it remains unclear whether stimulation of the cerebellum could improve the recovery of upper limb motor function. Therefore, this study aimed to explore whether cerebellar transcranial direct current stimulation (tDCS) therapy could promote the recovery of upper limb motor function in patients who suffered a stroke.MethodsIn this randomized, double-blind, and sham-controlled prospective study, 77 stroke patients were recruited and randomly assigned to the tDCS group (n = 39) or the control group (n = 38). The patients received anodal (2 mA, 20 min) or sham tDCS therapy for 4 weeks. The primary outcome was the change in the Fugl-Meyer Assessment-Upper Extremity (FMA-UE) score from baseline to the first day after 4 weeks of treatment (T1) and 60 days after 4 weeks of treatment (T2). The secondary outcomes were the FMA-UE response rates assessed at T1 and T2. Adverse events (AEs) related to the tDCS treatment were also recorded.ResultsAt T1, the mean FMA-UE score increased by 10.7 points [standard error of the mean (SEM) = 1.4] in the tDCS group and by 5.8 points (SEM = 1.3) in the control group (difference between the two groups was 4.9 points, P = 0.013). At T2, the mean FMA-UE score increased by 18.9 points (SEM = 2.1) in the tDCS group and by 12.7 points (SEM = 2.1) in the control group (the difference between the two groups was 6.2 points, P = 0.043). At T1, 26 (70.3%) patients in the tDCS group had a clinically meaningful response to the FMA-UE score compared to 12 (34.3%) patients in the control group (the difference between the two groups was 36.0%, P =0.002). At T2, 33 (89.2%) patients in the tDCS group had a clinically meaningful response to the FMA-UE score compared with 19 (54.3%) patients in the control group (the difference between the two groups was 34.9%, P = 0.001). There was no statistically significant difference in the incidence of adverse events between the two groups. In the subgroup analysis of different hemiplegic sides, the rehabilitation effect of patients with right hemiplegia was better than that of patients with left hemiplegia (P < 0.05); in the age subgroup analysis, different age groups of patients did not show a significant difference in the rehabilitation effect (P > 0.05).ConclusionCerebellar tDCS can be used as an effective and safe treatment to promote recovery of upper limb motor function in stroke patients.Trial registrationChiCTR.org.cn, identifier: ChiCTR2200061838.
Collapse
Affiliation(s)
- Qiuwen Gong
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rubing Yan
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Han Chen
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xia Duan
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoyu Wu
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xin Zhang
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yi Zhou
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhou Feng
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ya Chen
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jianbo Liu
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Peng Xu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Qiu
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongliang Liu
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jingming Hou
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Jingming Hou
| |
Collapse
|
14
|
Chen Y, Su W, Gui CF, Guo QF, Tan HX, He L, Jiang HH, Wei QC, Gao Q. Effectiveness of cerebellar vermis intermittent theta-burst stimulation in improving trunk control and balance function for patients with subacute stroke: a randomised controlled trial protocol. BMJ Open 2023; 13:e066356. [PMID: 36631236 PMCID: PMC9835952 DOI: 10.1136/bmjopen-2022-066356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Balance impairments frequently occur after stroke. Achieving effective core trunk stability is the key to improving balance ability. However, there is still a lack of advanced well-defined rehabilitation protocols for balance improvement in patients with stroke. Intermittent theta-burst stimulation (iTBS) is a non-invasive brain activity modulation strategy that can produce long-term potentiation. The cerebellar vermis is a fundamental structure involved in balance and motor control. However, no study has demonstrated the therapeutic effect and potential mechanism of cerebellar vermis iTBS on balance after stroke. METHODS AND ANALYSIS This study will be a prospective single-centre double-blind randomised controlled clinical trial with a 3-week intervention and 3-week follow-up. Eligible participants will be randomly allocated to the experimental group or the control group in a 1:1 ratio. After routine conventional physical therapy, patients in the experimental group will receive cerebellar vermis iTBS, whereas patients in the control group will receive sham stimulation. The overall intervention period will be 5 days a week for 3 consecutive weeks. The outcomes will be measured at baseline (T0), 3 weeks postintervention (T1) and at the 3-week follow-up (T2). The primary outcomes are Berg Balance Scale and Trunk Impairment Scale scores. The secondary outcomes are balance test scores via the Balance Master system, muscle activation of the trunk and lower limbs via the surface electromyography recordings, cerebral cortex oxygen concentrations measured via the resting-state functional near-infrared spectroscopy, Fugl-Meyer Assessment of Lower Extremity and Barthel index scores. ETHICS AND DISSEMINATION This study was approved by the West China Hospital Clinical Trials and Biomedical Ethics Committee of Sichuan University. All participants will sign the informed consent form voluntarily. The results of this study will be published in peer-reviewed journals and disseminated at academic conferences. TRIAL REGISTRATION NUMBER ChiCTR2200065369.
Collapse
Affiliation(s)
- Yi Chen
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| | - Wei Su
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| | - Chen-Fan Gui
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| | - Qi-Fan Guo
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| | - Hui-Xin Tan
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| | - Lin He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| | - Han-Hong Jiang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| | - Qing-Chuan Wei
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| | - Qiang Gao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| |
Collapse
|
15
|
Ntakou EA, Nasios G, Nousia A, Siokas V, Messinis L, Dardiotis E. Targeting Cerebellum with Non-Invasive Transcranial Magnetic or Current Stimulation after Cerebral Hemispheric Stroke-Insights for Corticocerebellar Network Reorganization: A Comprehensive Review. Healthcare (Basel) 2022; 10:healthcare10122401. [PMID: 36553925 PMCID: PMC9778071 DOI: 10.3390/healthcare10122401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Non-invasive brain stimulation (NIBS) has emerged as one of the methods implemented in stroke rehabilitation. Cerebellar stimulation has gained research interest as an alternative strategy to cortical stimulation, based on the role of the cerebellum and corticocerebellar tracts in different motor and cognitive functions. This review investigates the role of the cerebellum in motor and cognitive rehabilitation following cerebral stroke using NIBS techniques combined with other therapies (e.g., speech or physical therapy). Fifteen randomized clinical trials were included. The majority of the literature findings point towards the cerebellum as a promising neurostimulation target following stroke of the cerebral cortex. Findings concern mostly rehabilitation of gait and balance, where cathodal transcranial direct current stimulation (tDCS) and intermittent theta-burst stimulation (iTBS) of the contralesional cerebellar hemisphere produce, in the presented clinical sample, improved performance and plasticity changes in the corticocerebellar network, combined with other rehabilitation methods. Data regarding aphasia rehabilitation are scarce, with right cerebellar tDCS exercising some impact in individual linguistic functions combined with language therapy. Based on recent data concerning cerebellar functions and corticocerebellar networks, along with the development of clinical protocols regarding non-invasive cerebellar (NICS) application, the cerebellum can prove a crucial intervention target in rehabilitation following stroke.
Collapse
Affiliation(s)
- Eleni Aikaterini Ntakou
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Grigorios Nasios
- Department of Speech and Language Therapy, University of Ioannina, 45500 Ioannina, Greece
| | - Anastasia Nousia
- Department of Speech and Language Therapy, University of Ioannina, 45500 Ioannina, Greece
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
- Correspondence: ; Tel.: +30-6972437386
| | - Lambros Messinis
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| |
Collapse
|
16
|
Gao B, Wang Y, Zhang D, Wang Z, Wang Z. Intermittent theta-burst stimulation with physical exercise improves poststroke motor function: A systemic review and meta-analysis. Front Neurol 2022; 13:964627. [PMID: 36110393 PMCID: PMC9468864 DOI: 10.3389/fneur.2022.964627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Intermittent theta-burst stimulation (iTBS) is an optimized rTMS modality that could modulate the excitability of neural structures. Several studies have been conducted to investigate the efficacy of iTBS in improving the motor function of stroke patients. However, the specific role of iTBS in motor function recovery after stroke is unclear. Hence, in our study, we performed a meta-analysis to investigate the efficacy of iTBS for the motor function improvement of stroke patients. Methods MEDLINE, Embase, and Cochrane Library were searched until May 2022 for randomized controlled trials (RCTs). Results Thirteen RCTs with 334 patients were finally included in our study. The primary endpoints were the Fugl-Meyer assessment scale (FMA) and Motor Assessment Scale (MAS) change from baseline. We found that iTBS led to a significant reduction in FMA score (P = 0.002) but not in MAS score (P = 0.24) compared with the sham group. Moreover, standard 600-pulse stimulation showed a better effect on motor function improvement than the sham group (P = 0.004), however, 1200-pulse iTBS showed no effect on motor function improvement after stroke (P = 0.23). The effect of iTBS for improving motor function only exists in chronic stroke patients (P = 0.02) but not in subacute patients (P = 0.27). Conclusion This study supports that iTBS has good efficacy for improving motor function in stroke patients. Therefore, standard 600-pulse stimulation iTBS therapy is proper management and treatment for chronic stroke.
Collapse
Affiliation(s)
- Bixi Gao
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Yunjiang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
- Department of Neurosurgery, Yancheng Third People's Hospital, Yancheng, China
| | - Dingding Zhang
- Department of Anesthesia, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zongqi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
- *Correspondence: Zongqi Wang
| | - Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| |
Collapse
|
17
|
Sadeghihassanabadi F, Frey BM, Backhaus W, Choe CU, Zittel S, Schön G, Bönstrup M, Cheng B, Thomalla G, Gerloff C, Schulz R. Structural cerebellar reserve positively influences outcome after severe stroke. Brain Commun 2022; 4:fcac203. [PMID: 36337341 PMCID: PMC9629400 DOI: 10.1093/braincomms/fcac203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/30/2022] [Accepted: 08/02/2022] [Indexed: 12/25/2022] Open
Abstract
The concept of brain reserve capacity positively influencing the process of recovery after stroke has been continuously developed in recent years. Global measures of brain health have been linked with a favourable outcome. Numerous studies have evidenced that the cerebellum is involved in recovery after stroke. However, it remains an open question whether characteristics of cerebellar anatomy, quantified directly after stroke, might have an impact on subsequent outcome after stroke. Thirty-nine first-ever ischaemic non-cerebellar stroke patients underwent MRI brain imaging early after stroke and longitudinal clinical follow-up. Structural images were used for volumetric analyses of distinct cerebellar regions. Ordinal logistic regression analyses were conducted to associate cerebellar volumes with functional outcome 3-6 months after stroke, operationalized by the modified Rankin Scale. Larger volumes of cerebellar lobules IV, VI, and VIIIB were positively correlated with favourable outcome, independent of the severity of initial impairment, age, and lesion volume (P < 0.01). The total cerebellar volume did not exhibit a significant structure-outcome association. The present study reveals that pre-stroke anatomy of distinct cerebellar lobules involved in motor and cognitive functioning might be linked to outcome after acute non-cerebellar stroke, thereby promoting the emerging concepts of structural brain reserve for recovery processes after stroke.
Collapse
Affiliation(s)
| | - Benedikt M Frey
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Winifried Backhaus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Chi-un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Gerhard Schön
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marlene Bönstrup
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany,Department of Neurology, University Medical Center Leipzig, 04103 Leipzig, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Robert Schulz
- Correspondence to: Robert Schulz MD University Medical Center Hamburg-Eppendorf Martinistraße 52, 20246 Hamburg, Germany E-mail:
| |
Collapse
|
18
|
Huang W, Chen J, Zheng Y, Zhang J, Li X, Su L, Li Y, Dou Z. The Effectiveness of Intermittent Theta Burst Stimulation for Stroke Patients With Upper Limb Impairments: A Systematic Review and Meta-Analysis. Front Neurol 2022; 13:896651. [PMID: 35873775 PMCID: PMC9298981 DOI: 10.3389/fneur.2022.896651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Upper limb impairments are one of the most common health problems of stroke, affecting both motor function and independence in daily life. It has been demonstrated that intermittent theta burst stimulation (iTBS) increases brain excitability and improves upper limb function. Our study sought to determine the role of iTBS in stroke recovery. Objective The purpose of this study was to determine the efficacy of iTBS in individuals with upper limb impairments following stroke. Methods The databases used included Cumulative Index to PubMed, EMBASE, ESCBOhost, The Cochrane Library, Chinese Biomedical Database, Web of Science, China Biology Medicine (CBM), China National Knowledge Infrastructure (CNKI), Technology Periodical Database (VIP), and WanFang Database. Studies published before November 2021 were included. Each participant received an iTBS-based intervention aimed at improving activity levels or impairment, which was compared to usual care, a sham intervention, or another intervention. The primary outcome measure was a change in upper limb function assessment. Secondary outcomes included impairment, participation, and quality of life measures. Result A total of 18 studies (n = 401 participants) that met the inclusion criteria were included in this study. There was a slight change in the upper limb function of the iTBS group compared with the control group, as measured by the Fugl-Meyer Assessment-Upper Extremity (FMA-UE) score (mean difference 2.70, 95% CI −0.02 to 5.42, p = 0.05). Significant improvement in resting motor threshold (RMT) and motor-evoked potential (MEP) was also observed in the meta-analysis of iTBS (MD 3.46, 95% CI 2.63 to 4.28, p < 0.00001); (MD 1.34, 95% CI 1.17 to 1.51, P < 0.00001). In addition, we got similar results when the studies were using the Modified Barthel Index (MBI) assessment (mean difference of 7.34, 95% CI 0.47 to 14.21, p = 0.04). Conclusion Our study established the efficacy of iTBS in improving motor cortical plasticity, motor function, and daily functioning in stroke patients. However, the review requires evidence from additional randomized controlled trials and high-quality research. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/
Collapse
Affiliation(s)
- Wenhao Huang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiayi Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yadan Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jin Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liujie Su
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yinying Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zulin Dou
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Wang X, Ge L, Hu H, Yan L, Li L. Effects of Non-Invasive Brain Stimulation on Post-Stroke Spasticity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Brain Sci 2022; 12:brainsci12070836. [PMID: 35884643 PMCID: PMC9312973 DOI: 10.3390/brainsci12070836] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/12/2022] [Accepted: 06/24/2022] [Indexed: 12/30/2022] Open
Abstract
In recent years, the potential of non-invasive brain stimulation (NIBS) for the therapeutic effect of post-stroke spasticity has been explored. There are various NIBS methods depending on the stimulation modality, site and parameters. The purpose of this study is to evaluate the efficacy of NIBS on spasticity in patients after stroke. This systematic review and meta-analysis was conducted according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. PUBMED (MEDLINE), Web of Science, Cochrane Library and Excerpta Medica Database (EMBASE) were searched for all randomized controlled trials (RCTs) published before December 2021. Two independent researchers screened relevant articles and extracted data. This meta-analysis included 14 articles, and all included articles included 18 RCT datasets. The results showed that repetitive transcranial magnetic stimulation (rTMS) (MD = −0.40, [95% CI]: −0.56 to −0.25, p < 0.01) had a significant effect on improving spasticity, in which low-frequency rTMS (LF-rTMS) (MD = −0.51, [95% CI]: −0.78 to −0.24, p < 0.01) and stimulation of the unaffected hemisphere (MD = −0.58, [95% CI]: −0.80 to −0.36, p < 0.01) were beneficial on Modified Ashworth Scale (MAS) in patients with post-stroke spasticity. Transcranial direct current stimulation (tDCS) (MD = −0.65, [95% CI]: −1.07 to −0.22, p < 0.01) also had a significant impact on post-stroke rehabilitation, with anodal stimulation (MD = −0.74, [95% CI]: −1.35 to −0.13, p < 0.05) being more effective in improving spasticity in patients. This meta-analysis revealed moderate evidence that NIBS reduces spasticity after stroke and may promote recovery in stroke survivors. Future studies investigating the mechanisms of NIBS in addressing spasticity are warranted to further support the clinical application of NIBS in post-stroke spasticity.
Collapse
Affiliation(s)
- Xiaohan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (X.W.); (H.H.)
| | - Le Ge
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China;
| | - Huijing Hu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (X.W.); (H.H.)
| | - Li Yan
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (X.W.); (H.H.)
- Correspondence: (L.Y.); (L.L.); Tel.: +86-186-2939-5063 (L.Y.); +86-135-6041-5367 (L.L.)
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (X.W.); (H.H.)
- Correspondence: (L.Y.); (L.L.); Tel.: +86-186-2939-5063 (L.Y.); +86-135-6041-5367 (L.L.)
| |
Collapse
|