1
|
Bekhbat M, Block AM, Dickinson SY, Tharp GK, Bosinger SE, Felger JC. Neurotransmitter and metabolic effects of interferon-alpha in association with decreased striatal dopamine in a Non-Human primate model of Cytokine-Induced depression. Brain Behav Immun 2025; 125:308-318. [PMID: 39826580 DOI: 10.1016/j.bbi.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/13/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Inflammatory stimuli administered to humans and laboratory animals affect mesolimbic and nigrostriatal dopaminergic pathways in association with impaired motivation and motor activity. Alterations in dopaminergic corticostriatal reward and motor circuits have also been observed in depressed patients with increased peripheral inflammatory markers. The effects of peripheral inflammation on dopaminergic pathways and associated neurobiologic mechanisms and consequences have been difficult to measure in patients. Postmortem tissue (n = 11) from an established, translationally-relevant non-human primate model of cytokine-induced depressive behavior involving chronic interferon-alpha (IFN-a) administration was utilized herein to explore the molecular mechanisms of peripheral cytokine effects on striatal dopamine. Dopamine (but not serotonin or norepinephrine) was decreased in the nucleus accumbens (NAcc) and putamen of IFN-a-treated animals (p < 0.05). IFN-a had no effect on number of striatal neurons or dopamine terminal density, suggesting no overt neurodegenerative changes. RNA sequencing examined in the caudate, putamen, substantia nigra, and prefrontal cortical subregions revealed that while IFN-a nominally up-regulated limited numbers of genes enriching inflammatory signaling pathways in all regions, robust, whole genome-significant effects of IFN-a were observed specifically in putamen. Genes upregulated in the putamen primarily enriched synaptic signaling, glutamate receptor signaling, and inflammatory/metabolic pathways downstream of IFN-a, including MAPK and PI3K/AKT cascades. Conversely, gene transcripts reduced by IFN-a enriched oxidative phosphorylation (OXPHOS), protein translation, and pathways regulated by dopamine receptors. Unsupervised clustering identified a gene co-expression module in the putamen that was associated with both IFN-a treatment and low dopamine levels, which enriched similar inflammatory, metabolic, and synaptic signaling pathways. IFN-a-induced reductions in dopamine further correlated with genes related to excitotoxic glutamate, kynurenine, and altered dopamine receptor signaling (r = 0.78-97, p < 0.05). These findings provide insight into the immunologic mechanisms and neurobiological consequences of peripheral inflammation effects on dopamine, which may inform novel treatment strategies targeting inflammatory, metabolic or neurotransmitter systems in depressed patients with high inflammation.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Andrew M Block
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06030, USA
| | - Sarah Y Dickinson
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Gregory K Tharp
- Emory Nonhuman Primate Genomics Core, Division of Microbiology and Immunology, Emory National Primate Research Center (EPC), Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Steven E Bosinger
- Emory Nonhuman Primate Genomics Core, Division of Microbiology and Immunology, Emory National Primate Research Center (EPC), Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
2
|
Ahn JH, Kim BS, Han KD, Choi HL, Jung W, Cho JW, Youn J, Shin DW. Risk of Parkinson's disease in spinal cord injury: a nationwide cohort study in South Korea. Sci Rep 2024; 14:23016. [PMID: 39362952 PMCID: PMC11450175 DOI: 10.1038/s41598-024-74103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Despite the association between spinal cord injury (SCI) and various neurological diseases, the risk of Parkinson's disease (PD) in SCI is not elucidated yet. Especially, the role of SCI severity and injury level in the risk of PD development is not investigated. Based on the nation-wide cohort data the Korean National Health Insurance Service between 2010 and 2018, we investigated the incidence of PD in 7,182 patients with SCI compared with 24,844 age- and sex-matched controls. Adjusted hazard ratio and 95% confidence interval (CI) were calculated using Cox proportional hazards regression. We compared the risk of PD based on the degree of disability (without disability, mild, severe) and SCI level (cervical, thoracic, and lumbar). During the mean follow-up duration of 4.31 years, patients with SCI had a higher risk of PD compared with matched controls. The PD risk was greater among patients with SCI with disability than in those without disability, especially those with mild disability. Additionally, cervical-level injury was associated with the highest risk in patients with SCI without disability, while thoracic-level injury was associated with the highest risk in those with disability. Our study found patients with SCI have increased risk of PD, particularly those with disability and thoracic-level injuries.
Collapse
Affiliation(s)
- Jong Hyeon Ahn
- Department of Neurology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
- Neuroscience Centre, Samsung Medical Centre, Seoul, 06351, South Korea
| | - Bong-Seong Kim
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, 06978, South Korea
| | - Kyung-Do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, 06978, South Korea
| | - Hea Lim Choi
- Department of Family Medicine/Executive Healthcare Clinic, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul, 06355, South Korea
| | - Wonyoung Jung
- Department of Family Medicine, Kangdong Sacred Heart Hospital, 150, Seongan-ro, Gangdong- gu, Seoul, 05355, South Korea
| | - Jin Whan Cho
- Department of Neurology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
- Neuroscience Centre, Samsung Medical Centre, Seoul, 06351, South Korea
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
- Neuroscience Centre, Samsung Medical Centre, Seoul, 06351, South Korea.
| | - Dong Wook Shin
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul, 06355, South Korea.
- Department of Family Medicine and Supportive Care Centre, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea.
- Department of Digital Health, Samsung Advanced Institute for Health Science and Technology (SAIHST), Sungkyunkwan University, 81 Irwon-rong, Gangnam-gu, Seoul, 06351, South Korea.
| |
Collapse
|
3
|
Li C, Elabi OF, Fieblinger T, Cenci MA. Structural-functional properties of direct-pathway striatal neurons at early and chronic stages of dopamine denervation. Eur J Neurosci 2024; 59:1227-1241. [PMID: 37876330 DOI: 10.1111/ejn.16166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023]
Abstract
The dendritic arbour of striatal projection neurons (SPNs) is the primary anatomical site where dopamine and glutamate inputs to the basal ganglia functionally interact to control movement. These dendritic arbourisations undergo atrophic changes in Parkinson's disease. A reduction in the dendritic complexity of SPNs is found also in animal models with severe striatal dopamine denervation. Using 6-hydroxydopamine (6-OHDA) lesions of the medial forebrain bundle as a model, we set out to compare morphological and electrophysiological properties of SPNs at an early versus a chronic stage of dopaminergic degeneration. Ex vivo recordings were performed in transgenic mice where SPNs forming the direct pathway (dSPNs) express a fluorescent reporter protein. At both the time points studied (5 and 28 days following 6-OHDA lesion), there was a complete loss of dopaminergic fibres through the dorsolateral striatum. A reduction in dSPN dendritic complexity and spine density was manifest at 28, but not 5 days post-lesion. At the late time point, dSPN also exhibited a marked increase in intrinsic excitability (reduced rheobase current, increased input resistance, more evoked action potentials in response to depolarising currents), which was not present at 5 days. The increase in neuronal excitability was accompanied by a marked reduction in inward-rectifying potassium (Kir) currents (which dampen the SPN response to depolarising stimuli). Our results show that dSPNs undergo delayed coordinate changes in dendritic morphology, intrinsic excitability and Kir conductance following dopamine denervation. These changes are predicted to interfere with the dSPN capacity to produce a normal movement-related output.
Collapse
Affiliation(s)
- Chang Li
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Osama F Elabi
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Tim Fieblinger
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
- Evotec SE, Hamburg, Germany
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Li DN, Lian TH, Zhang WJ, Zhang YN, Guo P, Guan HY, Li JH, He MY, Zhang WJ, Zhang WJ, Luo DM, Wang XM, Zhang W. Potential roles of oxidative distress on neurodegeneration in Parkinson's disease with neuropsychiatric symptoms. Front Aging Neurosci 2022; 14:875059. [PMID: 36589540 PMCID: PMC9797725 DOI: 10.3389/fnagi.2022.875059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background Neuropsychiatric symptoms (NPSs) belong to a category of non-motor symptoms of Parkinson's disease (PD), which seriously compromise the quality of life and prognosis of PD. This study focused on the correlations between NPSs, free radicals, neuroinflammatory factors, and neuropathological proteins in cerebrospinal fluid (CSF) in patients with PD, aiming to provide insights into the potential mechanisms and therapeutic target for PD with NPSs (PD-NPSs). Methods In total, 129 patients with PD were enrolled and assessed by the Neuropsychiatric Symptoms Inventory (NPI); they were divided into the PD-NPSs group (75 patients) and PD with no NPSs (PD-nNPSs) group (54 patients). The levels of hydrogen peroxide (H2O2) and nitric oxide (NO), and hydroxyl radical (·OH), anti-oxidative enzyme, neuroinflammatory factors, and neuropathological proteins in CSF from patients with PD were measured. The levels of the above variables were compared between PD-NPSs and PD-nNPSs groups, and correlation analyses among the above variables were conducted. Results (1) The levels of H2O2 and NO in CSF from the PD-NPSs group were significantly elevated compared with the PD-nNPSs group (p = 0.001), and NPI score positively correlated with the levels of H2O2 and NO (r = 0.283, P = 0.001; r = 0.231, P = 0.008). Reversely, total superoxide dismutase (tSOD) activity in CSF from the PD-NPSs group was significantly reduced compared with the PD-nNPSs group (p = 0.011), and negatively correlated with NPI score (r = -0.185, p = 0.036). (2) The tumor necrosis factor (TNF)-α level in CSF from the PD-NPSs group was significantly decreased compared with the PD-nNPSs group (p = 0.002) and negatively correlated with NPI score (r = -0.211, p = 0.016). (3) The total tau (T-tau) level in CSF from the PD-NPSs group was significantly higher than in the PD-nNPSs group (p = 0.014) and positively correlated with the NPI score (r = 0.167, p = 0.060). (4) The levels of H2O2 and NO positively correlated with the T-tau level in CSF from the PD-NPSs group (r = 0.183, p = 0.039; r = 0.251, P = 0.004), and the levels of TNF-α and T-tau showed a negative correlation (r = -0.163, p = 0.067). Conclusion Oxidative distress characterized by the elevations of H2O2 and NO levels may closely correlate with the neurodegeneration in brain regions related to PD-NPSs. Thus, therapeutic antioxidants may become an important target for PD-NPSs therapy.
Collapse
Affiliation(s)
- Dan-ning Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Teng-hong Lian
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei-Jiao Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ya-nan Zhang
- Department of Blood Transfusion, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Guo
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hui-ying Guan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing-hui Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming-yue He
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen-jing Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei-jia Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dong-mei Luo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-min Wang
- Department of Physiology, Capital Medical University, Beijing, China
| | - Wei Zhang
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory on Parkinson's Disease, Beijing, China,*Correspondence: Wei Zhang
| |
Collapse
|
5
|
Vellingiri B, Suriyanarayanan A, Selvaraj P, Abraham KS, Pasha MY, Winster H, Gopalakrishnan AV, G S, Reddy JK, Ayyadurai N, Kumar N, Giridharan B, P S, Rao KRSS, Nachimuthu SK, Narayanasamy A, Mahalaxmi I, Venkatesan D. Role of heavy metals (copper (Cu), arsenic (As), cadmium (Cd), iron (Fe) and lithium (Li)) induced neurotoxicity. CHEMOSPHERE 2022; 301:134625. [PMID: 35439490 DOI: 10.1016/j.chemosphere.2022.134625] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 05/15/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative condition characterized by the dopamine (DA) neuronal loss in the substantia nigra. PD impairs motor controls symptoms such as tremor, rigidity, bradykinesia and postural imbalance gradually along with non-motor problems such as olfactory dysfunction, constipation, sleeping disorder. Though surplus of factors and mechanisms have been recognized, the precise PD etiopathogenesis is not yet implied. Reports suggest that various environmental factors play a crucial role in the causality of the PD cases. Epidemiological studies have reported that heavy metals has a role in causing defects in substantia nigra region of brain in PD. Though the reason is unknown, exposure to heavy metals is reported to be an underlying factor in PD development. Metals are classified as either essential or non-essential, and they have a role in physiological processes such protein modification, electron transport, oxygen transport, redox reactions, and cell adhesion. Excessive metal levels cause oxidative stress, protein misfolding, mitochondrial malfunction, autophagy dysregulation, and apoptosis, among other things. In this review, we check out the link between heavy metals like copper (Cu), arsenic (As), cadmium (Cd), iron (Fe), and lithium (Li) in neurodegeneration, and how it impacts the pathological conditions of PD. In conclusion, increase or decrease in heavy metals involve in regulation of neuronal functions that have an impact on neurodegeneration process. Through this review, we suggest that more research is needed in this stream to bring more novel approaches for either disease modelling or therapeutics.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Atchaya Suriyanarayanan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Priyanka Selvaraj
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Kripa Susan Abraham
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Md Younus Pasha
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Harysh Winster
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India; Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Singaravelu G
- Department of Education, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | | | - Niraikulam Ayyadurai
- CSIR-Central Leather Research Institute, Adyar, Chennai, 600 020, Tamil Nadu, India
| | - Nandha Kumar
- Department of Zoology, St. Joseph University, 797 115, Dimapur, Nagaland
| | - Bupesh Giridharan
- Department of Forest Science, Nagaland University, Lumami, Zunheboto, Nagaland, India
| | - Sivaprakash P
- Department of Mechanical Engineering, Dr.N.G.P. Institute of Technology, Coimbatore, 641048, Tamil Nadu, India
| | - K R S Sambasiva Rao
- Department of Biotechnology, Mizoram University (A Central University), Aizawl, 796 004, Mizoram, India
| | - Senthil Kumar Nachimuthu
- Department of Biotechnology, Mizoram University (A Central University), Aizawl, 796 004, Mizoram, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Iyer Mahalaxmi
- Livestock Farming and Bioresource Technology, Tamil Nadu, India.
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
6
|
Sanchez-Catasus C, Bohnen NI, D'Cruz N, Muller M. Striatal acetylcholine-dopamine imbalance in Parkinson's disease: in vivo neuroimaging study with dual-tracer PET and dopaminergic PET-informed correlational tractography. J Nucl Med 2021; 63:438-445. [PMID: 34272323 DOI: 10.2967/jnumed.121.261939] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Previous studies of animal models of Parkinson's disease (PD) suggest an imbalance between striatal acetylcholine (ACh) and dopamine (DA), although other studies have questioned this. To our knowledge, there are no previous in vivo neuroimaging studies examining striatal ACh-DA imbalance in PD patients. Using cholinergic and dopaminergic PET (18F-FEOBV and 11C-DTBZ, respectively) and correlational tractography, our aim was to investigate the ACh-DA interaction at two levels of dopaminergic loss in PD subjects: integrity loss of the nigrostriatal dopaminergic white matter tract; and loss at the presynaptic-terminal level. Methods: The study involved 45 subjects with mild to moderate PD (36 men, 9 women; mean age, 66.3 ± 6.3 years, disease duration, 5.8 ± 3.6; Hoehn and Yahr stage, 2.2 ± 0.6) and 15 control subjects (9 men, 6 women; mean age, 69.1 ± 8.6 years). PET imaging was performed using standard protocols. We first estimated the integrity of the dopaminergic nigrostriatal white matter tracts in PD subjects by incorporating molecular information from striatal 11C-DTBZ PET into the fiber tracking process using correlational tractography (based on quantitative anisotropy, QA; a measure of tract integrity). Subsequently, we used voxel-based correlation to test the association of the mean QA of the nigrostriatal tract of each cerebral hemisphere with striatal 18F-FEOBV distribution volume ratio (DVR) in PD subjects. The same analysis was performed for 11C-DTBZ DVR in 12 striatal subregions (presynaptic-terminal level). Results: Unlike 11C-DTBZ DVR in striatal subregions, the mean QA of the nigrostriatal tract of the most affected (MA) hemisphere showed a negative correlation with a striatal cluster of 18F-FEOBV DVR in PD subjects (p corrected= 0.039). We also found that the mean 18F-FEOBV DVR within this cluster was higher in the PD group compared to the control group (P = 0.01). Cross-validation analyses confirmed these findings. We also found an increase of bradykinesia ratings associated with increased ACh-DA imbalance in the MA hemisphere (r=0.41, P = 0.006). Conclusion: Our results provide evidence for the existence of striatal ACh-DA imbalance in early PD and may provide an avenue for testing in vivo effects of therapeutic strategies aimed at restoring striatal ACh-DA imbalance in PD.
Collapse
|
7
|
Xiao G, Song Y, Zhang Y, Xing Y, Xu S, Wang M, Wang J, Chen D, Chen J, Cai X. Dopamine and Striatal Neuron Firing Respond to Frequency-Dependent DBS Detected by Microelectrode Arrays in the Rat Model of Parkinson's Disease. BIOSENSORS-BASEL 2020; 10:bios10100136. [PMID: 32998190 PMCID: PMC7600337 DOI: 10.3390/bios10100136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022]
Abstract
(1) Background: Deep brain stimulation (DBS) is considered as an efficient treatment method for alleviating motor symptoms in Parkinson’s disease (PD), while different stimulation frequency effects on the specific neuron patterns at the cellular level remain unknown. (2) Methods: In this work, nanocomposites-modified implantable microelectrode arrays (MEAs) were fabricated to synchronously record changes of dopamine (DA) concentration and striatal neuron firing in the striatum during subthalamic nucleus DBS, and different responses of medium spiny projecting neurons (MSNs) and fast spiking interneurons (FSIs) to DBS were analyzed. (3) Results: DA concentration and striatal neuron spike firing rate showed a similar change as DBS frequency changed from 10 to 350 Hz. Note that the increases in DA concentration (3.11 ± 0.67 μM) and neural spike firing rate (15.24 ± 2.71 Hz) were maximal after the stimulation at 100 Hz. The MSNs firing response to DBS was significant, especially at 100 Hz, while the FSIs remained stable after various stimulations. (4) Conclusions: DBS shows the greatest regulatory effect on DA concentration and MSNs firing rate at 100 Hz stimulation. This implantable MEA in the recording of the neurotransmitter and neural spike pattern response to DBS provides a new insight to understand the mechanism of PD at the cellular level.
Collapse
Affiliation(s)
- Guihua Xiao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (G.X.); (Y.S.); (Y.Z.); (Y.X.); (S.X.); (M.W.); (J.W.); (D.C.); (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (G.X.); (Y.S.); (Y.Z.); (Y.X.); (S.X.); (M.W.); (J.W.); (D.C.); (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (G.X.); (Y.S.); (Y.Z.); (Y.X.); (S.X.); (M.W.); (J.W.); (D.C.); (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Xing
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (G.X.); (Y.S.); (Y.Z.); (Y.X.); (S.X.); (M.W.); (J.W.); (D.C.); (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengwei Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (G.X.); (Y.S.); (Y.Z.); (Y.X.); (S.X.); (M.W.); (J.W.); (D.C.); (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (G.X.); (Y.S.); (Y.Z.); (Y.X.); (S.X.); (M.W.); (J.W.); (D.C.); (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (G.X.); (Y.S.); (Y.Z.); (Y.X.); (S.X.); (M.W.); (J.W.); (D.C.); (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (G.X.); (Y.S.); (Y.Z.); (Y.X.); (S.X.); (M.W.); (J.W.); (D.C.); (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (G.X.); (Y.S.); (Y.Z.); (Y.X.); (S.X.); (M.W.); (J.W.); (D.C.); (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (G.X.); (Y.S.); (Y.Z.); (Y.X.); (S.X.); (M.W.); (J.W.); (D.C.); (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-010-5888-7193
| |
Collapse
|
8
|
Sensory focused exercise improves anxiety in Parkinson's disease: A randomized controlled trial. PLoS One 2020; 15:e0230803. [PMID: 32298270 PMCID: PMC7162490 DOI: 10.1371/journal.pone.0230803] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Anxiety has been implicated as one of the greatest influences on quality of life in Parkinson’s disease (PD). The etiology of anxiety is unclear, although previous work suggests that anxiety may be linked to sensory deficits that cause uncertainty in movement. Thus, the current study examined whether focusing attention on sensory feedback during goal-based exercise has the potential to provide benefits to anxiety in PD. Thirty-five participants with PD were randomized to either a Sensory Attention Focused Exercise (SAFEx) (i.e. internal focus of attention, n = 18) or Sham Exercise control (i.e. external focus of attention, n = 17) and completed 33 one-hour attention-based exercise sessions over 11-weeks. Before and after the program (pre and post), participants completed the Parkinson Anxiety Scale (PAS) questionnaire. The PAS includes three anxiety sections: persistent, episodic, and avoidance. Changes in the total PAS score and within each section of the PAS were subjected to two-factor mixed repeated measures ANCOVA. Significant group by time interactions demonstrated that from pre to post, total PAS scores (p = 0.007) and episodic anxiety scores (p = 0.010) significantly decreased in the SAFEx group only (ΔTotal PAS = -5.2, F(1,27) = 5.41, p = 0.028, ηp2 = 0.17; ΔEpisodic Score = -1.8, F(1,27) = 6.89, p = 0.014, ηp2 = 0.20). In conclusion, focusing attention on sensory feedback while completing goal-based exercises may provide significant benefits to improving anxiety in PD. As such, sensory attention focused exercise may be a critical adjunct therapy for improving anxiety, and ultimately quality of life in people with PD.
Collapse
|
9
|
Chagraoui A, Boulain M, Juvin L, Anouar Y, Barrière G, De Deurwaerdère P. L-DOPA in Parkinson's Disease: Looking at the "False" Neurotransmitters and Their Meaning. Int J Mol Sci 2019; 21:ijms21010294. [PMID: 31906250 PMCID: PMC6981630 DOI: 10.3390/ijms21010294] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022] Open
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) has been successfully used in the treatment of Parkinson’s disease (PD) for more than 50 years. It fulfilled the criteria to cross the blood–brain barrier and counteract the biochemical defect of dopamine (DA). It remarkably worked after some adjustments in line with the initial hypothesis, leaving a poor place to the plethora of mechanisms involving other neurotransmitters or mechanisms of action beyond newly synthesized DA itself. Yet, its mechanism of action is far from clear. It involves numerous distinct cell populations and does not mimic the mechanism of action of dopaminergic agonists. L-DOPA-derived DA is mainly released by serotonergic neurons as a false neurotransmitter, and serotonergic neurons are involved in L-DOPA-induced dyskinesia. The brain pattern and magnitude of DA extracellular levels together with this status of false neurotransmitters suggest that the striatal effects of DA via this mechanism would be minimal. Other metabolic products coming from newly formed DA or through the metabolism of L-DOPA itself could be involved. These compounds can be trace amines and derivatives. They could accumulate within the terminals of the remaining monoaminergic neurons. These “false neurotransmitters,” also known for some of them as inducing an “amphetamine-like” mechanism, could reduce the content of biogenic amines in terminals of monoaminergic neurons, thereby impairing the exocytotic process of monoamines including L-DOPA-induced DA extracellular outflow. The aim of this review is to present the mechanism of action of L-DOPA with a specific attention to “false neurotransmission.”
Collapse
Affiliation(s)
- Abdeslam Chagraoui
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM, U1239 CHU de Rouen, 76000 Rouen, France; (A.C.); (Y.A.)
- Department of Medical Biochemistry, Rouen University Hospital, CHU de Rouen, 76000 Rouen, France
| | - Marie Boulain
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 33076 Bordeaux CEDEX, France; (M.B.); (L.J.); (G.B.)
| | - Laurent Juvin
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 33076 Bordeaux CEDEX, France; (M.B.); (L.J.); (G.B.)
| | - Youssef Anouar
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM, U1239 CHU de Rouen, 76000 Rouen, France; (A.C.); (Y.A.)
| | - Grégory Barrière
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 33076 Bordeaux CEDEX, France; (M.B.); (L.J.); (G.B.)
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 33076 Bordeaux CEDEX, France; (M.B.); (L.J.); (G.B.)
- Correspondence: ; Tel.: +33-0-557-57-12-90
| |
Collapse
|
10
|
Peña-Nogales Ó, Ellmore TM, de Luis-García R, Suescun J, Schiess MC, Giancardo L. Longitudinal Connectomes as a Candidate Progression Marker for Prodromal Parkinson's Disease. Front Neurosci 2019; 12:967. [PMID: 30686966 PMCID: PMC6333847 DOI: 10.3389/fnins.2018.00967] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/04/2018] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease is the second most prevalent neurodegenerative disorder in the Western world. It is estimated that the neuronal loss related to Parkinson's disease precedes the clinical diagnosis by more than 10 years (prodromal phase) which leads to a subtle decline that translates into non-specific clinical signs and symptoms. By leveraging diffusion magnetic resonance imaging brain (MRI) data evaluated longitudinally, at least at two different time points, we have the opportunity of detecting and measuring brain changes early on in the neurodegenerative process, thereby allowing early detection and monitoring that can enable development and testing of disease modifying therapies. In this study, we were able to define a longitudinal degenerative Parkinson's disease progression pattern using diffusion magnetic resonance imaging connectivity information. Such pattern was discovered using a de novo early Parkinson's disease cohort (n = 21), and a cohort of Controls (n = 30). Afterward, it was tested in a cohort at high risk of being in the Parkinson's disease prodromal phase (n = 16). This progression pattern was numerically quantified with a longitudinal brain connectome progression score. This score is generated by an interpretable machine learning (ML) algorithm trained, with cross-validation, on the longitudinal connectivity information of Parkinson's disease and Control groups computed on a nigrostriatal pathway-specific parcellation atlas. Experiments indicated that the longitudinal brain connectome progression score was able to discriminate between the progression of Parkinson's disease and Control groups with an area under the receiver operating curve of 0.89 [confidence interval (CI): 0.81-0.96] and discriminate the progression of the High Risk Prodromal and Control groups with an area under the curve of 0.76 [CI: 0.66-0.92]. In these same subjects, common motor and cognitive clinical scores used in Parkinson's disease research showed little or no discriminative ability when evaluated longitudinally. Results suggest that it is possible to quantify neurodegenerative patterns of progression in the prodromal phase with longitudinal diffusion magnetic resonance imaging connectivity data and use these image-based patterns as progression markers for neurodegeneration.
Collapse
Affiliation(s)
- Óscar Peña-Nogales
- Laboratorio de Procesado de Imagen, University of Valladolid, Valladolid, Spain
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | | | - Jessika Suescun
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Mya C. Schiess
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Luca Giancardo
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
11
|
Liu Y, Zhang Y, Yang Q. Retracted
: Downregulated expression of microRNA‐329 inhibits apoptosis of nigral dopaminergic neurons by regulating CDKN2D expression via the FoxO3a signaling pathway in rats with Parkinson's disease. J Cell Physiol 2018; 233:8617-8629. [DOI: 10.1002/jcp.26608] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 03/22/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Yuan‐Yuan Liu
- Department of Neurologythe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouP.R. China
| | - Yi‐Nan Zhang
- Department of Neurologythe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouP.R. China
| | - Qing‐Shan Yang
- Department of Radiation Oncologythe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouLiaoning ProvinceP.R. China
| |
Collapse
|
12
|
Lin CH, Fan JY, Lin HI, Chang CW, Wu YR. Catechol-O-methyltransferase (COMT) genetic variants are associated with cognitive decline in patients with Parkinson's disease. Parkinsonism Relat Disord 2018; 50:48-53. [DOI: 10.1016/j.parkreldis.2018.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/28/2018] [Accepted: 02/07/2018] [Indexed: 02/03/2023]
|
13
|
Nonmotor fluctuations: phenotypes, pathophysiology, management, and open issues. J Neural Transm (Vienna) 2017; 124:1029-1036. [PMID: 28702850 DOI: 10.1007/s00702-017-1757-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative multisystem disorder characterized by progressive motor symptoms such as bradykinesia, tremor and muscle rigidity. Over the course of the disease, numerous non-motor symptoms, sometimes preceding the onset of motor symptoms, significantly impair patients' quality of life. The significance of non-motor symptoms may outweigh the burden through progressive motor incapacity, especially in later stages of the disease. The advanced stage of the disease is characterized by motor complications such as fluctuations and dyskinesias induced by the long-term application of levodopa therapy. In recent years, it became evident that various non-motor symptoms such as psychiatric symptoms, fatigue and pain also show fluctuations after chronic levodopa therapy (named non-motor fluctuations or NMFs). Although NMFs have moved into the focus of interest, current national guidelines on the treatment of PD may refer to non-motor symptoms and their management, but do not mention NMF, and do not contain recommendations on their management. The present article summarizes major issues related to NMF including clinical phenomenology and pathophysiology, and outlines a number of open issues and topics for future research.
Collapse
|
14
|
Genetic factors influencing frontostriatal dysfunction and the development of dementia in Parkinson's disease. PLoS One 2017; 12:e0175560. [PMID: 28399184 PMCID: PMC5388496 DOI: 10.1371/journal.pone.0175560] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/28/2017] [Indexed: 02/07/2023] Open
Abstract
The dual syndrome hypothesis for cognitive impairment in Parkinson's disease (PD) establishes a dichotomy between a frontrostriatal dopamine-mediated syndrome, which leads to executive deficits, and a posterior cortical syndrome, which leads to dementia. Certain genes have been linked to these syndromes although the exact contribution is still controversial. The study's objective was to investigate the role of APOE, MAPT, COMT, SNCA and GBA genes in the dual syndromes. We genotyped APOE (rs429358 and rs7412), MAPT (rs9468), COMT (rs4680) and SNCA (rs356219) risk polymorphisms and sequenced GBA in a cohort of 298 PD patients. The degree of dopaminergic depletion was investigated with [123I]FP-CIT SPECTs and the presence of dementia was ascertained with a long-term review based on established criteria. The association between genetic and imaging parameters was studied with linear regression, and the relationship with dementia onset with Cox regression. We found that APOE2 allele (Pput = 0.002; Pcau = 0.01), the minor allele 'G' in SNCA polymorphism (Pput = 0.02; Pcau = 0.006) and GBA deleterious variants in (Pput = 0.01; Pcau = 0.001) had a detrimental effect on striatal [123I]FP-CIT uptake in PD. Conversely, Met/Met carriers in COMT polymorphism had increased caudate uptake (Pcau = 0.03). The development of dementia was influenced by APOE4 allele (HR = 1.90; P = 0.03) and GBA deleterious variants (HR = 2.44; P = 0.01). Finally, we observed no role of MAPT locus in any of the syndromes. As a conclusion, APOE2, SNCA, COMT and GBA influence frontostriatal dysfunction whereas APOE4 and GBA influence the development of dementia, suggesting a double-edged role of GBA. The dichotomy of the dual syndromes may be driven by a broad dichotomy in these genetic factors.
Collapse
|
15
|
Ehgoetz Martens KA, Lewis SJG. Pathology of behavior in PD: What is known and what is not? J Neurol Sci 2016; 374:9-16. [PMID: 28089250 DOI: 10.1016/j.jns.2016.12.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 12/28/2016] [Indexed: 12/12/2022]
Abstract
Abnormal behavior in Parkinson's disease (PD) stems from a complex orchestration of impaired neural networks that result from PD-related neurodegeneration across multiple levels. Typically, cellular and tissue abnormalities generate neurochemical changes and disrupt specific regions of the brain, in turn creating impaired neural circuits and dysfunctional global networks. The objective of this chapter is to provide an overview of the array of pathological changes that have been linked to different behavioral symptoms of PD such as depression, anxiety, apathy, fatigue, impulse control disorders, psychosis, sleep disorders and dementia.
Collapse
Affiliation(s)
- Kaylena A Ehgoetz Martens
- Parkinson Disease Research Clinic, Brain and Mind Centre, University of Sydney, 100 Mallet Street, Camperdown, 2050, NSW, Australia.
| | - Simon J G Lewis
- Parkinson Disease Research Clinic, Brain and Mind Centre, University of Sydney, 100 Mallet Street, Camperdown, 2050, NSW, Australia
| |
Collapse
|
16
|
Di Giovanni G, Svob Strac D, Sole M, Unzeta M, Tipton KF, Mück-Šeler D, Bolea I, Della Corte L, Nikolac Perkovic M, Pivac N, Smolders IJ, Stasiak A, Fogel WA, De Deurwaerdère P. Monoaminergic and Histaminergic Strategies and Treatments in Brain Diseases. Front Neurosci 2016; 10:541. [PMID: 27932945 PMCID: PMC5121249 DOI: 10.3389/fnins.2016.00541] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022] Open
Abstract
The monoaminergic systems are the target of several drugs for the treatment of mood, motor and cognitive disorders as well as neurological conditions. In most cases, advances have occurred through serendipity, except for Parkinson's disease where the pathophysiology led almost immediately to the introduction of dopamine restoring agents. Extensive neuropharmacological studies first showed that the primary target of antipsychotics, antidepressants, and anxiolytic drugs were specific components of the monoaminergic systems. Later, some dramatic side effects associated with older medicines were shown to disappear with new chemical compounds targeting the origin of the therapeutic benefit more specifically. The increased knowledge regarding the function and interaction of the monoaminergic systems in the brain resulting from in vivo neurochemical and neurophysiological studies indicated new monoaminergic targets that could achieve the efficacy of the older medicines with fewer side-effects. Yet, this accumulated knowledge regarding monoamines did not produce valuable strategies for diseases where no monoaminergic drug has been shown to be effective. Here, we emphasize the new therapeutic and monoaminergic-based strategies for the treatment of psychiatric diseases. We will consider three main groups of diseases, based on the evidence of monoamines involvement (schizophrenia, depression, obesity), the identification of monoamines in the diseases processes (Parkinson's disease, addiction) and the prospect of the involvement of monoaminergic mechanisms (epilepsy, Alzheimer's disease, stroke). In most cases, the clinically available monoaminergic drugs induce widespread modifications of amine tone or excitability through neurobiological networks and exemplify the overlap between therapeutic approaches to psychiatric and neurological conditions. More recent developments that have resulted in improved drug specificity and responses will be discussed in this review.
Collapse
Affiliation(s)
| | | | - Montse Sole
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Mercedes Unzeta
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Keith F. Tipton
- School of Biochemistry and Immunology, Trinity College DublinDublin, Ireland
| | - Dorotea Mück-Šeler
- Division of Molecular Medicine, Rudjer Boskovic InstituteZagreb, Croatia
| | - Irene Bolea
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| | | | | | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic InstituteZagreb, Croatia
| | - Ilse J. Smolders
- Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit BrusselBrussels, Belgium
| | - Anna Stasiak
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | - Wieslawa A. Fogel
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293), Institut of Neurodegenerative DiseasesBordeaux Cedex, France
| |
Collapse
|
17
|
De Deurwaerdère P, Di Giovanni G, Millan MJ. Expanding the repertoire of L-DOPA's actions: A comprehensive review of its functional neurochemistry. Prog Neurobiol 2016; 151:57-100. [PMID: 27389773 DOI: 10.1016/j.pneurobio.2016.07.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/18/2016] [Accepted: 07/03/2016] [Indexed: 01/11/2023]
Abstract
Though a multi-facetted disorder, Parkinson's disease is prototypically characterized by neurodegeneration of nigrostriatal dopaminergic neurons of the substantia nigra pars compacta, leading to a severe disruption of motor function. Accordingly, L-DOPA, the metabolic precursor of dopamine (DA), is well-established as a treatment for the motor deficits of Parkinson's disease despite long-term complications such as dyskinesia and psychiatric side-effects. Paradoxically, however, despite the traditional assumption that L-DOPA is transformed in residual striatal dopaminergic neurons into DA, the mechanism of action of L-DOPA is neither simple nor entirely clear. Herein, focussing on its influence upon extracellular DA and other neuromodulators in intact animals and experimental models of Parkinson's disease, we highlight effects other than striatal generation of DA in the functional profile of L-DOPA. While not excluding a minor role for glial cells, L-DOPA is principally transformed into DA in neurons yet, interestingly, with a more important role for serotonergic than dopaminergic projections. Moreover, in addition to the striatum, L-DOPA evokes marked increases in extracellular DA in frontal cortex, nucleus accumbens, the subthalamic nucleus and additional extra-striatal regions. In considering its functional profile, it is also important to bear in mind the marked (probably indirect) influence of L-DOPA upon cholinergic, GABAergic and glutamatergic neurons in the basal ganglia and/or cortex, while anomalous serotonergic transmission is incriminated in the emergence of L-DOPA elicited dyskinesia and psychosis. Finally, L-DOPA may exert intrinsic receptor-mediated actions independently of DA neurotransmission and can be processed into bioactive metabolites. In conclusion, L-DOPA exerts a surprisingly complex pattern of neurochemical effects of much greater scope that mere striatal transformation into DA in spared dopaminergic neurons. Their further experimental and clinical clarification should help improve both L-DOPA-based and novel strategies for controlling the motor and other symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- CNRS (Centre National de la Recherche Scientifique), Institut des Maladies Neurodégénératives, UMR CNRS 5293, F-33000 Bordeaux, France.
| | - Giuseppe Di Giovanni
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK; Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Mark J Millan
- Institut de Recherche Servier, Pole for Therapeutic Innovation in Neuropsychiatry, 78290 Croissy/Seine,Paris, France
| |
Collapse
|
18
|
Chen H, Fang J, Li F, Gao L, Feng T. Risk factors and safe dosage of levodopa for wearing-off phenomenon in Chinese patients with Parkinson's disease. Neurol Sci 2015; 36:1217-23. [PMID: 25616444 DOI: 10.1007/s10072-015-2078-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/12/2015] [Indexed: 11/28/2022]
Abstract
The objective of this study was to investigate the risk factors of wearing-off phenomenon in Parkinson's disease (PD) and propose safe dosage of levodopa to reduce wearing-off development based on Chinese cohort. Patients with PD who had taken levodopa (L-dopa) for at least 1 month were recruited. Wearing-off was diagnosed based on validated Chinese version of a patient self-rated 9-question Wearing-Off Questionnaire (WOQ-9) and clinical definition. Eleven variables (gender, disease duration at L-dopa initiation, disease duration at assessment, age at onset, age at assessment, H-Y stage, UPDRS III, L-dopa daily total dosage and dosage adjusted to weight, duration of L-dopa treatment, initial drug recipe) were included in our analysis. Univariate analysis, multivariate logistic regression analysis and decision tree classification model(DTC) were used to detect risk factors of wearing-off. Receiver operating characteristic (ROC) curve and DTC were used to investigate cut-off value of L-dopa to best predict wearing-off. Two hundred and thirty-four patients were investigated in our study, among whom 111 developed wearing-off. Patients with wearing-off tended to receive higher L-dopa dosage and endure longer duration of L-dopa treatment. L-Dopa dosage as 281 mg/day and 4.2 mg/kg/day by ROC, as well as 269 mg/day and 3.2 mg/kg/day by DTC were cut-off values for wearing-off. L-Dopa dosage and duration of L-dopa treatment were related to increased wearing-off development. Cumulative L-dopa dosage and L-dopa daily dosage were better predictive of wearing-off. Inadequate evidence was present for delayed L-dopa initiation. L-Dopa daily dosage no more than 275 mg or 4.2 mg/kg was regarded as safe.
Collapse
Affiliation(s)
- Huimin Chen
- Department of Neurology, Center for Neurodegenerative Disease, Beijing Tiantan Hospital, Capital Medical University, #6 Tian Tan Xi Li Street, 100050, Beijing, China
| | | | | | | | | |
Collapse
|
19
|
Barbiero JK, Santiago RM, Persike DS, da Silva Fernandes MJ, Tonin FS, da Cunha C, Lucio Boschen S, Lima MM, Vital MA. Neuroprotective effects of peroxisome proliferator-activated receptor alpha and gamma agonists in model of parkinsonism induced by intranigral 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine. Behav Brain Res 2014; 274:390-9. [DOI: 10.1016/j.bbr.2014.08.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 12/20/2022]
|
20
|
Järvelä JT, Rinne JO, Eskola O, Kaasinen V. Mortality in Parkinson's disease is not associated with the severity of early dopaminergic defect. Parkinsonism Relat Disord 2014; 20:894-7. [DOI: 10.1016/j.parkreldis.2014.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 05/05/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
|