1
|
Mitchell PW, Carney LH. A computational model of auditory chirp-velocity sensitivity and amplitude-modulation tuning in inferior colliculus neurons. J Comput Neurosci 2024; 52:285-302. [PMID: 39259462 DOI: 10.1007/s10827-024-00880-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024]
Abstract
We demonstrate a model of chirp-velocity sensitivity in the inferior colliculus (IC) that retains the tuning to amplitude modulation (AM) that was established in earlier models. The mechanism of velocity sensitivity is sequence detection by octopus cells of the posteroventral cochlear nucleus, which have been proposed in physiological studies to respond preferentially to the order of arrival of cross-frequency inputs of different amplitudes. Model architecture is based on coincidence detection of a combination of excitatory and inhibitory inputs. Chirp-sensitivity of the IC output is largely controlled by the strength and timing of the chirp-sensitive octopus-cell inhibitory input. AM tuning is controlled by inhibition and excitation that are tuned to the same frequency. We present several example neurons that demonstrate the feasibility of the model in simulating realistic chirp-sensitivity and AM tuning for a wide range of characteristic frequencies. Additionally, we explore the systematic impact of varying parameters on model responses. The proposed model can be used to assess the contribution of IC chirp-velocity sensitivity to responses to complex sounds, such as speech.
Collapse
Affiliation(s)
- Paul W Mitchell
- Department of Biomedical Engineering and Neuroscience, University of Rochester, Rochester, NY, USA
| | - Laurel H Carney
- Department of Biomedical Engineering and Neuroscience, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
2
|
Mitchell PW, Carney LH. A Computational Model of Auditory Chirp-Velocity Sensitivity and Amplitude-Modulation Tuning in Inferior Colliculus Neurons. RESEARCH SQUARE 2024:rs.3.rs-4450943. [PMID: 38883707 PMCID: PMC11177976 DOI: 10.21203/rs.3.rs-4450943/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
We demonstrate a model of chirp-velocity sensitivity in the inferior colliculus (IC) that retains the tuning to amplitude modulation (AM) that was established in earlier models. The mechanism of velocity sensitivity is sequence detection by octopus cells of the posteroventral cochlear nucleus, which have been proposed in physiological studies to respond preferentially to the order of arrival of cross-frequency inputs of different amplitudes. Model architecture is based on coincidence detection of a combination of excitatory and inhibitory inputs. Chirp-sensitivity of the IC output is largely controlled by the strength and timing of the chirp-sensitive octopus-cell inhibitory input. AM tuning is controlled by inhibition and excitation that are tuned to the same frequency. We present several example neurons that demonstrate the feasibility of the model in simulating realistic chirp-sensitivity and AM tuning for a wide range of characteristic frequencies. Additionally, we explore the systematic impact of varying parameters on model responses. The proposed model can be used to assess the contribution of IC chirp-velocity sensitivity to responses to complex sounds, such as speech.
Collapse
Affiliation(s)
- Paul W. Mitchell
- Department of Biomedical Engineering, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Laurel H. Carney
- Department of Biomedical Engineering, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA
- Department of Neuroscience, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA
| |
Collapse
|
3
|
Shavikloo M, Esmaeili A, Valizadeh A, Madadi Asl M. Synchronization of delayed coupled neurons with multiple synaptic connections. Cogn Neurodyn 2024; 18:631-643. [PMID: 38699603 PMCID: PMC11061096 DOI: 10.1007/s11571-023-10013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/16/2023] [Accepted: 09/16/2023] [Indexed: 05/05/2024] Open
Abstract
Synchronization is a key feature of the brain dynamics and is necessary for information transmission across brain regions and in higher brain functions like cognition, learning and memory. Experimental findings demonstrated that in cortical microcircuits there are multiple synapses between pairs of connected neurons. Synchronization of neurons in the presence of multiple synaptic connections may be relevant for optimal learning and memory, however, its effect on the dynamics of the neurons is not adequately studied. Here, we address the question that how changes in the strength of the synaptic connections and transmission delays between neurons impact synchronization in a two-neuron system with multiple synapses. To this end, we analytically and computationally investigated synchronization dynamics by considering both phase oscillator model and conductance-based Hodgkin-Huxley (HH) model. Our results show that symmetry/asymmetry of feedforward and feedback connections crucially determines stability of the phase locking of the system based on the strength of connections and delays. In both models, the two-neuron system with multiple synapses achieves in-phase synchrony in the presence of small and large delays, whereas an anti-phase synchronization state is favored for median delays. Our findings can expand the understanding of the functional role of multisynaptic contacts in neuronal synchronization and may shed light on the dynamical consequences of pathological multisynaptic connectivity in a number of brain disorders.
Collapse
Affiliation(s)
- Masoumeh Shavikloo
- Department of Physics, Faculty of Science, Urmia University, Urmia, Iran
| | - Asghar Esmaeili
- Department of Physics, Faculty of Science, Urmia University, Urmia, Iran
| | - Alireza Valizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
| | - Mojtaba Madadi Asl
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
| |
Collapse
|
4
|
Stoll TJ, Maddox RK. Enhanced Place Specificity of the Parallel Auditory Brainstem Response: An Electrophysiological Study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584313. [PMID: 38559254 PMCID: PMC10979863 DOI: 10.1101/2024.03.10.584313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Purpose This study investigates the effect of parallel stimulus presentation on the place specificity of the auditory brainstem response (ABR) in human listeners. Frequency-specific stimuli do not guarantee a response from the place on the cochlea corresponding only to that characteristic frequency - especially for brief and high-level stimuli. Adding masking noise yields responses that are more place specific, and a prior modeling study has suggested similar effects when multiple frequency-specific stimuli are presented in parallel. We tested this hypothesis experimentally here, comparing the place specificity of responses to serial and parallel stimuli at two stimulus frequencies and three stimulus rates. Methods Parallel ABR (pABR) stimuli were presented alongside high-pass filtered noise with a varied cutoff frequency. Serial presentation was also tested by isolating and presenting single-frequency stimulus trains from the pABR ensemble. Latencies of the ABRs were examined to assess place specificity of responses. Response bands were derived by subtracting responses from different high pass noise conditions. The response amplitude from each derived response band was then used to determine how much individual frequency regions of the auditory system were contributing to the overall response. Results We found that parallel presentation improves place specificity of ABRs for the lower stimulus frequency and at higher stimulus rates. At a higher stimulus frequency, serial and parallel presentation were equally place specific. Conclusion Parallel presentation can provide more place specific responses than serial for lower stimulus frequencies. The improvement increases with higher stimulus rates and is in addition to the pABR's primary benefit of faster test times.
Collapse
Affiliation(s)
- Thomas J Stoll
- University of Rochester, Department of Biomedical Engineering and
- University of Rochester, Department of Neuroscience
- University of Michigan, Kresge Hearing Research Institute
| | - Ross K Maddox
- University of Rochester, Department of Biomedical Engineering and
- University of Rochester, Department of Neuroscience
- University of Michigan, Kresge Hearing Research Institute
| |
Collapse
|
5
|
Grimaldi A, Gruel A, Besnainou C, Jérémie JN, Martinet J, Perrinet LU. Precise Spiking Motifs in Neurobiological and Neuromorphic Data. Brain Sci 2022; 13:68. [PMID: 36672049 PMCID: PMC9856822 DOI: 10.3390/brainsci13010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Why do neurons communicate through spikes? By definition, spikes are all-or-none neural events which occur at continuous times. In other words, spikes are on one side binary, existing or not without further details, and on the other, can occur at any asynchronous time, without the need for a centralized clock. This stands in stark contrast to the analog representation of values and the discretized timing classically used in digital processing and at the base of modern-day neural networks. As neural systems almost systematically use this so-called event-based representation in the living world, a better understanding of this phenomenon remains a fundamental challenge in neurobiology in order to better interpret the profusion of recorded data. With the growing need for intelligent embedded systems, it also emerges as a new computing paradigm to enable the efficient operation of a new class of sensors and event-based computers, called neuromorphic, which could enable significant gains in computation time and energy consumption-a major societal issue in the era of the digital economy and global warming. In this review paper, we provide evidence from biology, theory and engineering that the precise timing of spikes plays a crucial role in our understanding of the efficiency of neural networks.
Collapse
Affiliation(s)
- Antoine Grimaldi
- INT UMR 7289, Aix Marseille Univ, CNRS, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Amélie Gruel
- SPARKS, Côte d’Azur, CNRS, I3S, 2000 Rte des Lucioles, 06900 Sophia-Antipolis, France
| | - Camille Besnainou
- INT UMR 7289, Aix Marseille Univ, CNRS, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Jean-Nicolas Jérémie
- INT UMR 7289, Aix Marseille Univ, CNRS, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Jean Martinet
- SPARKS, Côte d’Azur, CNRS, I3S, 2000 Rte des Lucioles, 06900 Sophia-Antipolis, France
| | - Laurent U. Perrinet
- INT UMR 7289, Aix Marseille Univ, CNRS, 27 Bd Jean Moulin, 13005 Marseille, France
| |
Collapse
|
6
|
Feldhoff F, Toepfer H, Harczos T, Klefenz F. Periodicity Pitch Perception Part III: Sensibility and Pachinko Volatility. Front Neurosci 2022; 16:736642. [PMID: 35356050 PMCID: PMC8959216 DOI: 10.3389/fnins.2022.736642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/07/2022] [Indexed: 11/29/2022] Open
Abstract
Neuromorphic computer models are used to explain sensory perceptions. Auditory models generate cochleagrams, which resemble the spike distributions in the auditory nerve. Neuron ensembles along the auditory pathway transform sensory inputs step by step and at the end pitch is represented in auditory categorical spaces. In two previous articles in the series on periodicity pitch perception an extended auditory model had been successfully used for explaining periodicity pitch proved for various musical instrument generated tones and sung vowels. In this third part in the series the focus is on octopus cells as they are central sensitivity elements in auditory cognition processes. A powerful numerical model had been devised, in which auditory nerve fibers (ANFs) spike events are the inputs, triggering the impulse responses of the octopus cells. Efficient algorithms are developed and demonstrated to explain the behavior of octopus cells with a focus on a simple event-based hardware implementation of a layer of octopus neurons. The main finding is, that an octopus' cell model in a local receptive field fine-tunes to a specific trajectory by a spike-timing-dependent plasticity (STDP) learning rule with synaptic pre-activation and the dendritic back-propagating signal as post condition. Successful learning explains away the teacher and there is thus no need for a temporally precise control of plasticity that distinguishes between learning and retrieval phases. Pitch learning is cascaded: At first octopus cells respond individually by self-adjustment to specific trajectories in their local receptive fields, then unions of octopus cells are collectively learned for pitch discrimination. Pitch estimation by inter-spike intervals is shown exemplary using two input scenarios: a simple sinus tone and a sung vowel. The model evaluation indicates an improvement in pitch estimation on a fixed time-scale.
Collapse
Affiliation(s)
- Frank Feldhoff
- Advanced Electromagnetics Group, Technische Universität Ilmenau, Ilmenau, Germany
| | - Hannes Toepfer
- Advanced Electromagnetics Group, Technische Universität Ilmenau, Ilmenau, Germany
| | - Tamas Harczos
- Fraunhofer-Institut für Digitale Medientechnologie, Ilmenau, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
- audifon GmbH & Co. KG, Kölleda, Germany
| | - Frank Klefenz
- Fraunhofer-Institut für Digitale Medientechnologie, Ilmenau, Germany
| |
Collapse
|
7
|
Abstract
This study presents a computational model to reproduce the biological dynamics of "listening to music." A biologically plausible model of periodicity pitch detection is proposed and simulated. Periodicity pitch is computed across a range of the auditory spectrum. Periodicity pitch is detected from subsets of activated auditory nerve fibers (ANFs). These activate connected model octopus cells, which trigger model neurons detecting onsets and offsets; thence model interval-tuned neurons are innervated at the right interval times; and finally, a set of common interval-detecting neurons indicate pitch. Octopus cells rhythmically spike with the pitch periodicity of the sound. Batteries of interval-tuned neurons stopwatch-like measure the inter-spike intervals of the octopus cells by coding interval durations as first spike latencies (FSLs). The FSL-triggered spikes synchronously coincide through a monolayer spiking neural network at the corresponding receiver pitch neurons.
Collapse
Affiliation(s)
- Frank Klefenz
- Fraunhofer Institute for Digital Media Technology IDMT, Ilmenau, Germany
| | - Tamas Harczos
- Fraunhofer Institute for Digital Media Technology IDMT, Ilmenau, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
- audifon GmbH & Co. KG, Kölleda, Germany
| |
Collapse
|
8
|
Madadi Asl M, Valizadeh A, Tass PA. Dendritic and Axonal Propagation Delays May Shape Neuronal Networks With Plastic Synapses. Front Physiol 2018; 9:1849. [PMID: 30618847 PMCID: PMC6307091 DOI: 10.3389/fphys.2018.01849] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 12/07/2018] [Indexed: 12/27/2022] Open
Abstract
Biological neuronal networks are highly adaptive and plastic. For instance, spike-timing-dependent plasticity (STDP) is a core mechanism which adapts the synaptic strengths based on the relative timing of pre- and postsynaptic spikes. In various fields of physiology, time delays cause a plethora of biologically relevant dynamical phenomena. However, time delays increase the complexity of model systems together with the computational and theoretical analysis burden. Accordingly, in computational neuronal network studies propagation delays were often neglected. As a downside, a classic STDP rule in oscillatory neurons without propagation delays is unable to give rise to bidirectional synaptic couplings, i.e., loops or uncoupled states. This is at variance with basic experimental results. In this mini review, we focus on recent theoretical studies focusing on how things change in the presence of propagation delays. Realistic propagation delays may lead to the emergence of neuronal activity and synaptic connectivity patterns, which cannot be captured by classic STDP models. In fact, propagation delays determine the inventory of attractor states and shape their basins of attractions. The results reviewed here enable to overcome fundamental discrepancies between theory and experiments. Furthermore, these findings are relevant for the development of therapeutic brain stimulation techniques aiming at shifting the diseased brain to more favorable attractor states.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Alireza Valizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.,School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Peter A Tass
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|