1
|
Alves CL, Martinelli T, Sallum LF, Rodrigues FA, Toutain TGLDO, Porto JAM, Thielemann C, Aguiar PMDC, Moeckel M. Multiclass classification of Autism Spectrum Disorder, attention deficit hyperactivity disorder, and typically developed individuals using fMRI functional connectivity analysis. PLoS One 2024; 19:e0305630. [PMID: 39418298 PMCID: PMC11486369 DOI: 10.1371/journal.pone.0305630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/03/2024] [Indexed: 10/19/2024] Open
Abstract
Neurodevelopmental conditions, such as Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD), present unique challenges due to overlapping symptoms, making an accurate diagnosis and targeted intervention difficult. Our study employs advanced machine learning techniques to analyze functional magnetic resonance imaging (fMRI) data from individuals with ASD, ADHD, and typically developed (TD) controls, totaling 120 subjects in the study. Leveraging multiclass classification (ML) algorithms, we achieve superior accuracy in distinguishing between ASD, ADHD, and TD groups, surpassing existing benchmarks with an area under the ROC curve near 98%. Our analysis reveals distinct neural signatures associated with ASD and ADHD: individuals with ADHD exhibit altered connectivity patterns of regions involved in attention and impulse control, whereas those with ASD show disruptions in brain regions critical for social and cognitive functions. The observed connectivity patterns, on which the ML classification rests, agree with established diagnostic approaches based on clinical symptoms. Furthermore, complex network analyses highlight differences in brain network integration and segregation among the three groups. Our findings pave the way for refined, ML-enhanced diagnostics in accordance with established practices, offering a promising avenue for developing trustworthy clinical decision-support systems.
Collapse
Affiliation(s)
- Caroline L. Alves
- Laboratory for Hybrid Modeling, Aschaffenburg University of Applied Sciences, Aschaffenburg, Bayern, Germany
| | - Tiago Martinelli
- Institute of Mathematical and Computer Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Loriz Francisco Sallum
- Institute of Mathematical and Computer Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | | | - Joel Augusto Moura Porto
- Institute of Physics of São Carlos (IFSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
- Institute of Biological Information Processing, Heinrich Heine University Düsseldorf, Düsseldorf, North Rhine–Westphalia Land, Germany
| | - Christiane Thielemann
- BioMEMS Lab, Aschaffenburg University of Applied Sciences, Aschaffenburg, Bayern, Germany
| | - Patrícia Maria de Carvalho Aguiar
- Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
- Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Michael Moeckel
- Laboratory for Hybrid Modeling, Aschaffenburg University of Applied Sciences, Aschaffenburg, Bayern, Germany
| |
Collapse
|
2
|
Cibrian FL, Monteiro EM, Lakes KD. Digital assessments for children and adolescents with ADHD: a scoping review. Front Digit Health 2024; 6:1440701. [PMID: 39439849 PMCID: PMC11493775 DOI: 10.3389/fdgth.2024.1440701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction In spite of rapid advances in evidence-based treatments for attention deficit hyperactivity disorder (ADHD), community access to rigorous gold-standard diagnostic assessments has lagged far behind due to barriers such as the costs and limited availability of comprehensive diagnostic evaluations. Digital assessment of attention and behavior has the potential to lead to scalable approaches that could be used to screen large numbers of children and/or increase access to high-quality, scalable diagnostic evaluations, especially if designed using user-centered participatory and ability-based frameworks. Current research on assessment has begun to take a user-centered approach by actively involving participants to ensure the development of assessments that meet the needs of users (e.g., clinicians, teachers, patients). Methods The objective of this mapping review was to identify and categorize digital mental health assessments designed to aid in the initial diagnosis of ADHD as well as ongoing monitoring of symptoms following diagnosis. Results Results suggested that the assessment tools currently described in the literature target both cognition and motor behaviors. These assessments were conducted using a variety of technological platforms, including telemedicine, wearables/sensors, the web, virtual reality, serious games, robots, and computer applications/software. Discussion Although it is evident that there is growing interest in the design of digital assessment tools, research involving tools with the potential for widespread deployment is still in the early stages of development. As these and other tools are developed and evaluated, it is critical that researchers engage patients and key stakeholders early in the design process.
Collapse
Affiliation(s)
| | - Elissa M. Monteiro
- School of Education, University of California, Riverside, CA, United States
- Department of Psychology, College of Sciences, San Diego State University, San Diego, CA, United States
| | - Kimbelery D. Lakes
- Department of Psychiatry and Neuroscience, University of California, Riverside, CA, United States
| |
Collapse
|
3
|
Wang X, Guo Y, Xu J, Xiao Y, Fu Y. Decreased gray matter volume in the anterior cerebellar of attention deficit/hyperactivity disorder comorbid oppositional defiant disorder children with associated cerebellar-cerebral hyperconnectivity: insights from a combined structural MRI and resting-state fMRI study. Int J Dev Neurosci 2024; 84:500-509. [PMID: 38795021 DOI: 10.1002/jdn.10349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/27/2024] Open
Abstract
Attention deficit/hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD) are highly comorbid. Many prior investigations have found that ADHD relates to anatomical abnormalities in gray matter. The abnormal gray matter of ADHD comorbid ODD is still poorly understood. This study aimed to explore the effect of comorbid ODD on gray matter volume (GMV) and functional alterations in ADHD. All data were provided by the ADHD-200 Preprocessed Repository, including 27 ADHD-only children, 27 ADHD + ODD children, and 27 healthy controls aged 9-14 years. Voxel-based morphometry (VBM) and functional connectivity (FC) of resting-state functional magnetic resonance imaging (fMRI) were used to compare the difference in GMV and FC between ADHD + ODD, ADHD-only, and healthy children. The results showed that ADHD children with comorbid ODD had a more significant reduction in cerebellar volume, mainly in the anterior regions of the cerebellum (Cerebellum_4_5). The Cerebellum_4_5 showed increased functional connectivity with multiple cortical regions. These brain regions include numerous executive functioning (EF) and brain default mode network (DMN) nodes. The GMV abnormalities and excessive connectivity between brain regions may further exacerbate the emotional and cognitive deficits associated with ADHD.
Collapse
Affiliation(s)
- Xin Wang
- Department of Radiology, The First People's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, People's Republic of China
| | - Yan Guo
- Department of Neurology, The First People's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, People's Republic of China
| | - Jin Xu
- Department of Radiology, The First People's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, People's Republic of China
| | - Yong Xiao
- Department of Radiology, The First People's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, People's Republic of China
| | - Yigang Fu
- Department of Radiology, The First People's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, People's Republic of China
| |
Collapse
|
4
|
Tian L, Zheng H, Zhang K, Qiu J, Song X, Li S, Zeng Z, Ran B, Deng X, Cai J. Structural or/and functional MRI-based machine learning techniques for attention-deficit/hyperactivity disorder diagnosis: A systematic review and meta-analysis. J Affect Disord 2024; 355:459-469. [PMID: 38580035 DOI: 10.1016/j.jad.2024.03.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND The aim of this study was to investigate the diagnostic value of ML techniques based on sMRI or/and fMRI for ADHD. METHODS We conducted a comprehensive search (from database creation date to March 2024) for relevant English articles on sMRI or/and fMRI-based ML techniques for diagnosing ADHD. The pooled sensitivity, specificity, positive likelihood ratio (LR+), negative likelihood ratio (LR-), summary receiver operating characteristic (SROC) curve and area under the curve (AUC) were calculated to assess the diagnostic value of sMRI or/and fMRI-based ML techniques. The I2 test was used to assess heterogeneity and the source of heterogeneity was investigated by performing a meta-regression analysis. Publication bias was assessed using the Deeks funnel plot asymmetry test. RESULTS Forty-three studies were included in the systematic review, 27 of which were included in our meta-analysis. The pooled sensitivity and specificity of sMRI or/and fMRI-based ML techniques for the diagnosis of ADHD were 0.74 (95 % CI 0.65-0.81) and 0.75 (95 % CI 0.67-0.81), respectively. SROC curve showed that AUC was 0.81 (95 % CI 0.77-0.84). Based on these findings, the sMRI or/and fMRI-based ML techniques have relatively good diagnostic value for ADHD. LIMITATIONS Our meta-analysis specifically focused on ML techniques based on sMRI or/and fMRI studies. Since EEG-based ML techniques are also used for diagnosing ADHD, further systematic analyses are necessary to explore ML methods based on multimodal medical data. CONCLUSION sMRI or/and fMRI-based ML technique is a promising objective diagnostic method for ADHD.
Collapse
Affiliation(s)
- Lu Tian
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| | - Helin Zheng
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| | - Ke Zhang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| | - Jiawen Qiu
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| | - Xuejuan Song
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| | - Siwei Li
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| | - Zhao Zeng
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| | - Baosheng Ran
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| | - Xin Deng
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| | - Jinhua Cai
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China.
| |
Collapse
|
5
|
Wang Z, Zhou X, Gui Y, Liu M, Lu H. Multiple measurement analysis of resting-state fMRI for ADHD classification in adolescent brain from the ABCD study. Transl Psychiatry 2023; 13:45. [PMID: 36746929 PMCID: PMC9902465 DOI: 10.1038/s41398-023-02309-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 02/08/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is one of the most common psychiatric disorders in school-aged children. Its accurate diagnosis looks after patients' interests well with effective treatment, which is important to them and their family. Resting-state functional magnetic resonance imaging (rsfMRI) has been widely used to characterize the abnormal brain function by computing the voxel-wise measures and Pearson's correlation (PC)-based functional connectivity (FC) for ADHD diagnosis. However, exploring the powerful measures of rsfMRI to improve ADHD diagnosis remains a particular challenge. To this end, this paper proposes an automated ADHD classification framework by fusion of multiple measures of rsfMRI in adolescent brain. First, we extract the voxel-wise measures and ROI-wise time series from the brain regions of rsfMRI after preprocessing. Then, to extract the multiple functional connectivities, we compute the PC-derived FCs including the topographical information-based high-order FC (tHOFC) and dynamics-based high-order FC (dHOFC), the sparse representation (SR)-derived FCs including the group SR (GSR), the strength and similarity guided GSR (SSGSR), and sparse low-rank (SLR). Finally, these measures are combined with multiple kernel learning (MKL) model for ADHD classification. The proposed method is applied to the Adolescent Brain and Cognitive Development (ABCD) dataset. The results show that the FCs of dHOFC and SLR perform better than the others. Fusing multiple measures achieves the best classification performance (AUC = 0.740, accuracy = 0.6916), superior to those from the single measure and the previous studies. We have identified the most discriminative FCs and brain regions for ADHD diagnosis, which are consistent with those of published literature.
Collapse
Affiliation(s)
- Zhaobin Wang
- grid.16821.3c0000 0004 0368 8293State Key Lab of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China ,grid.16821.3c0000 0004 0368 8293SJTU-Yale Joint Center of Biostatistics and Data Science, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaocheng Zhou
- grid.16821.3c0000 0004 0368 8293State Key Lab of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Gui
- grid.16821.3c0000 0004 0368 8293State Key Lab of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China ,grid.16821.3c0000 0004 0368 8293SJTU-Yale Joint Center of Biostatistics and Data Science, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Manhua Liu
- MoE Key Laboratory of Artificial Intelligence, AI Institute, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Hui Lu
- State Key Lab of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China. .,SJTU-Yale Joint Center of Biostatistics and Data Science, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China.
| |
Collapse
|
6
|
Zhang-James Y, Razavi AS, Hoogman M, Franke B, Faraone SV. Machine Learning and MRI-based Diagnostic Models for ADHD: Are We There Yet? J Atten Disord 2023; 27:335-353. [PMID: 36651494 DOI: 10.1177/10870547221146256] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Machine learning (ML) has been applied to develop magnetic resonance imaging (MRI)-based diagnostic classifiers for attention-deficit/hyperactivity disorder (ADHD). This systematic review examines this literature to clarify its clinical significance and to assess the implications of the various analytic methods applied. METHODS A comprehensive literature search on MRI-based diagnostic classifiers for ADHD was performed and data regarding the utilized models and samples were gathered. RESULTS We found that, although most studies reported the classification accuracies, they varied in choice of MRI modalities, ML models, cross-validation and testing methods, and sample sizes. We found that the accuracies of cross-validation methods inflated the performance estimation compared with those of a held-out test, compromising the model generalizability. Test accuracies have increased with publication year but were not associated with training sample sizes. Improved test accuracy over time was likely due to the use of better ML methods along with strategies to deal with data imbalances. CONCLUSION Ultimately, large multi-modal imaging datasets, and potentially the combination with other types of data, like cognitive data and/or genetics, will be essential to achieve the goal of developing clinically useful imaging classification tools for ADHD in the future.
Collapse
Affiliation(s)
| | | | - Martine Hoogman
- Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Barbara Franke
- Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | | |
Collapse
|
7
|
A Review of Machine Learning and Deep Learning Approaches on Mental Health Diagnosis. Healthcare (Basel) 2023; 11:healthcare11030285. [PMID: 36766860 PMCID: PMC9914523 DOI: 10.3390/healthcare11030285] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Combating mental illnesses such as depression and anxiety has become a global concern. As a result of the necessity for finding effective ways to battle these problems, machine learning approaches have been included in healthcare systems for the diagnosis and probable prediction of the treatment outcomes of mental health conditions. With the growing interest in machine and deep learning methods, analysis of existing work to guide future research directions is necessary. In this study, 33 articles on the diagnosis of schizophrenia, depression, anxiety, bipolar disorder, post-traumatic stress disorder (PTSD), anorexia nervosa, and attention deficit hyperactivity disorder (ADHD) were retrieved from various search databases using the preferred reporting items for systematic reviews and meta-analysis (PRISMA) review methodology. These publications were chosen based on their use of machine learning and deep learning technologies, individually assessed, and their recommended methodologies were then classified into the various disorders included in this study. In addition, the difficulties encountered by the researchers are discussed, and a list of some public datasets is provided.
Collapse
|
8
|
Kiakou D, Adamopoulos A, Scherf N. Graph-Based Disease Prediction in Neuroimaging: Investigating the Impact of Feature Selection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1424:223-230. [PMID: 37486497 DOI: 10.1007/978-3-031-31982-2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
In biomedical machine learning, data often appear in the form of graphs. Biological systems such as protein interactions and ecological or brain networks are instances of applications that benefit from graph representations. Geometric deep learning is an arising field of techniques that has extended deep neural networks to non-Euclidean domains such as graphs. In particular, graph convolutional neural networks have achieved advanced performance in semi-supervised learning in those domains. Over the last years, these methods have gained traction in neuroscience as they could be the key to a deeper understanding in clinical diagnosis at the systems or network level (for an individual brain but also for across a cohort of subjects). As a proof-of-principle, we study and validate a previous implementation of graph-based semi-supervised classification using a ridge classifier and graph convolutional neural networks. The models are trained on population graphs that integrate imaging and phenotypic information. Our analysis employs neuroimaging data of structural and functional connectivity for prediction of neurodevelopmental and neurodegenerative disorders. Here, we particularly study the effect of different strategies to reduce the dimensionality of the neuroimaging features on the graph nodes on the classification performance.
Collapse
Affiliation(s)
- Dimitra Kiakou
- Hellenic Open University, Patra, Greece.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Adam Adamopoulos
- Hellenic Open University, Patra, Greece
- Democritus University of Thrace, Department of Medicine, Medical Physics Lab, Alexandroupolis, Greece
| | - Nico Scherf
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence ScaDS.AI, Dresden/Leipzig, Leipzig, Germany
| |
Collapse
|
9
|
Öztekin I, Garic D, Bayat M, Hernandez ML, Finlayson MA, Graziano PA, Dick AS. Structural and diffusion-weighted brain imaging predictors of attention-deficit/hyperactivity disorder and its symptomology in very young (4- to 7-year-old) children. Eur J Neurosci 2022; 56:6239-6257. [PMID: 36215144 PMCID: PMC10165616 DOI: 10.1111/ejn.15842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022]
Abstract
The current study aimed to identify the key neurobiology of attention-deficit/hyperactivity disorder (ADHD), as it relates to ADHD diagnostic category and symptoms of hyperactive/impulsive behaviour and inattention. To do so, we adapted a predictive modelling approach to identify the key structural and diffusion-weighted brain imaging measures and their relative standing with respect to teacher ratings of executive function (EF) (measured by the Metacognition Index of the Behavior Rating Inventory of Executive Function [BRIEF]) and negativity and emotion regulation (ER) (measured by the Emotion Regulation Checklist [ERC]), in a critical young age range (ages 4 to 7, mean age 5.52 years, 82.2% Hispanic/Latino), where initial contact with educators and clinicians typically take place. Teacher ratings of EF and ER were predictive of both ADHD diagnostic category and symptoms of hyperactive/impulsive behaviour and inattention. Among the neural measures evaluated, the current study identified the critical importance of the largely understudied diffusion-weighted imaging measures for the underlying neurobiology of ADHD and its associated symptomology. Specifically, our analyses implicated the inferior frontal gyrus as a critical predictor of ADHD diagnostic category and its associated symptomology, above and beyond teacher ratings of EF and ER. Collectively, the current set of findings have implications for theories of ADHD, the relative utility of neurobiological measures with respect to teacher ratings of EF and ER, and the developmental trajectory of its underlying neurobiology.
Collapse
Affiliation(s)
- Ilke Öztekin
- Center for Children and Families and Department of Psychology, Florida International University, Miami, Florida, USA.,Exponent, Inc., Philadelphia, Pennsylvania, USA
| | - Dea Garic
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mohammadreza Bayat
- Center for Children and Families and Department of Psychology, Florida International University, Miami, Florida, USA
| | - Melissa L Hernandez
- Center for Children and Families and Department of Psychology, Florida International University, Miami, Florida, USA
| | - Mark A Finlayson
- School of Computing and Information Sciences, Florida International University, Miami, Florida, USA
| | - Paulo A Graziano
- Center for Children and Families and Department of Psychology, Florida International University, Miami, Florida, USA
| | - Anthony Steven Dick
- Center for Children and Families and Department of Psychology, Florida International University, Miami, Florida, USA
| |
Collapse
|
10
|
Cibrian FL, Monteiro E, Schuck SEB, Nelson M, Hayes GR, Lakes KD. Interdisciplinary Tensions When Developing Digital Interventions Supporting Individuals With ADHD. Front Digit Health 2022; 4:876039. [PMID: 35633736 PMCID: PMC9133410 DOI: 10.3389/fdgth.2022.876039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Franceli L. Cibrian
- Fowler School of Engineering, Chapman University, Orange, CA, United States
- *Correspondence: Franceli L. Cibrian
| | - Elissa Monteiro
- Graduate School of Education, University of California, Riverside, Riverside, CA, United States
| | - Sabrina E. B. Schuck
- Pediatrics Department, University of California, Irvine, Irvine, CA, United States
| | - Michele Nelson
- Department of Psychiatry and Neuroscience, University of California, Riverside, Riverside, CA, United States
| | - Gillian R. Hayes
- Pediatrics Department, University of California, Irvine, Irvine, CA, United States
- Informatics Department, University of California, Irvine, Irvine, CA, United States
| | - Kimberley D. Lakes
- Department of Psychiatry and Neuroscience, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
11
|
Loh HW, Ooi CP, Barua PD, Palmer EE, Molinari F, Acharya UR. Automated detection of ADHD: Current trends and future perspective. Comput Biol Med 2022; 146:105525. [DOI: 10.1016/j.compbiomed.2022.105525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/25/2022]
|
12
|
Periyasamy R, Vibashan VS, Varghese GT, Aleem MA. Machine Learning Techniques for the Diagnosis of Attention-Deficit/Hyperactivity Disorder from Magnetic Resonance Imaging: A Concise Review. Neurol India 2021; 69:1518-1523. [PMID: 34979636 DOI: 10.4103/0028-3886.333520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Attention-deficit/hyperactivity disorder (ADHD) is a neuro-developmental disease commonly seen in children and it is diagnosed via extensive interview procedures, behavioral studies, third-party observations, and comprehensive personal history. ADHD causes regional atrophy in brain regions and alters the pattern of functional brain connectivity networks. Automated/computerized methods based on magnetic resonance imaging (MRI) can replace subjective methods for the identification of ADHD. Objectives The aim of this study was to analyze various machine-learning algorithms for ADHD by feeding in vital input features extracted from functional brain connectivity and different existing methods and to review factors crucial for the diagnosis of ADHD. Methods This paper is a concise review of machine learning methods for the diagnosis of ADHD from MRI. Techniques for feature extraction, dimensionality reduction/feature selection, and classification, employed in the computerized techniques for the diagnosis of ADHD from MRI and the accuracy of classification offered by the individual methods, are focussed on the review. Conclusions Machine learning algorithms with features of functional brain connectivity networks as input, with hierarchical sparse feature elimination, exhibits the highest accuracy. Augmentation of the behavioral features does not contribute much to increased accuracy. The level of accuracy offered by the frameworks meant for the computer-aided diagnosis of ADHD, available in the literature, does not justify their feasibility in clinical practice. Computerized methods that exploit highly specific biomarkers of ADHD like brain iron concentration in Globus Pallidus, Putamen, Caudate nucleus, and thalamus as features are not available.
Collapse
Affiliation(s)
- R Periyasamy
- Department of Instrumentation and Control, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
| | - V S Vibashan
- Department of Instrumentation and Control, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
| | - George Tom Varghese
- Department of Electronics and Instrumentation, St. Joseph's College of Engineering and Technology, Palai, Kerala, India
| | - M A Aleem
- Department of Neurology, K. A. P Viswanatham Government Medical College and MGM Government Hospital, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
13
|
Zhou X, Lin Q, Gui Y, Wang Z, Liu M, Lu H. Multimodal MR Images-Based Diagnosis of Early Adolescent Attention-Deficit/Hyperactivity Disorder Using Multiple Kernel Learning. Front Neurosci 2021; 15:710133. [PMID: 34594183 PMCID: PMC8477011 DOI: 10.3389/fnins.2021.710133] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is one of the most common brain diseases among children. The current criteria of ADHD diagnosis mainly depend on behavior analysis, which is subjective and inconsistent, especially for children. The development of neuroimaging technologies, such as magnetic resonance imaging (MRI), drives the discovery of brain abnormalities in structure and function by analyzing multimodal neuroimages for computer-aided diagnosis of brain diseases. This paper proposes a multimodal machine learning framework that combines the Boruta based feature selection and Multiple Kernel Learning (MKL) to integrate the multimodal features of structural and functional MRIs and Diffusion Tensor Images (DTI) for the diagnosis of early adolescent ADHD. The rich and complementary information of the macrostructural features, microstructural properties, and functional connectivities are integrated at the kernel level, followed by a support vector machine classifier for discriminating ADHD from healthy children. Our experiments were conducted on the comorbidity-free ADHD subjects and covariable-matched healthy children aged 9-10 chosen from the Adolescent Brain and Cognitive Development (ABCD) study. This paper is the first work to combine structural and functional MRIs with DTI for early adolescents of the ABCD study. The results indicate that the kernel-level fusion of multimodal features achieves 0.698 of AUC (area under the receiver operating characteristic curves) and 64.3% of classification accuracy for ADHD diagnosis, showing a significant improvement over the early feature fusion and unimodal features. The abnormal functional connectivity predictors, involving default mode network, attention network, auditory network, and sensorimotor mouth network, thalamus, and cerebellum, as well as the anatomical regions in basal ganglia, are found to encode the most discriminative information, which collaborates with macrostructure and diffusion alterations to boost the performances of disorder diagnosis.
Collapse
Affiliation(s)
- Xiaocheng Zhou
- Shanghai Jiao Tong University-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
- Department of Bioinformatics and Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingmin Lin
- Department of Bioinformatics and Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Gui
- Shanghai Jiao Tong University-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
- Department of Bioinformatics and Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Wang
- Shanghai Jiao Tong University-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
- Department of Bioinformatics and Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Manhua Liu
- MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai, China
- Department of Instrument Science and Engineering, School of EIEE, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Lu
- Shanghai Jiao Tong University-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
- Department of Bioinformatics and Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Center for Biomedical Informatics, Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai Children's Hospital, Shanghai, China
| |
Collapse
|
14
|
Wang P, Zhao X, Zhong J, Zhou Y. Localization and Diagnosis of Attention-Deficit/Hyperactivity Disorder. Healthcare (Basel) 2021; 9:372. [PMID: 33801750 PMCID: PMC8066369 DOI: 10.3390/healthcare9040372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022] Open
Abstract
In this paper, a random-forest-based method was proposed for the classification and localization of Attention-Deficit/Hyperactivity Disorder (ADHD), a common neurodevelopmental disorder among children. Experimental data were magnetic resonance imaging (MRI) from the public case-control dataset of 3D images for ADHD-200. Each MRI image was a 3D-tensor of 121×145×121 size. All 3D matrices (MRI) were segmented into the slices from each of three orthogonal directions. Each slice from the same position of the same direction in the training set was converted into a vector, and all these vectors were composed into a designed matrix to train the random forest classification algorithm; then, the well-trained RF classifier was exploited to give a prediction label in correspondence direction and position. Diagnosis and location results can be obtained upon the intersection of these three prediction matrices. The performance of our proposed method was illustrated on the dataset from New York University (NYU), Kennedy Krieger Institute (KKI) and full datasets; the results show that the proposed methods can archive more accuracy identification in discrimination of ADHD, and can be extended to the other practices of diagnosis. Moreover, another suspected region was found at the first time.
Collapse
Affiliation(s)
- Peng Wang
- School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China; (P.W.); (J.Z.); (Y.Z.)
- School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuejing Zhao
- School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China; (P.W.); (J.Z.); (Y.Z.)
| | - Jitao Zhong
- School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China; (P.W.); (J.Z.); (Y.Z.)
- School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ying Zhou
- School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China; (P.W.); (J.Z.); (Y.Z.)
| |
Collapse
|
15
|
Pulini AA, Kerr WT, Loo SK, Lenartowicz A. Classification Accuracy of Neuroimaging Biomarkers in Attention-Deficit/Hyperactivity Disorder: Effects of Sample Size and Circular Analysis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:108-120. [PMID: 30064848 PMCID: PMC6310118 DOI: 10.1016/j.bpsc.2018.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Motivated by an inconsistency between reports of high diagnosis-classification accuracies and known heterogeneity in attention-deficit/hyperactivity disorder (ADHD), this study assessed classification accuracy in studies of ADHD as a function of methodological factors that can bias results. We hypothesized that high classification results in ADHD diagnosis are inflated by methodological factors. METHODS We reviewed 69 studies (of 95 studies identified) that used neuroimaging features to predict ADHD diagnosis. Based on reported methods, we assessed the prevalence of circular analysis, which inflates classification accuracy, and evaluated the relationship between sample size and accuracy to test if small-sample models tend to report higher classification accuracy, also an indicator of bias. RESULTS Circular analysis was detected in 15.9% of ADHD classification studies, lack of independent test set was noted in 13%, and insufficient methodological detail to establish its presence was noted in another 11.6%. Accuracy of classification ranged from 60% to 80% in the 59.4% of reviewed studies that met criteria for independence of feature selection, model construction, and test datasets. Moreover, there was a negative relationship between accuracy and sample size, implying additional bias contributing to reported accuracies at lower sample sizes. CONCLUSIONS High classification accuracies in neuroimaging studies of ADHD appear to be inflated by circular analysis and small sample size. Accuracies on independent datasets were consistent with known heterogeneity of the disorder. Steps to resolve these issues, and a shift toward accounting for sample heterogeneity and prediction of future outcomes, will be crucial in future classification studies in ADHD.
Collapse
Affiliation(s)
| | - Wesley T Kerr
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles; Department of Biomathematics, University of California, Los Angeles, Los Angeles; Department of Internal Medicine, Eisenhower Medical Center, Rancho Mirage, California
| | - Sandra K Loo
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles
| | - Agatha Lenartowicz
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles.
| |
Collapse
|
16
|
Sakai K, Yamada K. Machine learning studies on major brain diseases: 5-year trends of 2014–2018. Jpn J Radiol 2018; 37:34-72. [DOI: 10.1007/s11604-018-0794-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022]
|