1
|
Chen YT, Liu Y, Zhang C, Magat E, Zhou P, Zhang Y, Li S. Comprehensive Assessment of the Time Course of Biomechanical, Electrophysiological and Neuro-Motor Effects after Botulinum Toxin Injections in Elbow Flexors of Chronic Stroke Survivors with Spastic Hemiplegia: A Cross Sectional Observation Study. Toxins (Basel) 2022; 14:toxins14020104. [PMID: 35202132 PMCID: PMC8875179 DOI: 10.3390/toxins14020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is commonly used to manage focal spasticity in stroke survivors. This study aimed to a perform comprehensive assessment of the effects of BoNT injection. Twelve stroke subjects with spastic hemiplegia (age: 52.0 ± 10.1 year; 5 females) received 100 units of BoNT to the spastic biceps brachii muscles. Clinical, biomechanical, electrophysiological, and neuro-motor assessments were performed one week (wk) before (pre-injection), 3 weeks (wks) after, and 3 months (mons) after BoNT injection. BoNT injection significantly reduced spasticity, muscle strength, reflex torque, and compound muscle action potential (CMAP) amplitude of spastic elbow flexors (all p < 0.05) during the 3-wks visit, and these values return to the pre-injection level during the 3-mons visit. Furthermore, the degree of reflex torque change was negatively correlated to the amount of non-reflex component of elbow flexor resistance torque. However, voluntary force control and non-reflex resistance torque remained unchanged throughout. Our results revealed parallel changes in clinical, neurophysiological and biomechanical assessment after BoNT injection; BoNT injection would be more effective if hypertonia was mainly mediated by underlying neural mechanisms. BoNT did not affect voluntary force control of spastic muscles.
Collapse
Affiliation(s)
- Yen-Ting Chen
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-T.C.); (E.M.)
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
- Department of Health and Kinesiology, Northeastern State University, Broken Arrow, OK 74014, USA
| | - Yang Liu
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (Y.L.); (C.Z.); (Y.Z.)
| | - Chuan Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (Y.L.); (C.Z.); (Y.Z.)
| | - Elaine Magat
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-T.C.); (E.M.)
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
| | - Ping Zhou
- Faculty of Biomedical and Rehabilitation Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China;
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (Y.L.); (C.Z.); (Y.Z.)
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-T.C.); (E.M.)
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
2
|
Zarkou A, Field-Fote EC. The influence of physiologic and atmospheric variables on spasticity after spinal cord injury. NeuroRehabilitation 2021; 48:353-363. [PMID: 33814472 DOI: 10.3233/nre-201625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND A number of physiological and atmospheric variables are believed to increase spasticity in persons with spinal cord injury (SCI) based on self-reported measures, however, there is limited objective evidence about the influence of these variables on spasticity. OBJECTIVE We investigated the relationship between physiological/ atmospheric variables and level of spasticity in individuals with SCI. METHODS In 53 participants with motor-incomplete SCI, we assessed the influence of age, time since injury, sex, injury severity, neurological level of injury, ability to walk, antispasmodic medication use, temperature, humidity, and barometric pressure on quadriceps spasticity. Spasticity was assessed using the pendulum test first swing excursion (FSE). To categorize participants based on spasticity severity, we performed cluster analysis. We used multivariate stepwise regression to determine variables associated with spasticity severity level. RESULTS Three spasticity groups were identified based on spasticity severity level: low, moderate, and high. The regression analysis revealed that only walking ability and temperature were significantly related to spasticity severity. CONCLUSIONS These outcomes validate the self-reported perception of people with SCI that low temperatures worsen spasticity. The findings refine prior evidence that people with motor-incomplete SCI have higher levels of spasticity, showing that those with sufficient motor function to walk have the highest levels of spasticity.
Collapse
Affiliation(s)
- Anastasia Zarkou
- Spinal Cord Injury Research Laboratory, Crawford Research Institute, Shepherd Center, Atlanta, GA, USA
| | - Edelle C Field-Fote
- Spinal Cord Injury Research Laboratory, Crawford Research Institute, Shepherd Center, Atlanta, GA, USA.,Division of Physical Therapy, School of Medicine, Emory University, Atlanta, GA, USA.,Program in Applied Physiology, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
3
|
Xie T, Leng Y, Zhi Y, Jiang C, Tian N, Luo Z, Yu H, Song R. Increased Muscle Activity Accompanying With Decreased Complexity as Spasticity Appears: High-Density EMG-Based Case Studies on Stroke Patients. Front Bioeng Biotechnol 2020; 8:589321. [PMID: 33313042 PMCID: PMC7703112 DOI: 10.3389/fbioe.2020.589321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
Spasticity is a major contributor to pain, disabilities and many secondary complications after stroke. Investigating the effect of spasticity on neuromuscular function in stroke patients may facilitate the development of its clinical treatment, while the underlying mechanism of spasticity still remains unclear. The aim of this study is to explore the difference in the neuromuscular response to passive stretch between healthy subjects and stroke patients with spasticity. Five healthy subjects and three stroke patients with spastic elbow flexor were recruited to complete the passive stretch at four angular velocities (10°/s, 60°/s, 120°/s, and 180°/s) performed by an isokinetic dynamometer. Meanwhile, the 64-channel electromyography (EMG) signals from biceps brachii muscle were recorded. The root mean square (RMS) and fuzzy entropy (FuzzyEn) of EMG recordings of each channel were calculated, and the relationship between the average value of RMS and FuzzyEn over 64-channel was examined. The two groups showed similar performance from results that RMS increased and FuzzyEn decreased with the increment of stretch velocity, and the RMS was negatively correlated with FuzzyEn. The difference is that stroke patients showed higher RMS and lower FuzzyEn during quick stretch than the healthy group. Furthermore, compared with the healthy group, distinct variations of spatial distribution within the spastic muscle were found in the EMG activity of stroke patients. These results suggested that a large number of motor units were recruited synchronously in the presence of spasticity, and this recruitment pattern was non-uniform in the whole muscle. Using a combination of RMS and FuzzyEn calculated from high-density EMG (HD-EMG) recordings can provide an innovative insight into the physiological mechanism underlying spasticity, and FuzzyEn could potentially be used as a new indicator for spasticity, which would be beneficial to clinical intervention and further research on spasticity.
Collapse
Affiliation(s)
- Tian Xie
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yan Leng
- Department of Rehabilitation Medicine, Guangdong Engineering Technology Research Center for Rehabilitation Medicine and Clinical Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yihua Zhi
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Chao Jiang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Na Tian
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Zichong Luo
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Hairong Yu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Rong Song
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Chen YT, Zhang C, Liu Y, Magat E, Verduzco-Gutierrez M, Francisco GE, Zhou P, Zhang Y, Li S. The Effects of Botulinum Toxin Injections on Spasticity and Motor Performance in Chronic Stroke with Spastic Hemiplegia. Toxins (Basel) 2020; 12:toxins12080492. [PMID: 32751970 PMCID: PMC7472282 DOI: 10.3390/toxins12080492] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 02/01/2023] Open
Abstract
Spastic muscles are weak muscles. It is known that muscle weakness is linked to poor motor performance. Botulinum neurotoxin (BoNT) injections are considered as the first-line treatment for focal spasticity. The purpose of this study was to quantitatively investigate the effects of BoNT injections on force control of spastic biceps brachii muscles in stroke survivors. Ten stroke survivors with spastic hemiplegia (51.7 ± 11.5 yrs; 5 men) who received 100 units of incobotulinumtoxinA or onabotulinumtoxinA to the biceps brachii muscles participated in this study. Spasticity assessment (Modified Ashworth Scale (MAS) and reflex torque) and muscle strength of elbow flexors, as well as motor performance assessment (force variability of submaximal elbow flexion) were performed within one week before (pre-injection) and 3~4 weeks (3-wk) after BoNT injections. As expected, BoNT injections reduced the MAS score and reflex torque, and elbow flexor strength on the spastic paretic side. However, motor performance remained within similar level before and after injections. There was no change in muscle strength or motor performance on the contralateral arm after BoNT injections. The results of this study provide evidence that BoNT injections can reduce spasticity and muscle strength, while motor performance of the weakened spastic muscle remains unchanged.
Collapse
Affiliation(s)
- Yen-Ting Chen
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-T.C.); (E.M.); (M.V.-G.); (G.E.F.)
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
- Department of Health and Kinesiology, Northeastern State University, Broken Arrow, OK 74014, USA
| | - Chuan Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (C.Z.); (Y.L.); (Y.Z.)
| | - Yang Liu
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (C.Z.); (Y.L.); (Y.Z.)
| | - Elaine Magat
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-T.C.); (E.M.); (M.V.-G.); (G.E.F.)
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
| | - Monica Verduzco-Gutierrez
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-T.C.); (E.M.); (M.V.-G.); (G.E.F.)
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
- Department of Rehabilitation Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Gerard E. Francisco
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-T.C.); (E.M.); (M.V.-G.); (G.E.F.)
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
| | - Ping Zhou
- Guangdong Provincial Work Injury Rehabilitation Center, Guangzhou 510000, China;
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (C.Z.); (Y.L.); (Y.Z.)
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-T.C.); (E.M.); (M.V.-G.); (G.E.F.)
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-797-7125
| |
Collapse
|
5
|
Dymarek R, Ptaszkowski K, Ptaszkowska L, Kowal M, Sopel M, Taradaj J, Rosińczuk J. Shock Waves as a Treatment Modality for Spasticity Reduction and Recovery Improvement in Post-Stroke Adults - Current Evidence and Qualitative Systematic Review. Clin Interv Aging 2020; 15:9-28. [PMID: 32021129 PMCID: PMC6954086 DOI: 10.2147/cia.s221032] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose This systematic review examines intervention studies using extracorporeal shock wave therapy (ESWT) application in post-stroke muscle spasticity with particular emphasis on the comparison of two different types of radial (rESWT) and focused shock waves (fESWT). Methods PubMed, PEDro, Scopus, and EBSCOhost databases were systematically searched. Studies published between the years 2000 and 2019 in the impact factor journals and available in the English full-text version were eligible for inclusion. All qualified articles were classified in terms of their scientific reliability and methodological quality using the PEDro criteria. The PRISMA guidelines were followed and the registration on the PROSPERO database was done. Results A total of 17 articles were reviewed of a total sample of 303 patients (age: 57.87±10.45 years and duration of stroke: 40.49±25.63 months) who were treated with ESWT. Recent data confirm both a subjective (spasticity, pain, and functioning) and objective (range of motion, postural control, muscular endurance, muscle tone, and muscle elasticity) improvements for post-stroke spasticity. The mean difference showing clinical improvement was: ∆=34.45% of grade for fESWT and ∆=34.97% for rESWT that gives a slightly better effect of rESWT (∆=0.52%) for spasticity (p<0.05), and ∆=38.83% of angular degrees for fESWT and ∆=32.26% for rESWT that determines the more beneficial effect of fESWT (∆=6.57%) for range of motion (p<0.05), and ∆=18.32% for fESWT and ∆=22.27% for rESWT that gives a slightly better effect of rESWT (∆=3.95%) for alpha motor neuron excitability (p<0.05). The mean PEDro score was 4.70±2.5 points for fESWT and 5.71±2.21 points for rESWT, thus an overall quality of evidence grade of moderate (“fair” for fESWT and “good” for rESWT). Three studies in fESWT and four in rESWT obtained Sackett’s grading system’s highest Level 1 of evidence. Conclusion The studies affirm the effectiveness of ESWT in reducing muscle spasticity and improving motor recovery after stroke.
Collapse
Affiliation(s)
- Robert Dymarek
- Department of Nervous System Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Kuba Ptaszkowski
- Department of Physiotherapy, Wroclaw Medical University, Wroclaw, Poland
| | | | - Mateusz Kowal
- Department of Physiotherapy, Opole Medical School, Opole, Poland
| | - Mirosław Sopel
- Department of Nervous System Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Jakub Taradaj
- Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland.,College of Rehabilitation Sciences, University of Manitoba, Winnipeg, Canada
| | - Joanna Rosińczuk
- Department of Nervous System Diseases, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
6
|
Zhang X, Tang X, Zhu X, Gao X, Chen X, Chen X. A Regression-Based Framework for Quantitative Assessment of Muscle Spasticity Using Combined EMG and Inertial Data From Wearable Sensors. Front Neurosci 2019; 13:398. [PMID: 31130834 PMCID: PMC6509177 DOI: 10.3389/fnins.2019.00398] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/08/2019] [Indexed: 01/27/2023] Open
Abstract
There have always been practical demands for objective and accurate assessment of muscle spasticity beyond its clinical routine. A novel regression-based framework for quantitative assessment of muscle spasticity is proposed in this paper using wearable surface electromyogram (EMG) and inertial sensors combined with a simple examination procedure. Sixteen subjects with elbow flexor or extensor (i.e., biceps brachii muscle or triceps brachii muscle) spasticity and eight healthy subjects were recruited for the study. The EMG and inertial data were recorded from each subject when a series of passive elbow stretches with different stretch velocities were conducted. In the proposed framework, both lambda model and kinematic model were constructed from the recorded data, and biomarkers were extracted respectively from the two models to describe the neurogenic component and biomechanical component of the muscle spasticity, respectively. Subsequently, three evaluation methods using supervised machine learning algorithms including single-/multi-variable linear regression and support vector regression (SVR) were applied to calibrate biomarkers from each single model or combination of two models into evaluation scores. Each of these evaluation scores can be regarded as a prediction of the modified Ashworth scale (MAS) grade for spasticity assessment with the same meaning and clinical interpretation. In order to validate performance of three proposed methods within the framework, a 24-fold leave-one-out cross validation was conducted for all subjects. Both methods with each individual model achieved satisfactory performance, with low mean square error (MSE, 0.14 and 0.47) between the resultant evaluation score and the MAS. By contrast, the method using SVR to fuse biomarkers from both models outperformed other two methods with the lowest MSE at 0.059. The experimental results demonstrated the usability and feasibility of the proposed framework, and it provides an objective, quantitative and convenient solution to spasticity assessment, suitable for clinical, community, and home-based rehabilitation.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xiao Tang
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xiaofei Zhu
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xiaoping Gao
- Department of Rehabilitation Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiang Chen
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xun Chen
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
7
|
Chen YT, Li S, Magat E, Zhou P, Li S. Motor Overflow and Spasticity in Chronic Stroke Share a Common Pathophysiological Process: Analysis of Within-Limb and Between-Limb EMG-EMG Coherence. Front Neurol 2018; 9:795. [PMID: 30356703 PMCID: PMC6189334 DOI: 10.3389/fneur.2018.00795] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/04/2018] [Indexed: 01/06/2023] Open
Abstract
The phenomenon of exaggerated motor overflow is well documented in stroke survivors with spasticity. However, the mechanism underlying the abnormal motor overflow remains unclear. In this study, we aimed to investigate the possible mechanisms behind abnormal motor overflow and its possible relations with post-stroke spasticity. 11 stroke patients (63.6 ± 6.4 yrs; 4 women) and 11 healthy subjects (31.18 ± 6.18 yrs; 2 women) were recruited. All of them were asked to perform unilateral isometric elbow flexion at submaximal levels (10, 30, and 60% of maximum voluntary contraction). Electromyogram (EMG) was measured from the contracting biceps (iBiceps) muscle and resting contralateral biceps (cBiceps), ipsilateral flexor digitorum superficialis (iFDS), and contralateral FDS (cFDS) muscles. Motor overflow was quantified as the normalized EMG of the resting muscles. The severity of motor impairment was quantified through reflex torque (spasticity) and weakness. EMG-EMG coherence was calculated between the contracting muscle and each of the resting muscles. During elbow flexion on the impaired side, stroke subjects exhibited significant higher motor overflow to the iFDS muscle compared with healthy subjects (ipsilateral or intralimb motor overflow). Stroke subjects exhibited significantly higher motor overflow to the contralateral spastic muscles (cBiceps and cFDS) during elbow flexion on the non-impaired side (contralateral or interlimb motor overflow), compared with healthy subjects. Moreover, there was significantly high EMG-EMG coherence in the alpha band (6–12 Hz) between the contracting muscle and all other resting muscles during elbow flexion on the non-impaired side. Our results of diffuse ipsilateral and contralateral motor overflow with EMG-EMG coherence in the alpha band suggest subcortical origins of motor overflow. Furthermore, correlation between contralateral motor overflow to contralateral spastic elbow and finger flexors and their spasticity was consistently at moderate to high levels. A high correlation suggests that diffuse motor overflow to the impaired side and spasticity likely share a common pathophysiological process. Possible mechanisms are discussed.
Collapse
Affiliation(s)
- Yen-Ting Chen
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX, United States.,TIRR Research Center, TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Shengai Li
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX, United States.,TIRR Research Center, TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Elaine Magat
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX, United States.,TIRR Research Center, TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX, United States.,TIRR Research Center, TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX, United States.,TIRR Research Center, TIRR Memorial Hermann Hospital, Houston, TX, United States
| |
Collapse
|