1
|
Spiliotis K, Appali R, Fontes Gomes AK, Payonk JP, Adrian S, van Rienen U, Starke J, Köhling R. Utilising activity patterns of a complex biophysical network model to optimise intra-striatal deep brain stimulation. Sci Rep 2024; 14:18919. [PMID: 39143173 PMCID: PMC11324959 DOI: 10.1038/s41598-024-69456-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
A large-scale biophysical network model for the isolated striatal body is developed to optimise potential intrastriatal deep brain stimulation applied to, e.g. obsessive-compulsive disorder. The model is based on modified Hodgkin-Huxley equations with small-world connectivity, while the spatial information about the positions of the neurons is taken from a detailed human atlas. The model produces neuronal spatiotemporal activity patterns segregating healthy from pathological conditions. Three biomarkers were used for the optimisation of stimulation protocols regarding stimulation frequency, amplitude and localisation: the mean activity of the entire network, the frequency spectrum of the entire network (rhythmicity) and a combination of the above two. By minimising the deviation of the aforementioned biomarkers from the normal state, we compute the optimal deep brain stimulation parameters, regarding position, amplitude and frequency. Our results suggest that in the DBS optimisation process, there is a clear trade-off between frequency synchronisation and overall network activity, which has also been observed during in vivo studies.
Collapse
Affiliation(s)
- Konstantinos Spiliotis
- Institute of Mathematics, University of Rostock, Rostock, Germany.
- Laboratory of Mathematics and Informatics (ISCE), Department of Civil Engineering, Democritus University of Thrace, Xanthi, Greece.
| | - Revathi Appali
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, University of Rostock, Rostock, Germany
| | | | - Jan Philipp Payonk
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
| | - Simon Adrian
- Faculty of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, University of Rostock, Rostock, Germany
| | - Jens Starke
- Institute of Mathematics, University of Rostock, Rostock, Germany
| | - Rüdiger Köhling
- Department of Life, Light and Matter, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, University of Rostock, Rostock, Germany
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
2
|
Psarellis YM, Kavousanakis M, Henson MA, Kevrekidis IG. Limits of entrainment of circadian neuronal networks. CHAOS (WOODBURY, N.Y.) 2023; 33:013137. [PMID: 36725649 PMCID: PMC9883082 DOI: 10.1063/5.0122744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/19/2022] [Indexed: 06/07/2023]
Abstract
Circadian rhythmicity lies at the center of various important physiological and behavioral processes in mammals, such as sleep, metabolism, homeostasis, mood changes, and more. Misalignment of intrinsic neuronal oscillations with the external day-night cycle can disrupt such processes and lead to numerous disorders. In this work, we computationally determine the limits of circadian synchronization to external light signals of different frequency, duty cycle, and simulated amplitude. Instead of modeling circadian dynamics with generic oscillator models (e.g., Kuramoto-type), we use a detailed computational neuroscience model, which integrates biomolecular dynamics, neuronal electrophysiology, and network effects. This allows us to investigate the effect of small drug molecules, such as Longdaysin, and connect our results with experimental findings. To combat the high dimensionality of such a detailed model, we employ a matrix-free approach, while our entire algorithmic pipeline enables numerical continuation and construction of bifurcation diagrams using only direct simulation. We, thus, computationally explore the effect of heterogeneity in the circadian neuronal network, as well as the effect of the corrective therapeutic intervention of Longdaysin. Last, we employ unsupervised learning to construct a data-driven embedding space for representing neuronal heterogeneity.
Collapse
Affiliation(s)
- Yorgos M. Psarellis
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Michail Kavousanakis
- School of Chemical Engineering, National Technical University of Athens, Zografou, Athens 15780, Greece
| | - Michael A. Henson
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
3
|
Spiliotis K, Starke J, Franz D, Richter A, Köhling R. Deep brain stimulation for movement disorder treatment: exploring frequency-dependent efficacy in a computational network model. BIOLOGICAL CYBERNETICS 2022; 116:93-116. [PMID: 34894291 PMCID: PMC8866393 DOI: 10.1007/s00422-021-00909-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 10/31/2021] [Indexed: 06/14/2023]
Abstract
A large-scale computational model of the basal ganglia network and thalamus is proposed to describe movement disorders and treatment effects of deep brain stimulation (DBS). The model of this complex network considers three areas of the basal ganglia region: the subthalamic nucleus (STN) as target area of DBS, the globus pallidus, both pars externa and pars interna (GPe-GPi), and the thalamus. Parkinsonian conditions are simulated by assuming reduced dopaminergic input and corresponding pronounced inhibitory or disinhibited projections to GPe and GPi. Macroscopic quantities are derived which correlate closely to thalamic responses and hence motor programme fidelity. It can be demonstrated that depending on different levels of striatal projections to the GPe and GPi, the dynamics of these macroscopic quantities (synchronisation index, mean synaptic activity and response efficacy) switch from normal to Parkinsonian conditions. Simulating DBS of the STN affects the dynamics of the entire network, increasing the thalamic activity to levels close to normal, while differing from both normal and Parkinsonian dynamics. Using the mentioned macroscopic quantities, the model proposes optimal DBS frequency ranges above 130 Hz.
Collapse
Affiliation(s)
| | - Jens Starke
- Institute of Mathematics, University of Rostock, 18057 Rostock, Germany
| | - Denise Franz
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
4
|
Thiem TN, Kemeth FP, Bertalan T, Laing CR, Kevrekidis IG. Global and local reduced models for interacting, heterogeneous agents. CHAOS (WOODBURY, N.Y.) 2021; 31:073139. [PMID: 34340348 DOI: 10.1063/5.0055840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Large collections of coupled, heterogeneous agents can manifest complex dynamical behavior presenting difficulties for simulation and analysis. However, if the collective dynamics lie on a low-dimensional manifold, then the original agent-based model may be approximated with a simplified surrogate model on and near the low-dimensional space where the dynamics live. Analytically identifying such simplified models can be challenging or impossible, but here we present a data-driven coarse-graining methodology for discovering such reduced models. We consider two types of reduced models: globally based models that use global information and predict dynamics using information from the whole ensemble and locally based models that use local information, that is, information from just a subset of agents close (close in heterogeneity space, not physical space) to an agent, to predict the dynamics of an agent. For both approaches, we are able to learn laws governing the behavior of the reduced system on the low-dimensional manifold directly from time series of states from the agent-based system. These laws take the form of either a system of ordinary differential equations (ODEs), for the globally based approach, or a partial differential equation (PDE) in the locally based case. For each technique, we employ a specialized artificial neural network integrator that has been templated on an Euler time stepper (i.e., a ResNet) to learn the laws of the reduced model. As part of our methodology, we utilize the proper orthogonal decomposition (POD) to identify the low-dimensional space of the dynamics. Our globally based technique uses the resulting POD basis to define a set of coordinates for the agent states in this space and then seeks to learn the time evolution of these coordinates as a system of ODEs. For the locally based technique, we propose a methodology for learning a partial differential equation representation of the agents; the PDE law depends on the state variables and partial derivatives of the state variables with respect to model heterogeneities. We require that the state variables are smooth with respect to model heterogeneities, which permit us to cast the discrete agent-based problem as a continuous one in heterogeneity space. The agents in such a representation bear similarity to the discretization points used in typical finite element/volume methods. As an illustration of the efficacy of our techniques, we consider a simplified coupled neuron model for rhythmic oscillations in the pre-Bötzinger complex and demonstrate how our data-driven surrogate models are able to produce dynamics comparable to the dynamics of the full system. A nontrivial conclusion is that the dynamics can be equally well reproduced by an all-to-all coupled and by a locally coupled model of the same agents.
Collapse
Affiliation(s)
- Thomas N Thiem
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Felix P Kemeth
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Tom Bertalan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Carlo R Laing
- School of Natural and Computational Sciences, Massey University, 0632 Auckland, New Zealand
| | - Ioannis G Kevrekidis
- Department of Applied Mathematics and Statistics, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
5
|
Thiem TN, Kooshkbaghi M, Bertalan T, Laing CR, Kevrekidis IG. Emergent Spaces for Coupled Oscillators. Front Comput Neurosci 2020; 14:36. [PMID: 32528268 PMCID: PMC7247828 DOI: 10.3389/fncom.2020.00036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/14/2020] [Indexed: 11/15/2022] Open
Abstract
Systems of coupled dynamical units (e.g., oscillators or neurons) are known to exhibit complex, emergent behaviors that may be simplified through coarse-graining: a process in which one discovers coarse variables and derives equations for their evolution. Such coarse-graining procedures often require extensive experience and/or a deep understanding of the system dynamics. In this paper we present a systematic, data-driven approach to discovering “bespoke” coarse variables based on manifold learning algorithms. We illustrate this methodology with the classic Kuramoto phase oscillator model, and demonstrate how our manifold learning technique can successfully identify a coarse variable that is one-to-one with the established Kuramoto order parameter. We then introduce an extension of our coarse-graining methodology which enables us to learn evolution equations for the discovered coarse variables via an artificial neural network architecture templated on numerical time integrators (initial value solvers). This approach allows us to learn accurate approximations of time derivatives of state variables from sparse flow data, and hence discover useful approximate differential equation descriptions of their dynamic behavior. We demonstrate this capability by learning ODEs that agree with the known analytical expression for the Kuramoto order parameter dynamics at the continuum limit. We then show how this approach can also be used to learn the dynamics of coarse variables discovered through our manifold learning methodology. In both of these examples, we compare the results of our neural network based method to typical finite differences complemented with geometric harmonics. Finally, we present a series of computational examples illustrating how a variation of our manifold learning methodology can be used to discover sets of “effective” parameters, reduced parameter combinations, for multi-parameter models with complex coupling. We conclude with a discussion of possible extensions of this approach, including the possibility of obtaining data-driven effective partial differential equations for coarse-grained neuronal network behavior, as illustrated by the synchronization dynamics of Hodgkin–Huxley type neurons with a Chung-Lu network. Thus, we build an integrated suite of tools for obtaining data-driven coarse variables, data-driven effective parameters, and data-driven coarse-grained equations from detailed observations of networks of oscillators.
Collapse
Affiliation(s)
- Thomas N Thiem
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Mahdi Kooshkbaghi
- Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ, United States
| | - Tom Bertalan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Carlo R Laing
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Ioannis G Kevrekidis
- Chemical and Biomolecular Engineering and Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|