1
|
Kim HR, Jung SH, Kim B, Kim J, Jang H, Kim JP, Kim SY, Na DL, Kim HJ, Nho K, Won HH, Seo SW. Identifying genetic variants for amyloid β in subcortical vascular cognitive impairment. Front Aging Neurosci 2023; 15:1160536. [PMID: 37143691 PMCID: PMC10151714 DOI: 10.3389/fnagi.2023.1160536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Background The genetic basis of amyloid β (Aβ) deposition in subcortical vascular cognitive impairment (SVCI) is still unknown. Here, we investigated genetic variants involved in Aβ deposition in patients with SVCI. Methods We recruited a total of 110 patients with SVCI and 424 patients with Alzheimer's disease-related cognitive impairment (ADCI), who underwent Aβ positron emission tomography and genetic testing. Using candidate AD-associated single nucleotide polymorphisms (SNPs) that were previously identified, we investigated Aβ-associated SNPs that were shared or distinct between patients with SVCI and those with ADCI. Replication analyses were performed using the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Religious Orders Study and Rush Memory and Aging Project cohorts (ROS/MAP). Results We identified a novel SNP, rs4732728, which showed distinct associations with Aβ positivity in patients with SVCI (P interaction = 1.49 × 10-5); rs4732728 was associated with increased Aβ positivity in SVCI but decreased Aβ positivity in ADCI. This pattern was also observed in ADNI and ROS/MAP cohorts. Prediction performance for Aβ positivity in patients with SVCI increased (area under the receiver operating characteristic curve = 0.780; 95% confidence interval = 0.757-0.803) when rs4732728 was included. Cis-expression quantitative trait loci analysis demonstrated that rs4732728 was associated with EPHX2 expression in the brain (normalized effect size = -0.182, P = 0.005). Conclusion The novel genetic variants associated with EPHX2 showed a distinct effect on Aβ deposition between SVCI and ADCI. This finding may provide a potential pre-screening marker for Aβ positivity and a candidate therapeutic target for SVCI.
Collapse
Affiliation(s)
- Hang-Rai Kim
- Department of Neurology, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang-Hyuk Jung
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Beomsu Kim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jaeho Kim
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jun Pyo Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, United States
| | - So Yeon Kim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Artificial Intelligence, Ajou University, Suwon, Republic of Korea
- Department of Software and Computer Engineering, Ajou University, Suwon, Republic of Korea
| | - Duk L. Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Cell and Gene Therapy Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hong-Hee Won
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
- Hong-Hee Won,
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Seoul, Republic of Korea
- Hong-Hee Won,
| |
Collapse
|
2
|
Vargas-George S, Dave KR. Models of cerebral amyloid angiopathy-related intracerebral hemorrhage. BRAIN HEMORRHAGES 2022. [DOI: 10.1016/j.hest.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
3
|
Kellar D, Register T, Lockhart SN, Aisen P, Raman R, Rissman RA, Brewer J, Craft S. Intranasal insulin modulates cerebrospinal fluid markers of neuroinflammation in mild cognitive impairment and Alzheimer's disease: a randomized trial. Sci Rep 2022; 12:1346. [PMID: 35079029 PMCID: PMC8789895 DOI: 10.1038/s41598-022-05165-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Intranasal insulin (INI) has shown promise as a treatment for Alzheimer's disease (AD) in pilot clinical trials. In a recent phase 2 trial, participants with mild cognitive impairment (MCI) or AD who were treated with INI with one of two delivery devices showed improved cerebral spinal fluid (CSF) biomarker profiles and slower symptom progression compared with placebo. In the cohort which showed benefit, we measured changes in CSF markers of inflammation, immune function and vascular integrity and assessed their relationship with changes in cognition, brain volume, and CSF amyloid and tau concentrations. The insulin-treated group had increased CSF interferon-γ (p = 0.032) and eotaxin (p = 0.049), and reduced interleukin-6 (p = 0.048) over the 12 month trial compared to placebo. Trends were observed for increased CSF macrophage-derived chemokine for the placebo group (p = 0.083), and increased interleukin-2 in the insulin-treated group (p = 0.093). Insulin-treated and placebo groups showed strikingly different patterns of associations between changes in CSF immune/inflammatory/vascular markers and changes in cognition, brain volume, and amyloid and tau concentrations. In summary, INI treatment altered the typical progression of markers of inflammation and immune function seen in AD, suggesting that INI may promote a compensatory immune response associated with therapeutic benefit.
Collapse
Affiliation(s)
- Derek Kellar
- Department of Internal Medicine-Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Thomas Register
- Department of Internal Medicine-Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Samuel N Lockhart
- Department of Internal Medicine-Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Paul Aisen
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, USA
| | - Rema Raman
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, USA
| | - Robert A Rissman
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, USA
| | - James Brewer
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, USA
| | - Suzanne Craft
- Department of Internal Medicine-Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
4
|
Lao PJ, Gutierrez J, Keator D, Rizvi B, Banerjee A, Igwe KC, Laing KK, Sathishkumar M, Moni F, Andrews H, Krinsky-McHale S, Head E, Lee JH, Lai F, Yassa MA, Rosas HD, Silverman W, Lott IT, Schupf N, Brickman AM. Alzheimer-Related Cerebrovascular Disease in Down Syndrome. Ann Neurol 2020; 88:1165-1177. [PMID: 32944999 PMCID: PMC7729262 DOI: 10.1002/ana.25905] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Adults with Down syndrome (DS) develop Alzheimer disease (AD) pathology by their 5th decade. Compared with the general population, traditional vascular risks in adults with DS are rare, allowing examination of cerebrovascular disease in this population and insight into its role in AD without the confound of vascular risk factors. We examined in vivo magnetic resonance imaging (MRI)-based biomarkers of cerebrovascular pathology in adults with DS, and determined their cross-sectional relationship with age, beta-amyloid pathology, and mild cognitive impairment or clinical AD diagnostic status. METHODS Participants from the Biomarkers of Alzheimer's Disease in Down Syndrome study (n = 138, 50 ± 7 years, 39% women) with MRI data and a subset (n = 90) with amyloid positron emission tomography (PET) were included. We derived MRI-based biomarkers of cerebrovascular pathology, including white matter hyperintensities (WMH), infarcts, cerebral microbleeds, and enlarged perivascular spaces (PVS), as well as PET-based biomarkers of amyloid burden. Participants were characterized as cognitively stable (CS), mild cognitive impairment-DS (MCI-DS), possible AD dementia, or definite AD dementia based on in-depth assessments of cognition, function, and health status. RESULTS There were detectable WMH, enlarged PVS, infarcts, and microbleeds as early as the 5th decade of life. There was a monotonic increase in WMH volume, enlarged PVS, and presence of infarcts across diagnostic groups (CS < MCI-DS < possible AD dementia < definite AD dementia). Higher amyloid burden was associated with a higher likelihood of an infarct. INTERPRETATION The findings highlight the prevalence of cerebrovascular disease in adults with DS and add to a growing body of evidence that implicates cerebrovascular disease as a core feature of AD and not simply a comorbidity. ANN NEUROL 2020;88:1165-1177.
Collapse
Affiliation(s)
- Patrick J Lao
- Gertrude H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
| | - José Gutierrez
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - David Keator
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Batool Rizvi
- Gertrude H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Arit Banerjee
- Gertrude H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Kay C Igwe
- Gertrude H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Krystal K Laing
- Gertrude H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Mithra Sathishkumar
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Fahmida Moni
- Gertrude H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Howard Andrews
- Gertrude H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY
| | - Sharon Krinsky-McHale
- Gertrude H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY
| | - Elizabeth Head
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Joseph H Lee
- Gertrude H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| | - Florence Lai
- Department of Neurology, Massachusetts General Hospital, Harvard University, Boston, MA
| | - Michael A Yassa
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - H Diana Rosas
- Department of Neurology, Massachusetts General Hospital, Harvard University, Boston, MA
- Department of Radiology, Athinoula Martinos Center, Massachusetts General Hospital, Harvard University, Charlestown, MA
| | - Wayne Silverman
- Department of Pediatrics, University of California, Irvine, Irvine, CA
| | - Ira T Lott
- Department of Pediatrics, University of California, Irvine, Irvine, CA
| | - Nicole Schupf
- Gertrude H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Adam M Brickman
- Gertrude H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
5
|
Dadar M, Camicioli R, Duchesne S, Collins DL. The temporal relationships between white matter hyperintensities, neurodegeneration, amyloid beta, and cognition. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2020; 12:e12091. [PMID: 33083512 PMCID: PMC7552231 DOI: 10.1002/dad2.12091] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 02/03/2023]
Abstract
Introduction Cognitive decline in Alzheimer's disease is associated with amyloid beta (Aβ) accumulation, neurodegeneration, and cerebral small vessel disease, but the temporal relationships among these factors is not well established. Methods Data included white matter hyperintensity (WMH) load, gray matter (GM) atrophy and Alzheimer's Disease Assessment Scale‐Cognitive‐Plus (ADAS13) scores for 720 participants and cerebrospinal fluid amyloid (Aβ1–42) for 461 participants from the Alzheimer's Disease Neuroimaging Initiative. Linear regressions were used to assess the relationships among baseline WMH, GM, and Aβ1–42 to changes in WMH, GM, Aβ1–42, and cognition at 1‐year follow‐up. Results Baseline WMHs and Aβ1–42 predicted WMH increase and GM atrophy. Baseline WMHs and Aβ1–42 predicted worsening cognition. Only baseline Aβ1–42 predicted change in Aβ1–42. Discussion Baseline WMHs lead to greater future GM atrophy and cognitive decline, suggesting that WM damage precedes neurodegeneration and cognitive decline. Baseline Aβ1–42 predicted WMH increase, suggesting a potential role of amyloid in WM damage.
Collapse
Affiliation(s)
- Mahsa Dadar
- CERVO Brain Research Center Centre intégré universitaire santé et services sociaux de la Capitale Nationale Québec Quebec Canada
| | - Richard Camicioli
- Department of Medicine, Division of Neurology University of Alberta Edmonton Alberta Canada
| | - Simon Duchesne
- CERVO Brain Research Center Centre intégré universitaire santé et services sociaux de la Capitale Nationale Québec Quebec Canada.,Department of Radiology and Nuclear Medicine, Faculty of Medicine Université Laval Québec City Quebec Canada
| | - D Louis Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute McGill University Montreal Quebec Canada.,Department of Neurology and Neurosurgery, Faculty of Medicine McGill University Montreal Quebec Canada.,Department of Biomedical Engineering, Faculty of Medicine McGill University Montreal Quebec Canada
| | | |
Collapse
|
6
|
Min LJ, Iwanami J, Shudou M, Bai HY, Shan BS, Higaki A, Mogi M, Horiuchi M. Deterioration of cognitive function after transient cerebral ischemia with amyloid-β infusion-possible amelioration of cognitive function by AT 2 receptor activation. J Neuroinflammation 2020; 17:106. [PMID: 32264971 PMCID: PMC7140348 DOI: 10.1186/s12974-020-01775-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 03/17/2020] [Indexed: 12/24/2022] Open
Abstract
Background To promote understanding of the pathogenesis of cognitive impairment or dementia, we explored the potential interaction between transient cerebral ischemia and amyloid-β (Aβ) infusion in mediating cognitive decline and examined the possible ameliorative effect of angiotensin II type 2 (AT2) receptor activation in vascular smooth muscle cells (VSMC) on this cognitive deficit. Methods Adult male wild-type mice (WT) and mice with VSMC-specific AT2 receptor overexpression (smAT2) were subjected to intracerebroventricular (ICV) injection of Aβ1-40. Transient cerebral ischemia was induced by 15 min of bilateral common carotid artery occlusion (BCCAO) 24 h after Aβ injection. Results Aβ injection in WT induced a cognitive decline, whereas BCCAO did not cause a significant cognitive deficit. In contrast, WT with BCCAO following Aβ injection exhibited more marked cognitive decline compared to Aβ injection alone, in concert with increases in superoxide anion production, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, and expression of p22phox, p40phox, monocyte chemoattractant protein (MCP)-1 and interleukin (IL)-1β in the hippocampus, and upregulation of RAGE (receptor for advanced glycation end product), an Aβ transporter. BCCAO following Aβ injection further enhanced neuronal pyknosis in the hippocampus, compared with BCCAO or Aβ injection alone. In contrast, smAT2 did not show a cognitive decline, increase in oxidative stress, inflammation, and RAGE level or neuronal pyknosis, which were induced by BCCAO with/without Aβ injection in WT. Conclusions Transient cerebral ischemia might worsen Aβ infusion-mediated cognitive decline and vice versa, with possible involvement of amplified oxidative stress and inflammation and impairment of the RAGE-mediated Aβ clearance system, contributing to exaggerated neuronal degeneration. AT2 receptor activation in VSMC could play an inhibitory role in this cognitive deficit.
Collapse
Affiliation(s)
- Li-Juan Min
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Shitsukawa, Tohon, Ehime, 791-0295, Japan.
| | - Jun Iwanami
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Shitsukawa, Tohon, Ehime, 791-0295, Japan
| | - Masachika Shudou
- Division of Analytical Bio-Medicine, Advanced Research Support Center (ADRES), Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Hui-Yu Bai
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Shitsukawa, Tohon, Ehime, 791-0295, Japan
| | - Bao-Shuai Shan
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Shitsukawa, Tohon, Ehime, 791-0295, Japan
| | - Akinori Higaki
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Shitsukawa, Tohon, Ehime, 791-0295, Japan
| | - Masaki Mogi
- Department of Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Shitsukawa, Tohon, Ehime, 791-0295, Japan
| |
Collapse
|
7
|
Malek-Ahmadi M, Chen K, Perez SE, Mufson EJ. Cerebral Amyloid Angiopathy and Neuritic Plaque Pathology Correlate with Cognitive Decline in Elderly Non-Demented Individuals. J Alzheimers Dis 2020; 67:411-422. [PMID: 30594928 DOI: 10.3233/jad-180765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is a vascular neuropathology commonly reported in non-cognitively impaired (NCI), mild cognitive impairment, and Alzheimer's disease (AD) brains. However, it is unknown whether similar findings are present in non-demented elderly subjects. OBJECTIVE This study determined the association between CAA and cognition among elderly NCI subjects with varying levels of AD pathology. METHODS Data from 182 cases that received a diagnosis of NCI at their first clinical assessment were obtained from the Rush Religious Orders study (RROS). A cognitive composite score was used to measure cognitive decline. CAA was dichotomized as present or absent. Cases were also dichotomized according to CERAD neuropathological diagnosis and Braak staging. A mixed model-repeated measures analysis assessed decline on the cognitive composite score. RESULTS CAA, alone, was not associated with cognitive decline [-0.87 (95% CI: -3.33, 1.58), p = 0.49]. However, among those with CAA, the High CERAD group had significantly greater decline relative to the Low CERAD group [-4.08 (95% CI: -7.10, -1.06), p = 0.008]. The High and Low CERAD groups were not significantly different [-1.77 (95% CI: -6.14, 2.60), p = 0.43] in those without CAA. Composite score decline in the High and Low Braak groups with [-1.32 (95% CI: -4.40, 1.75), p = 0.40] or without [0.27 (95% CI: -4.01, 4.56), p = 0.90] CAA was not significantly different. CONCLUSION The current data shows that an interaction between CAA and plaque load is associated with greater decline on a cognitive composite score used to test non-cognitively impaired elderly participants in AD prevention trials.
Collapse
Affiliation(s)
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Sylvia E Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
8
|
Takeda S, Rakugi H, Morishita R. Roles of vascular risk factors in the pathogenesis of dementia. Hypertens Res 2019; 43:162-167. [PMID: 31723253 DOI: 10.1038/s41440-019-0357-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/28/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
The number of people with dementia is rapidly growing along with the aging of society and is becoming a social issue worldwide. The results of recent clinical and basic studies have suggested that vascular risk factors, such as hypertension and diabetes mellitus, affect the pathogenesis of dementia. Cerebrovascular damage due to vascular risk factors directly triggers vascular dementia, and it is becoming more apparent that vascular risk factors also increase the risk of neurodegenerative Alzheimer's disease, which is associated with the accumulation of neurotoxic proteins in the brain. Although disease-modifying therapy for dementia has not yet been established, several studies have shown that the management of vascular risk factors could possibly contribute to reducing the risk of developing dementia, thus making them important targets for dementia prevention. In this article, we review recent findings regarding the relationship between vascular risk factors and dementia, especially focusing on Alzheimer's disease, the underlying molecular mechanisms, and the potential strategies targeting these modifiable risk factors to prevent cognitive decline.
Collapse
Affiliation(s)
- Shuko Takeda
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
9
|
Mixed Small Vessel Disease in a Patient with Dementia with Lewy Bodies. Brain Sci 2019; 9:brainsci9070159. [PMID: 31277472 PMCID: PMC6680661 DOI: 10.3390/brainsci9070159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 01/14/2023] Open
Abstract
Background: Cerebral amyloid angiopathy (CAA) is characterized by deposition of amyloid in small/medium size brain vessels, and may coexist with Alzheimer’s disease or dementia with Lewy bodies (DLB). We describe a patient with a clinical diagnosis of DLB and imaging/biochemical characteristics suggestive of mixed small vessel disease (both CAA and non-amyloid microangiopathy). Methods: Clinical evaluation according to recent diagnostic criteria, magnetic resonance imaging, dopamine-transporter scan (DAT-scan) and cerebrospinal fluid (CSF) analysis for dementia biomarkers were all performed. Results: The patient is a 71-year-old male, fulfilling criteria for probable DLB, with a positive DAT-scan, but with multiple microbleeds in a cortical-subcortical location suggestive of CAA, some microbleeds in deep brain nuclei suggestive of non-amyloid microangiopathy and abnormal levels of only amyloid-beta (Aβ42) in CSF. Conclusion: Coexistent mixed vascular and neurodegenerative disorders are frequent in older subjects with dementia and each one of the underlying pathologies may contribute to, or modify the clinical presentation.
Collapse
|
10
|
Chelenkova P, Petkova R, Chamova T, Zhelyazkova S, Tournev I, Chakarov S. The fine art of vascular wall maintenance. Carriership of XPC, TP53and APOEpolymorphisms may be a risk factor for cerebral vascular accidents in the Bulgarian population. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1529542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Pavlina Chelenkova
- Department of Biochemistry, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| | - Rumena Petkova
- Faculty of Medicine, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| | - Teodora Chamova
- Clinic of Neurology, Medical University Hospital ‘Alexandrovska’, Medical University of Sofia, Sofia, Bulgaria
| | - Sashka Zhelyazkova
- Clinic of Neurology, Medical University Hospital ‘Alexandrovska’, Medical University of Sofia, Sofia, Bulgaria
| | - Ivaylo Tournev
- Clinic of Neurology, Medical University Hospital ‘Alexandrovska’, Medical University of Sofia, Sofia, Bulgaria
| | - Stoyan Chakarov
- Department of Biochemistry, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| |
Collapse
|
11
|
Carmona-Iragui M, Balasa M, Benejam B, Alcolea D, Fernández S, Videla L, Sala I, Sánchez-Saudinós MB, Morenas-Rodriguez E, Ribosa-Nogué R, Illán-Gala I, Gonzalez-Ortiz S, Clarimón J, Schmitt F, Powell DK, Bosch B, Lladó A, Rafii MS, Head E, Molinuevo JL, Blesa R, Videla S, Lleó A, Sánchez-Valle R, Fortea J. Cerebral amyloid angiopathy in Down syndrome and sporadic and autosomal-dominant Alzheimer's disease. Alzheimers Dement 2017; 13:1251-1260. [PMID: 28463681 DOI: 10.1016/j.jalz.2017.03.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/10/2017] [Accepted: 03/17/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION We aimed to investigate if cerebral amyloid angiopathy (CAA) is more frequent in genetically determined than in sporadic early-onset forms of Alzheimer's disease (AD) (early-onset AD [EOAD]). METHODS Neuroimaging features of CAA, apolipoprotein (APOE), and cerebrospinal fluid amyloid β (Aβ) 40 levels were studied in subjects with Down syndrome (DS, n = 117), autosomal-dominant AD (ADAD, n = 29), sporadic EOAD (n = 42), and healthy controls (n = 68). RESULTS CAA was present in 31%, 38%, and 12% of cognitively impaired DS, symptomatic ADAD, and sporadic EOAD subjects and in 13% and 4% of cognitively unimpaired DS individuals and healthy controls, respectively. APOE ε4 genotype was borderline significantly associated with CAA in sporadic EOAD (P = .06) but not with DS or ADAD. There were no differences in Aβ040 levels between groups or between subjects with and without CAA. DISCUSSION CAA is more frequently found in genetically determined AD than in sporadic EOAD. Cerebrospinal fluid Aβ40 levels are not a useful biomarker for CAA in AD.
Collapse
Affiliation(s)
- María Carmona-Iragui
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain; Global Brain Health Institute, Trinity College Dublin, College Green, Dublin, Ireland
| | - Mircea Balasa
- Global Brain Health Institute, Trinity College Dublin, College Green, Dublin, Ireland; Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Bessy Benejam
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Daniel Alcolea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Susana Fernández
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Laura Videla
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Isabel Sala
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - María Belén Sánchez-Saudinós
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Estrella Morenas-Rodriguez
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Roser Ribosa-Nogué
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Ignacio Illán-Gala
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Sofía Gonzalez-Ortiz
- Department of Radiology, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Clarimón
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Frederick Schmitt
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - David K Powell
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Beatriz Bosch
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Michael S Rafii
- Adult Down Syndrome Clinic, Department of Neuroscience, University of California, San Diego, CA, USA; Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| | - Elizabeth Head
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - José Luis Molinuevo
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain; BarcelonaBeta Brain Research Center, Fundació Pasqual Maragall, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rafael Blesa
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Sebastián Videla
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain; Faculty of Health and Life Sciences, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain.
| |
Collapse
|
12
|
Hubin E, Deroo S, Schierle GK, Kaminski C, Serpell L, Subramaniam V, van Nuland N, Broersen K, Raussens V, Sarroukh R. Two distinct β-sheet structures in Italian-mutant amyloid-beta fibrils: a potential link to different clinical phenotypes. Cell Mol Life Sci 2015; 72:4899-913. [PMID: 26190022 PMCID: PMC4648968 DOI: 10.1007/s00018-015-1983-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/06/2015] [Accepted: 07/02/2015] [Indexed: 12/22/2022]
Abstract
Most Alzheimer’s disease (AD) cases are late-onset and characterized by the aggregation and deposition of the amyloid-beta (Aβ) peptide in extracellular plaques in the brain. However, a few rare and hereditary Aβ mutations, such as the Italian Glu22-to-Lys (E22K) mutation, guarantee the development of early-onset familial AD. This type of AD is associated with a younger age at disease onset, increased β-amyloid accumulation, and Aβ deposition in cerebral blood vessel walls, giving rise to cerebral amyloid angiopathy (CAA). It remains largely unknown how the Italian mutation results in the clinical phenotype that is characteristic of CAA. We therefore investigated how this single point mutation may affect the aggregation of Aβ1–42 in vitro and structurally characterized the resulting fibrils using a biophysical approach. This paper reports that wild-type and Italian-mutant Aβ both form fibrils characterized by the cross-β architecture, but with distinct β-sheet organizations, resulting in differences in thioflavin T fluorescence and solvent accessibility. E22K Aβ1–42 oligomers and fibrils both display an antiparallel β-sheet structure, in comparison with the parallel β-sheet structure of wild-type fibrils, characteristic of most amyloid fibrils described in the literature. Moreover, we demonstrate structural plasticity for Italian-mutant Aβ fibrils in a pH-dependent manner, in terms of their underlying β-sheet arrangement. These findings are of interest in the ongoing debate that (1) antiparallel β-sheet structure might represent a signature for toxicity, which could explain the higher toxicity reported for the Italian mutant, and that (2) fibril polymorphism might underlie differences in disease pathology and clinical manifestation.
Collapse
Affiliation(s)
- Ellen Hubin
- Nanobiophysics Group, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands.,Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Brussels, Belgium.,Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Stéphanie Deroo
- Laboratory of Structure and Function of Biological Membrane, Faculté des Sciences, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Campus de la Plaine CP 206/02, Boulevard du Triomphe, 1050, Brussels, Belgium
| | - Gabriele Kaminksi Schierle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, CB2 3RA, UK
| | - Clemens Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, CB2 3RA, UK
| | - Louise Serpell
- School of Life Sciences, University of Sussex, Falmer, East Sussex, BN1 9QG, UK
| | - Vinod Subramaniam
- Nanobiophysics Group, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands.,FOM Institute AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands
| | - Nico van Nuland
- Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Brussels, Belgium.,Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Kerensa Broersen
- Nanobiophysics Group, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands.
| | - Vincent Raussens
- Laboratory of Structure and Function of Biological Membrane, Faculté des Sciences, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Campus de la Plaine CP 206/02, Boulevard du Triomphe, 1050, Brussels, Belgium
| | - Rabia Sarroukh
- Laboratory of Structure and Function of Biological Membrane, Faculté des Sciences, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Campus de la Plaine CP 206/02, Boulevard du Triomphe, 1050, Brussels, Belgium.
| |
Collapse
|
13
|
Rastogi V, Donnangelo LL, Asaithambi G, Bidari S, Khanna AY, Hedna VS. Recurrence of Lobar Hemorrhage: A Red Flag for Cerebral Amyloid Angiopathy-related Inflammation? INNOVATIONS IN CLINICAL NEUROSCIENCE 2015; 12:20-26. [PMID: 26155374 PMCID: PMC4479360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Background. Recurrent lobar intracerebral hemorrhage is more commonly associated with cerebral amyloid angiopathy and less likely associated with hypertension. Cerebral amyloid angiopathy-related inflammation is a subgroup of cerebral amyloid angiopathy that can present with lobar intracerebral hemorrhage, encephalopathy, and seizures; wherein corticosteroids may facilitate favorable outcome. Whether recurrence of lobar intracerebral hemorrhage in cerebral amyloid angiopathy is related to cerebral amyloid angiopathy-related inflammation is unknown. Case presentation. A 68-year-old woman presented with an acute onset of confusion. She was known to have a history of recurrent lobar intracerebral hemorrhage related to cerebral amyloid angiopathy. Brain imaging revealed previous sequelae of cerebral amyloid angiopathy and a new lobar intracerebral hemorrhage. An empirical diagnosis of cerebral amyloid angiopathy-related inflammation was made given the patent's clinical course of recurrence. Utilizing current evidence of criteria used to diagnose cerebral amyloid angiopathy-related inflammation, corticosteroid therapy was initiated with significant improvement in clinical and imaging characteristics. Discussion. Inflammatory pathways incited as a result of cerebrovascular amyloid deposition play a vital role in pathogenesis of cerebral amyloid angiopathy-related inflammation. We highlight the need to consider corticosteroid therapy in patients presenting with recurrent lobar intracerebral hemorrhage in the setting of cerebral amyloid angiopathy since inflammation may play a role in its pathophysiology. Evidence in the literature is sparse to suggest that cerebral amyloid angiopathy-related inflammation might be the root cause for the lobar intracerebral hemorrhage recurrence in cerebral amyloid angiopathy. Further studies are needed to identify mechanisms of recurrent hemorrhage, its correlations with cerebral amyloid angiopathy-related inflammation, and the potential role of corticosteroid therapy.
Collapse
Affiliation(s)
- Vaibhav Rastogi
- Drs. Rastogi, Asaithambi, Khanna, and Hedna and Ms. Donnangelo are from the Department of Neurology and Dr. Bidari is from the Department of Radiology-All from the University of Florida College of Medicine, Gainesville, Florida
| | - Lauren L Donnangelo
- Drs. Rastogi, Asaithambi, Khanna, and Hedna and Ms. Donnangelo are from the Department of Neurology and Dr. Bidari is from the Department of Radiology-All from the University of Florida College of Medicine, Gainesville, Florida
| | - Ganesh Asaithambi
- Drs. Rastogi, Asaithambi, Khanna, and Hedna and Ms. Donnangelo are from the Department of Neurology and Dr. Bidari is from the Department of Radiology-All from the University of Florida College of Medicine, Gainesville, Florida
| | - Sharatchandra Bidari
- Drs. Rastogi, Asaithambi, Khanna, and Hedna and Ms. Donnangelo are from the Department of Neurology and Dr. Bidari is from the Department of Radiology-All from the University of Florida College of Medicine, Gainesville, Florida
| | - Anna Y Khanna
- Drs. Rastogi, Asaithambi, Khanna, and Hedna and Ms. Donnangelo are from the Department of Neurology and Dr. Bidari is from the Department of Radiology-All from the University of Florida College of Medicine, Gainesville, Florida
| | - Vishnumurthy Shushrutha Hedna
- Drs. Rastogi, Asaithambi, Khanna, and Hedna and Ms. Donnangelo are from the Department of Neurology and Dr. Bidari is from the Department of Radiology-All from the University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
14
|
Daulatzai MA. “Boomerang Neuropathology” of Late-Onset Alzheimer’s Disease is Shrouded in Harmful “BDDS”: Breathing, Diet, Drinking, and Sleep During Aging. Neurotox Res 2015; 28:55-93. [PMID: 25911292 DOI: 10.1007/s12640-015-9528-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/03/2015] [Accepted: 04/03/2015] [Indexed: 12/12/2022]
|
15
|
Yamada M. Cerebral amyloid angiopathy: emerging concepts. J Stroke 2015; 17:17-30. [PMID: 25692104 PMCID: PMC4325636 DOI: 10.5853/jos.2015.17.1.17] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/15/2014] [Accepted: 12/24/2014] [Indexed: 12/15/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) involves cerebrovascular amyloid deposition and is classified into several types according to the amyloid protein involved. Of these, sporadic amyloid β-protein (Aβ)-type CAA is most commonly found in older individuals and in patients with Alzheimer's disease (AD). Cerebrovascular Aβ deposits accompany functional and pathological changes in cerebral blood vessels (CAA-associated vasculopathies). CAA-associated vasculopathies lead to development of hemorrhagic lesions [lobar intracerebral macrohemorrhage, cortical microhemorrhage, and cortical superficial siderosis (cSS)/focal convexity subarachnoid hemorrhage (SAH)], ischemic lesions (cortical infarction and ischemic changes of the white matter), and encephalopathies that include subacute leukoencephalopathy caused by CAA-associated inflammation/angiitis. Thus, CAA is related to dementia, stroke, and encephalopathies. Recent advances in diagnostic procedures, particularly neuroimaging, have enabled us to establish a clinical diagnosis of CAA without brain biopsies. Sensitive magnetic resonance imaging (MRI) methods, such as gradient-echo T2* imaging and susceptibility-weighted imaging, are useful for detecting cortical microhemorrhages and cSS. Amyloid imaging with amyloid-binding positron emission tomography (PET) ligands, such as Pittsburgh Compound B, can detect CAA, although they cannot discriminate vascular from parenchymal amyloid deposits. In addition, cerebrospinal fluid markers may be useful, including levels of Aβ40 for CAA and anti-Aβ antibody for CAA-related inflammation. Moreover, cSS is closely associated with transient focal neurological episodes (TFNE). CAA-related inflammation/angiitis shares pathophysiology with amyloid-related imaging abnormalities (ARIA) induced by Aβ immunotherapies in AD patients. This article reviews CAA and CAA-related disorders with respect to their epidemiology, pathology, pathophysiology, clinical features, biomarkers, diagnosis, treatment, risk factors, and future perspectives.
Collapse
Affiliation(s)
- Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
16
|
Godani M, Baldi R, Raggio E, Traverso E, Giorli E, Del Sette M. Low Apolipoprotein A-1 Plasma Level in Older Adults with Spontaneous Cerebral Lobar Hemorrhage: A Cross-Sectional Study. J Am Geriatr Soc 2014; 62:2437-8. [DOI: 10.1111/jgs.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Roberta Baldi
- Epidemiology Unit; Sant'Andrea Hospital; La Spezia Italy
| | - Elisa Raggio
- Epidemiology Unit; Sant'Andrea Hospital; La Spezia Italy
| | | | - Elisa Giorli
- Neurology Unit; Sant'Andrea Hospital; La Spezia Italy
| | | |
Collapse
|
17
|
Ohtani S, Shimizu K, Asari M, Maseda C, Oka K, Yamada H, Hoshina C, Doi H, Yajima D, Shiono H, Ogawa K. Brain stem hemorrhage due to cerebral amyloid angiopathy: the autopsy of a patient with Alzheimer's disease at a young age. Leg Med (Tokyo) 2014; 16:98-101. [PMID: 24491518 DOI: 10.1016/j.legalmed.2014.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/07/2014] [Accepted: 01/07/2014] [Indexed: 01/17/2023]
Abstract
We report findings from an autopsy of a male in his 40s who died of a brain stem hemorrhage associated with cerebral amyloid angiopathy (CAA), senile plaques (SPs) and neurofibrillary tangles (NFTs), which are histopathological changes associated with Alzheimer's disease (AD). Our immunohistochemical study demonstrated amyloid β (Aβ) deposition in the small cerebral arteries and SPs. Although hypertension (178/132 mmHg) was detected, the subject was not treated accordingly. CAA coupled with hypertension might have caused the intracerebral hemorrhage (ICH).
Collapse
Affiliation(s)
- Seiji Ohtani
- Department of Legal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Keiko Shimizu
- Department of Legal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Masaru Asari
- Department of Legal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Chikatoshi Maseda
- Department of Legal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Kumiko Oka
- Department of Legal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan; Department of Oral and Maxillofacial Surgery, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Hiromi Yamada
- Department of Legal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Chisato Hoshina
- Department of Legal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Hiroki Doi
- Department of Legal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Daisuke Yajima
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Hiroshi Shiono
- Department of Legal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Katsuhiro Ogawa
- Department of Pathology, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan.
| |
Collapse
|
18
|
Affiliation(s)
- Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Japan
| |
Collapse
|
19
|
Superficial siderosis is a warning sign for future intracranial hemorrhage. J Neurol 2012; 260:176-81. [PMID: 22820723 DOI: 10.1007/s00415-012-6610-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/04/2012] [Accepted: 07/05/2012] [Indexed: 01/16/2023]
Abstract
Supratentorial superficial siderosis (SS) is a frequent imaging marker of cerebral amyloid angiopathy (CAA). It is most probably caused by focal subarachnoid hemorrhages (fSAHs). Based on single-case observations, it has been proposed that such fSAHs might be a predisposing factor for future intracranial hemorrhage. Here we tested the hypothesis if a SS as a residue of fSAHs must be regarded as a warning sign for future intracranial hemorrhage. Fifty-one consecutive patients with SS and no apparent cause other than possible or probable CAA were identified through a database search and followed-up for a median interval of 35.3 months (range 6-120 months). Main outcome measures were rate and location of new intracranial hemorrhages. Twenty-four patients (47.1 %) had experienced any new intracranial hemorrhage, 18 patients (35.3 %) had an intracerebral hemorrhage (ICH), and in 13 of them (25.5 %), the hemorrhage was located at the site of pre-existing siderosis. Six patients (11.7 %) had developed a new subarachnoid hemorrhage (SAH), four of them at the site of siderosis. Patients with SS are at substantial risk for subsequent intracranial hemorrhage. SS can be considered a warning sign of future ICH or SAH, which frequently occur adjacent to pre-existing SS. Prospective studies are needed to confirm these findings.
Collapse
|