1
|
Dannhauer M, Gomez LJ, Robins PL, Wang D, Hasan NI, Thielscher A, Siebner HR, Fan Y, Deng ZD. Electric Field Modeling in Personalizing Transcranial Magnetic Stimulation Interventions. Biol Psychiatry 2024; 95:494-501. [PMID: 38061463 PMCID: PMC10922371 DOI: 10.1016/j.biopsych.2023.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 01/21/2024]
Abstract
The modeling of transcranial magnetic stimulation (TMS)-induced electric fields (E-fields) is a versatile technique for evaluating and refining brain targeting and dosing strategies, while also providing insights into dose-response relationships in the brain. This review outlines the methodologies employed to derive E-field estimations, covering TMS physics, modeling assumptions, and aspects of subject-specific head tissue and coil modeling. We also summarize various numerical methods for solving the E-field and their suitability for various applications. Modeling methodologies have been optimized to efficiently execute numerous TMS simulations across diverse scalp coil configurations, facilitating the identification of optimal setups or rapid cortical E-field visualization for specific brain targets. These brain targets are extrapolated from neurophysiological measurements and neuroimaging, enabling precise and individualized E-field dosing in experimental and clinical applications. This necessitates the quantification of E-field estimates using metrics that enable the comparison of brain target engagement, functional localization, and TMS intensity adjustments across subjects. The integration of E-field modeling with empirical data has the potential to uncover pivotal insights into the aspects of E-fields responsible for stimulating and modulating brain function and states, enhancing behavioral task performance, and impacting the clinical outcomes of personalized TMS interventions.
Collapse
Affiliation(s)
- Moritz Dannhauer
- Computational Neurostimulation Research Program, Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Luis J Gomez
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana
| | - Pei L Robins
- Computational Neurostimulation Research Program, Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Dezhi Wang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana
| | - Nahian I Hasan
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Yong Fan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zhi-De Deng
- Computational Neurostimulation Research Program, Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, Maryland.
| |
Collapse
|