1
|
Liu Q, Zheng K, Wang H, Song D, Li X. Changes in serum sodium concentration during hemodialysis is a predictor of mortality and cardio-cerebrovascular event. Ren Fail 2024; 46:2338483. [PMID: 38604948 PMCID: PMC11011235 DOI: 10.1080/0886022x.2024.2338483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Previous study consistently showed that lower serum sodium (SNa) was associated with a greater risk of mortality in hemodialysis (HD) patients. However, few studies have focused on the change in SNa (ΔSNa = post-HD SNa - pre-HD SNa) during an HD session. METHODS In a retrospective cohort of maintenance HD adults, all-cause mortality and cardio-cerebrovascular event (CCVE) were followed up for a medium of 82 months. Baseline pre-HD SNa and ΔSNa were collected; time-averaged pre-HD SNa and ΔSNa were computed as the mean values within 1-year, 2-year and 3-year intervals after enrollment. Cox proportional hazards models were used to evaluate the relationships of pre-HD and ΔSNa with outcomes. RESULTS Time-averaged pre-HD SNa were associated with all-cause mortality (2-year pre-HD SNa: HR [95% CI] 0.86 [0.74-0.99], p = 0.042) and CCVE (3-year pre-HD SNa: HR [95% CI] 0.83 [0.72-0.96], p = 0.012) with full adjustment. Time-averaged ΔSNa also demonstrated an association with all-cause mortality (3-year ΔSNa: HR [95% CI] 1.26 [1.03-1.55], p = 0.026) as well as with CCVE (3-year ΔSNa: HR [95% CI] 1.51 [1.21-1.88], p = <0.001) when fully adjusted. Baseline pre-HD SNa and ΔSNa didn't exhibit association with both outcomes. CONCLUSIONS Lower time-averaged pre-HD SNa and higher time-averaged ΔSNa were associated with a greater risk of all-cause mortality and CCVE in HD patients.
Collapse
Affiliation(s)
- Qixing Liu
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Ke Zheng
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyun Wang
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Song
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuemei Li
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Stuard S, Ridel C, Cioffi M, Trost-Rupnik A, Gurevich K, Bojic M, Karibayev Y, Mohebbi N, Marcinkowski W, Kupres V, Maslovaric J, Antebi A, Ponce P, Nada M, Salvador MEB, Rosenberger J, Jirka T, Enden K, Novakivskyy V, Voiculescu D, Pachmann M, Arkossy O. Hemodialysis Procedures for Stable Incident and Prevalent Patients Optimize Hemodynamic Stability, Dialysis Dose, Electrolytes, and Fluid Balance. J Clin Med 2024; 13:3211. [PMID: 38892922 PMCID: PMC11173331 DOI: 10.3390/jcm13113211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The demographic profile of patients transitioning from chronic kidney disease to kidney replacement therapy is changing, with a higher prevalence of aging patients with multiple comorbidities such as diabetes mellitus and heart failure. Cardiovascular disease remains the leading cause of mortality in this population, exacerbated by the cardiovascular stress imposed by the HD procedure. The first year after transitioning to hemodialysis is associated with increased risks of hospitalization and mortality, particularly within the first 90-120 days, with greater vulnerability observed among the elderly. Based on data from clinics in Fresenius Medical Care Europe, Middle East, and Africa NephroCare, this review aims to optimize hemodialysis procedures to reduce mortality risk in stable incident and prevalent patients. It addresses critical aspects such as treatment duration, frequency, choice of dialysis membrane, dialysate composition, blood and dialysate flow rates, electrolyte composition, temperature control, target weight management, dialysis adequacy, and additional protocols, with a focus on mitigating prevalent intradialytic complications, particularly intradialytic hypotension prevention.
Collapse
Affiliation(s)
- Stefano Stuard
- FME Global Medical Office, 61352 Bad Homburg, Germany; (M.P.); (O.A.)
| | | | | | | | | | - Marija Bojic
- FME Global Medical Office, 75400 Zvornik, Bosnia and Herzegovina;
| | | | | | | | | | | | - Alon Antebi
- FME Global Medical Office, Ra’anana 4366411, Israel;
| | - Pedro Ponce
- FME Global Medical Office, 1750-233 Lisboa, Portugal;
| | - Mamdouh Nada
- FME Global Medical Office, Riyadh 12472, Saudi Arabia;
| | | | | | - Tomas Jirka
- FME Global Medical Office, 16000 Praha, Czech Republic;
| | - Kira Enden
- FME Global Medical Office, 00380 Helsinki, Finland;
| | | | | | - Martin Pachmann
- FME Global Medical Office, 61352 Bad Homburg, Germany; (M.P.); (O.A.)
| | - Otto Arkossy
- FME Global Medical Office, 61352 Bad Homburg, Germany; (M.P.); (O.A.)
| |
Collapse
|
3
|
Kopp C, Kittler L, Linz P, Kannenkeril D, Horn S, Chazot C, Schiffer M, Uder M, Nagel AM, Dahlmann A. Modification of Dialysate Na + Concentration but not Ultrafiltration or Dialysis Treatment Time Affects Tissue Na + Deposition in Patients on Hemodialysis. Kidney Int Rep 2024; 9:1310-1320. [PMID: 38707813 PMCID: PMC11068953 DOI: 10.1016/j.ekir.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Tissue Na+ overload is present in patients receiving hemodialysis (HD) and is associated with cardiovascular mortality. Strategies to actively modify tissue Na+ amount in these patients by adjusting the HD regimen have not been evaluated. Methods In several substudies, including cross-sectional analyses (n = 75 patients on HD), a cohort study and a cross-over interventional study (n = 10 patients each), we assessed the impact of ultrafiltration (UF) volume, prolongation of dialysis treatment time, and modification of dialysate Na+ concentration on tissue Na+ content using 23Na magnetic resonance imaging (23Na-MRI). Results In the cross-sectional analysis of our patients on HD, differences in dialysate sodium concentration ([Na+]) were associated with changes in tissue Na+ content, whereas neither UF volume nor HD treatment time affected tissue Na+ amount. Skin Na+ content was lower in 17 patients on HD, with dialysate [Na+] of <138 mmol/l compared to 58 patients dialyzing at ≥138 mmol/l (20.7 ± 7.3 vs. 26.0 ± 8.8 arbitrary units [a.u.], P < 0.05). In the cohort study, intraindividual prolongation of HD treatment time was not associated with a reduction in tissue Na+ content. Corresponding to the observational data, intraindividual modification of dialysate [Na+] from 138 to 142 to 135 mmol/l resulted in concordant changes in skin Na+ (24.3 ± 7.6 vs. 26.3 ± 8.0 vs. 20.8 ± 5.6 a.u, P < 0.05 each), whereas no significant change in muscle Na+ occurred. Conclusion Solely adjustment of dialysate [Na+] had a reproducible impact on tissue Na+ content. 23Na-MRI could be utilized to monitor the effectiveness of dialysate [Na+] modifications in randomized-controlled outcome trials.
Collapse
Affiliation(s)
- Christoph Kopp
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Kittler
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Linz
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Institute of Radiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Dennis Kannenkeril
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | - Mario Schiffer
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Armin M. Nagel
- Institute of Radiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Anke Dahlmann
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Canaud B, Davenport A, Leray-Moragues H, Morena-Carrere M, Cristol JP, Kooman J, Kotanko P. Digital Health Support: Current Status and Future Development for Enhancing Dialysis Patient Care and Empowering Patients. Toxins (Basel) 2024; 16:211. [PMID: 38787063 PMCID: PMC11125858 DOI: 10.3390/toxins16050211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic kidney disease poses a growing global health concern, as an increasing number of patients progress to end-stage kidney disease requiring kidney replacement therapy, presenting various challenges including shortage of care givers and cost-related issues. In this narrative essay, we explore innovative strategies based on in-depth literature analysis that may help healthcare systems face these challenges, with a focus on digital health technologies (DHTs), to enhance removal and ensure better control of broader spectrum of uremic toxins, to optimize resources, improve care and outcomes, and empower patients. Therefore, alternative strategies, such as self-care dialysis, home-based dialysis with the support of teledialysis, need to be developed. Managing ESKD requires an improvement in patient management, emphasizing patient education, caregiver knowledge, and robust digital support systems. The solution involves leveraging DHTs to automate HD, implement automated algorithm-driven controlled HD, remotely monitor patients, provide health education, and enable caregivers with data-driven decision-making. These technologies, including artificial intelligence, aim to enhance care quality, reduce practice variations, and improve treatment outcomes whilst supporting personalized kidney replacement therapy. This narrative essay offers an update on currently available digital health technologies used in the management of HD patients and envisions future technologies that, through digital solutions, potentially empower patients and will more effectively support their HD treatments.
Collapse
Affiliation(s)
- Bernard Canaud
- School of Medicine, Montpellier University, 9 Rue des Carmelites, 34090 Montpellier, France
- Fondation Charles Mion, AIDER-SANTE, 34000 Montpellier, France; (H.L.-M.)
- MTX Consulting International, 34090 Montpellier, France
| | - Andrew Davenport
- UCL Department of Renal Medicine, University College London, London WC1E 6BT, UK;
| | | | - Marion Morena-Carrere
- PhyMedExp, Department of Biochemistry and Hormonology, INSERM, CNRS, University Hospital Center of Montpellier, University of Montpellier, 34000 Montpellier, France;
| | - Jean Paul Cristol
- Fondation Charles Mion, AIDER-SANTE, 34000 Montpellier, France; (H.L.-M.)
- PhyMedExp, Department of Biochemistry and Hormonology, INSERM, CNRS, University Hospital Center of Montpellier, University of Montpellier, 34000 Montpellier, France;
| | - Jeroen Kooman
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
| | - Peter Kotanko
- Renal Research Institute, Icahn University, New York, NY 10065, USA;
| |
Collapse
|
5
|
Maduell F, Broseta JJ, Rodríguez-Espinosa D, Casals J, Escudero V, Gomez M, Rodas LM, Arias-Guillén M, Vera M, Fontseré N. Practical implementation and clinical benefits of the new automated dialysate sodium control biosensor. Clin Kidney J 2023; 16:859-867. [PMID: 37151418 PMCID: PMC10157758 DOI: 10.1093/ckj/sfad013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Indexed: 01/25/2023] Open
Abstract
Background A key feature of dialysis treatment is the prescription of dialysate sodium (Na). This study aimed to describe the practical implementation of a new automated dialysate Na control biosensor and to assess its tolerance and the beneficial clinical effects of isonatraemic dialysis. Methods A prospective study was carried out in 86 patients who, along with their usual parameters, received the following five consecutive phases of treatment for 3 weeks each: phase 0: baseline 5008 machine; phases 1 and 2: 6008 machine without activation of the Na control biosensor and the same fixed individualized Na dialysate prescription or adjusted to obtain similar conductivity to phase 0; phases 3 and 4: activated Na control to isonatraemic dialysis (Na dialysate margins 135-141 or 134-142 mmol/L). Results When the Na control was activated, the few episodes of cramps or hypotension disappeared when the lower dialysate Na margin was increased by 1 or 2 mmol/L. The activated Na control module showed significant differences compared with baseline and the non-activated Na module in final serum Na values, diffusive Na balance, and changes in pre- to postdialysis plasma Na values. The mean predialysis systolic blood pressure value was significantly lower in phase 4 than in phase 1. There were no significant differences in total Na balance in the four 6008 phases evaluated. Conclusions The implementation of the automated dialysate Na control module is a useful new tool, which reduced the diffusive load of Na with good tolerance. The module had the advantages of reducing thirst, interdialytic weight gain and intradialytic plasma Na changes.
Collapse
Affiliation(s)
- Francisco Maduell
- Department of Nephrology, Hospital Clínic Barcelona, Barcelona, Spain
| | - José J Broseta
- Department of Nephrology, Hospital Clínic Barcelona, Barcelona, Spain
| | | | - Joaquim Casals
- Department of Nephrology, Hospital Clínic Barcelona, Barcelona, Spain
| | - Victor Escudero
- Department of Nephrology, Hospital Clínic Barcelona, Barcelona, Spain
| | - Miquel Gomez
- Department of Nephrology, Hospital Clínic Barcelona, Barcelona, Spain
| | - Lida M Rodas
- Department of Nephrology, Hospital Clínic Barcelona, Barcelona, Spain
| | | | - Manel Vera
- Department of Nephrology, Hospital Clínic Barcelona, Barcelona, Spain
| | - Néstor Fontseré
- Department of Nephrology, Hospital Clínic Barcelona, Barcelona, Spain
| |
Collapse
|