1
|
Ryding E, Reinstrup P. Continuous measurement in neurocritical care of cerebral blood flow (CBF) calculated from ICP and central venous pressure. Sci Rep 2024; 14:23268. [PMID: 39370459 PMCID: PMC11456582 DOI: 10.1038/s41598-024-74983-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024] Open
Abstract
The cerebral blood flow, CBF, is an important clinical parameter in neuro-intensive care. The possibility to continuously monitor CBF, computed from referential ICP, rICP (calculated from measured intracranial pressure, ICP, and central venous pressure, CVP) and venous outflow resistance, Rv, could importantly improve patient care. For the CBF(1) method the pulsative part of CBF (with rICP increase due to vascular volume increase) gives the venous outflow resistance, Rv. The CBF max method finds Rv from the close correlation between rICP and Rv. For both CBF(1) and CBF max, rICP divided with Rv gives CBF. The parameters rICP, Rv and CBF were calculated from measurements of ICP increase, and of intracerebral venous volume increase in nine subjects, by the CBF(1) method. The result, together with the finding of a close correlation between rICP and Rv, which made CBF dependent on rICP only, gave confirmation of the theory for computation of CBF, with two methods for continuous monitoring of CBF from rICP, one (CBF(1)) using the systolic ICP increase to find Rv, and one (CBF max) using the relationship between Rv and rICP at rICP exceeding about 10 mmHg in this study.
Collapse
Affiliation(s)
- Erik Ryding
- Department of Clinical Neurophysiology, Skane University Hospital in Lund, Lund, Sweden.
| | - Peter Reinstrup
- Department of Intensive and Postoperative Care, Skane University Hospital in Lund, Lund, Sweden
| |
Collapse
|
2
|
Wiedermann CJ. Albumin in Normovolemic Fluid Management for Severe Traumatic Brain Injury: Controversies and Research Gaps. J Clin Med 2024; 13:5452. [PMID: 39336939 PMCID: PMC11432589 DOI: 10.3390/jcm13185452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Traumatic brain injury (TBI) is a significant public health issue characterized by high mortality rates and long-term complications. This commentary examines the controversial role of the use of albumin in the fluid management of patients with severe TBI. Despite its physiological benefits, the clinical use of albumin remains controversial due to the fact that various studies have yielded mixed results. Serum albumin is important for maintaining normovolemia, primarily through its contribution to colloid osmotic pressure, which helps to retain fluid in the circulatory system. This review highlights the existing evidence, examines inconsistencies in guideline recommendations, and suggests future research directions to clarify the efficacy and safety of the use of albumin in maintaining normovolemia in patients with TBI. The review also discusses the potential benefits of small-volume resuscitation strategies for the management of acute kidney injury in TBI patients, drawing parallels with the management of septic acute kidney injury. The need for further well-designed randomized controlled trials and ethical considerations in studies regarding the use of hyperoncotic albumin in TBI management is emphasized.
Collapse
Affiliation(s)
- Christian J. Wiedermann
- Institute of General Practice and Public Health, Claudiana—College of Health Professions, 39100 Bolzano, Italy;
- Department of Public Health, Medical Decision Making and Health Technology Assessment, UMIT TIROL—Private University for Health Sciences and Health Technology, 6060 Hall, Austria
| |
Collapse
|
3
|
Svedung Wettervik T, Hånell A, Howells T, Engström ER, Lewén A, Enblad P. Autoregulatory Cerebral Perfusion Pressure Insults in Traumatic Brain Injury and Aneurysmal Subarachnoid Hemorrhage: The Role of Insult Intensity and Duration on Clinical Outcome. J Neurosurg Anesthesiol 2024; 36:228-236. [PMID: 37212723 DOI: 10.1097/ana.0000000000000922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/10/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND This single-center, retrospective study investigated the outcome effect of the combined intensity and duration of differences between actual cerebral perfusion pressure (CPP) and optimal cerebral perfusion pressure (CPPopt), and also for absolute CPP, in patients with traumatic brain injury (TBI) and aneurysmal subarachnoid hemorrhage (aSAH). METHODS A total of 378 TBI and 432 aSAH patients treated in a neurointensive care unit between 2008 and 2018 with at least 24 hours of CPPopt data during the first 10 days following injury, and with 6-month (TBI) or 12-month (aSAH) extended Glasgow Outcome Scale (GOS-E) scores, were included in the study. ∆CPPopt-insults (∆CPPopt=actual CPP-CPPopt) and CPP-insults were visualized as 2-dimensional plots to highlight the combined effect of insult intensity (mm Hg) and duration (min) on patient outcome. RESULTS In TBI patients, a zone of ∆CPPopt ± 10 mm Hg was associated with more favorable outcome, with transitions towards unfavorable outcome above and below this zone. CPP in the range of 60 to 80 mm Hg was associated with higher GOS-E, whereas CPP outside this range was associated with lower GOS-E. In aSAH patients, there was no clear transition from higher to lower GOS-E for ∆CPPopt-insults; however, there was a transition from favorable to unfavorable outcome when CPP was <80 mm Hg. CONCLUSIONS TBI patients with CPP close to CPPopt exhibited better clinical outcomes, and absolute CPP within the 60 to 80 mm Hg range was also associated with favorable outcome. In aSAH patients, there was no clear transition for ∆CPPopt-insults in relation to outcome, whereas generally high absolute CPP values were associated overall with favorable recovery.
Collapse
|
4
|
Alberts A, Lucke-Wold B. Updates on Improving Imaging Modalities for Traumatic Brain Injury. J Integr Neurosci 2023; 22:142. [PMID: 38176928 PMCID: PMC10776037 DOI: 10.31083/j.jin2206142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 01/06/2024] Open
Abstract
The Center for Disease Control and Prevention reports that traumatic brain injury (TBI) was related to over 64,000 deaths in the United States in 2020, equating to more than 611 TBI-related hospitalizations and 176 TBI-related deaths per day. There are both long- and short-term sequelae involved with the pathophysiology of TBI that can range from mild to severe. Recently, more effort has been devoted to understanding the long-term consequences of TBI and how early detection of these injuries can prevent late clinical manifestations. Obtaining proper, detailed imaging is key to guiding the direction of intervention, but there is a gap in the understanding of how TBI imaging can be used to predict and prevent the long-term morbidities seen with even mild forms of TBI. There have been significant strides in the advancement of TBI imaging that allows for quicker, more affordable, and more effective imaging of intracranial bleeds, axonal injury, tissue damage, and more. Despite this, there is still room for improved standardization and more data supporting the justification of using certain imaging modalities. This review aims to outline recent advancements in TBI imaging and areas that require further investigation to improve patient outcomes and minimize the acute and chronic comorbidities associated with TBI.
Collapse
Affiliation(s)
- Amelia Alberts
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
5
|
Svedung Wettervik T, Beqiri E, Bögli SY, Placek M, Guilfoyle MR, Helmy A, Lavinio A, O'Leary R, Hutchinson PJ, Smielewski P. Brain tissue oxygen monitoring in traumatic brain injury: part I-To what extent does PbtO 2 reflect global cerebral physiology? Crit Care 2023; 27:339. [PMID: 37653526 PMCID: PMC10472704 DOI: 10.1186/s13054-023-04627-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND The primary aim was to explore the association of global cerebral physiological variables including intracranial pressure (ICP), cerebrovascular reactivity (PRx), cerebral perfusion pressure (CPP), and deviation from the PRx-based optimal CPP value (∆CPPopt; actual CPP-CPPopt) in relation to brain tissue oxygenation (pbtO2) in traumatic brain injury (TBI). METHODS A total of 425 TBI patients with ICP- and pbtO2 monitoring for at least 12 h, who had been treated at the neurocritical care unit, Addenbrooke's Hospital, Cambridge, UK, between 2002 and 2022 were included. Generalized additive models (GAMs) and linear mixed effect models were used to explore the association of ICP, PRx, CPP, and CPPopt in relation to pbtO2. PbtO2 < 20 mmHg, ICP > 20 mmHg, PRx > 0.30, CPP < 60 mmHg, and ∆CPPopt < - 5 mmHg were considered as cerebral insults. RESULTS PbtO2 < 20 mmHg occurred in median during 17% of the monitoring time and in less than 5% in combination with ICP > 20 mmHg, PRx > 0.30, CPP < 60 mmHg, or ∆CPPopt < - 5 mmHg. In GAM analyses, pbtO2 remained around 25 mmHg over a large range of ICP ([0;50] mmHg) and PRx [- 1;1], but deteriorated below 20 mmHg for extremely low CPP below 30 mmHg and ∆CPPopt below - 30 mmHg. In linear mixed effect models, ICP, CPP, PRx, and ∆CPPopt were significantly associated with pbtO2, but the fixed effects could only explain a very small extent of the pbtO2 variation. CONCLUSIONS PbtO2 below 20 mmHg was relatively frequent and often occurred in the absence of disturbances in ICP, PRx, CPP, and ∆CPPopt. There were significant, but weak associations between the global cerebral physiological variables and pbtO2, suggesting that hypoxic pbtO2 is often a complex and independent pathophysiological event. Thus, other variables may be more crucial to explain pbtO2 and, likewise, pbtO2 may not be a suitable outcome measure to determine whether global cerebral blood flow optimization such as CPPopt therapy is successful.
Collapse
Affiliation(s)
- Teodor Svedung Wettervik
- Section of Neurosurgery, Department of Medical Sciences, Uppsala University, 751 85, Uppsala, Sweden.
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Stefan Yu Bögli
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Michal Placek
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mathew R Guilfoyle
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Andrea Lavinio
- Neurosciences and Trauma Critical Care Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Ronan O'Leary
- Neurosciences and Trauma Critical Care Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Svedung Wettervik T, Hånell A, Howells T, Ronne Engström E, Lewén A, Enblad P. ICP, CPP, and PRx in traumatic brain injury and aneurysmal subarachnoid hemorrhage: association of insult intensity and duration with clinical outcome. J Neurosurg 2023; 138:446-453. [PMID: 35901752 DOI: 10.3171/2022.5.jns22560] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The primary aim of this study was to determine the combined effect of insult intensity and duration of intracranial pressure (ICP), cerebral perfusion pressure (CPP), and pressure reactivity index (PRx) on outcome measured with the Glasgow Outcome Scale-Extended (GOS-E) in patients with traumatic brain injury (TBI) or aneurysmal subarachnoid hemorrhage (aSAH). METHODS This observational study included all TBI and aSAH patients treated in the neurointensive care unit in Uppsala, Sweden, 2008-2018, with at least 24 hours of ICP monitoring during the first 10 days following injury and available long-term clinical outcome data. ICP, CPP, and PRx insults were visualized as 2D plots to highlight the effects of both insult intensity and duration on patient outcome. RESULTS Of 950 included patients, 436 were TBI and 514 aSAH patients. The TBI patients were younger, more often male, and exhibited worse neurological status at admission, but recovered more favorably than the aSAH patients. There was a transition from good to poor outcome with ICP above 15-20 mm Hg in both TBI and aSAH. The two diagnoses had opposite CPP patterns. In TBI patients, CPP episodes at or below 80 mm Hg were generally favorable, whereas CPP episodes above 80 mm Hg were favorable in the aSAH patients. In the TBI patients there was a transition from good to poor outcome when PRx exceeded zero, but no evident transition was found in the aSAH cohort. CONCLUSIONS The insult intensity and duration plots formulated in this study illustrate the similarities and differences between TBI and aSAH patients. In particular, aSAH patients may benefit from much higher CPP targets than TBI patients.
Collapse
Affiliation(s)
| | - Anders Hånell
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Timothy Howells
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | | | - Anders Lewén
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Neurotrauma and Intracranial Pressure Management. Crit Care Clin 2023; 39:103-121. [DOI: 10.1016/j.ccc.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Pearls and Pitfalls of Trauma Management. PHYSICIAN ASSISTANT CLINICS 2022. [DOI: 10.1016/j.cpha.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Zeiler FA, Aries M, Czosnyka M, Smieleweski P. Cerebral Autoregulation Monitoring in Traumatic Brain Injury: An Overview of Recent Advances in Personalized Medicine. J Neurotrauma 2022; 39:1477-1494. [PMID: 35793108 DOI: 10.1089/neu.2022.0217] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Impaired cerebral autoregulation (CA) in moderate/severe traumatic brain injury (TBI) has been identified as a strong associate with poor long-term outcomes, with recent data highlighting its dominance over cerebral physiologic dysfunction seen in the acute phase post injury. With advances in bedside continuous cerebral physiologic signal processing, continuously derived metrics of CA capacity have been described over the past two decades, leading to improvements in cerebral physiologic insult detection and development of novel personalized approaches to TBI care in the intensive care unit (ICU). This narrative review focuses on highlighting the concept of continuous CA monitoring and consequences of impairment in moderate/severe TBI. Further, we provide a comprehensive description and overview of the main personalized cerebral physiologic targets, based on CA monitoring, that are emerging as strong associates with patient outcomes. CA-based personalized targets, such as optimal cerebral perfusion pressure (CPPopt), lower/upper limit of regulation (LLR/ULR), and individualized intra-cranial pressure (iICP) are positioned to change the way we care for TBI patients in the ICU, moving away from the "one treatment fits all" paradigm of current guideline-based therapeutic approaches, towards a true personalized medicine approach tailored to the individual patient. Future perspectives regarding research needs in this field are also discussed.
Collapse
Affiliation(s)
- Frederick Adam Zeiler
- Health Sciences Centre, Section of Neurosurgery, GB-1 820 Sherbrook Street, Winnipeg, Manitoba, Canada, R3A1R9;
| | - Marcel Aries
- University of Maastricht Medical Center, Department of Intensive Care, Maastricht, Netherlands;
| | - Marek Czosnyka
- university of cambridge, neurosurgery, Canbridge Biomedical Campus, box 167, cambridge, United Kingdom of Great Britain and Northern Ireland, cb237ar;
| | - Peter Smieleweski
- Cambridge University, Neurosurgery, Cambridge, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
10
|
Hanalioglu D, Oh A, Temkit M, Adelson PD, Appavu B. Carbon Dioxide Reactivity of Brain Tissue Oxygenation after Pediatric Traumatic Brain Injury. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9030409. [PMID: 35327781 PMCID: PMC8947728 DOI: 10.3390/children9030409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
Abstract
Background: We investigated how changes in partial pressure of brain tissue oxygenation (PbtO2) relate to end-tidal carbon dioxide (EtCO2) after pediatric traumatic brain injury (TBI). Methods: Dynamic structural equation modeling (DSEM) was used to investigate associations between EtCO2 and PbtO2, with positive associations indicating intact CO2 reactivity of PbtO2, and negative associations indicating impaired reactivity. Sub-analyses were performed to investigate associations of PbtO2 to intracranial pressure (ICP), arterial blood pressure (ABP) and cerebral regional oximetry (rSO2). Results: Among 14 patients, a positive association between PbtO2 and EtCO2 was demonstrated (SRC 0.05, 95% CI [0.04, 0.06]), with 9 patients demonstrating intact CO2 reactivity and 5 patients demonstrating impaired reactivity. Patients demonstrating intact CO2 reactivity had positive associations between PbtO2 and ICP (0.22 [0.21, 0.23]), whereas patients with impaired reactivity had negative associations (−0.28 [−0.29, −0.28]). Patients demonstrating intact CO2 reactivity had negative associations between PbtO2 and rSO2 (−0.08 [−0.09, −0.08]), whereas patients with impaired reactivity had positive associations (−0.15 [0.14, 0.16]). Compared to patients with intact CO2 reactivity, those with impaired reactivity had increased ICP (p < 0.0000), lower PbtO2 (p < 0.0000) and higher PRx (p = 0.0134). Conclusion: After TBI, CO2 reactivity of PbtO2 can be heterogenous, necessitating further work investigating factors contributing toward impaired reactivity.
Collapse
Affiliation(s)
- Damla Hanalioglu
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (D.H.); (M.T.); (P.D.A.)
| | - Ann Oh
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - M’Hamed Temkit
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (D.H.); (M.T.); (P.D.A.)
| | - P. David Adelson
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (D.H.); (M.T.); (P.D.A.)
| | - Brian Appavu
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (D.H.); (M.T.); (P.D.A.)
- Correspondence: ; Tel.: +1-602-933-0970
| |
Collapse
|
11
|
Current state of high-fidelity multimodal monitoring in traumatic brain injury. Acta Neurochir (Wien) 2022; 164:3091-3100. [PMID: 36260235 PMCID: PMC9705453 DOI: 10.1007/s00701-022-05383-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/28/2022] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Multimodality monitoring of patients with severe traumatic brain injury (TBI) is primarily performed in neuro-critical care units to prevent secondary harmful brain insults and facilitate patient recovery. Several metrics are commonly monitored using both invasive and non-invasive techniques. The latest Brain Trauma Foundation guidelines from 2016 provide recommendations and thresholds for some of these. Still, high-level evidence for several metrics and thresholds is lacking. METHODS Regarding invasive brain monitoring, intracranial pressure (ICP) forms the cornerstone, and pressures above 22 mmHg should be avoided. From ICP, cerebral perfusion pressure (CPP) (mean arterial pressure (MAP)-ICP) and pressure reactivity index (PRx) (a correlation between slow waves MAP and ICP as a surrogate for cerebrovascular reactivity) may be derived. In terms of regional monitoring, partial brain tissue oxygen pressure (PbtO2) is commonly used, and phase 3 studies are currently ongoing to determine its added effect to outcome together with ICP monitoring. Cerebral microdialysis (CMD) is another regional invasive modality to measure substances in the brain extracellular fluid. International consortiums have suggested thresholds and management strategies, in spite of lacking high-level evidence. Although invasive monitoring is generally safe, iatrogenic hemorrhages are reported in about 10% of cases, but these probably do not significantly affect long-term outcome. Non-invasive monitoring is relatively recent in the field of TBI care, and research is usually from single-center retrospective experiences. Near-infrared spectrometry (NIRS) measuring regional tissue saturation has been shown to be associated with outcome. Transcranial doppler (TCD) has several tentative utilities in TBI like measuring ICP and detecting vasospasm. Furthermore, serial sampling of biomarkers of brain injury in the blood can be used to detect secondary brain injury development. CONCLUSIONS In multimodal monitoring, the most important aspect is data interpretation, which requires knowledge of each metric's strengths and limitations. Combinations of several modalities might make it possible to discern specific pathologic states suitable for treatment. However, the cost-benefit should be considered as the incremental benefit of adding several metrics has a low level of evidence, thus warranting additional research.
Collapse
|
12
|
Hägglund L, Olivecrona M, Koskinen LOD. Correlation of Cerebral and Subcutaneous Glycerol in Severe Traumatic Brain Injury and Association with Tissue Damage. Neurocrit Care 2021; 36:993-1001. [PMID: 34914037 PMCID: PMC9110531 DOI: 10.1007/s12028-021-01412-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/23/2021] [Indexed: 11/15/2022]
Abstract
Background This study is a substudy of a prospective consecutive double-blinded randomized study on the effect of prostacyclin in severe traumatic brain injury (sTBI). The aims of the present study were to investigate whether there was a correlation between brain and subcutaneous glycerol levels and whether the ratio of interstitial glycerol in the brain and subcutaneous tissue (glycerolbrain/sc) was associated with tissue damage in the brain, measured by using the Rotterdam score, S-100B, neuron-specific enolase (NSE), the Injury Severity Score (ISS), the Acute Physiology and Chronic Health Evaluation Score (APACHE II), and trauma type. A potential association with clinical outcome was explored. Methods Patients with sTBI aged 15–70 years presenting with a Glasgow Coma Scale Score ≤ 8 were included. Brain and subcutaneous adipose tissue glycerol levels were measured through microdialysis in 48 patients, of whom 42 had complete data for analysis. Brain tissue damage was also evaluated by using the Rotterdam classification of brain computed tomography scans and the biochemical biomarkers S-100B and NSE. Results In 60% of the patients, a positive relationship in glycerolbrain/sc was observed. Patients with a positive correlation of glycerolbrain/sc had slightly higher brain glycerol levels compared with the group with a negative correlation. There was no significant association between the computed tomography Rotterdam score and glycerolbrain/sc. S-100B and NSE were associated with the profile of glycerolbrain/sc. Our results cannot be explained by the general severity of the trauma as measured by using the Injury Severity Score or Acute Physiology and Chronic Health Evaluation Score. Conclusions We have shown that peripheral glycerol may flux into the brain. This effect is associated with worse brain tissue damage. This flux complicates the interpretation of brain interstitial glycerol levels. We remind the clinicians that a damaged blood–brain barrier, as seen in sTBI, may alter the concentrations of various substances, including glycerol in the brain. Awareness of this is important in the interpretation of the data bedside as well in research.
Collapse
Affiliation(s)
- Linda Hägglund
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Magnus Olivecrona
- Department of Anesthesia and Intensive Care, Section of Neurosurgery, Örebro University Hospital and Department for Medical Sciences, Faculty of Health and Medicine, Örebro University, Örebro, Sweden
| | - Lars-Owe D Koskinen
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden.
| |
Collapse
|
13
|
Hosomi S, Sobue T, Kitamura T, Hirayama A, Ogura H, Shimazu T. Association between vasopressor use and mortality in patients with severe traumatic brain injury: a nationwide retrospective cohort study in Japan. Acute Med Surg 2021; 8:e695. [PMID: 34567578 PMCID: PMC8448585 DOI: 10.1002/ams2.695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/14/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022] Open
Abstract
Aim Vasopressors are frequently incorporated into severe traumatic brain injury management algorithms. However, evidence regarding their clinical effectiveness is lacking. We undertook a nationwide retrospective cohort study to determine the association between vasopressor use and mortality in patients with severe traumatic brain injury. Methods Data were collected between January 2004 and December 2018 from the Japanese Trauma Data Bank, which includes data from 272 emergency hospitals in Japan. Adults aged 16 years and over with severe traumatic brain injury but without major extracranial injuries were examined. A severe traumatic brain injury was defined based on a Glasgow Coma Scale score of 3–8 on admission. Multivariable analysis and propensity score matching were carried out. Statistical significance was assessed using 95% confidence intervals. Results In total, 10,295 patients were eligible for analysis, with 654 included in the vasopressor group and 9,641 included in the nonvasopressor group. The proportion of deaths at hospital discharge was higher in the vasopressor group than in the nonvasopressor group (81.80% [535/654] versus 40.24% [3,880/9,641]). This finding was confirmed in a multivariable logistic regression analysis (adjusted odds ratio, 5.37; 95% confidence interval, 4.23–6.81). Among propensity score‐matched patients adjusted for severity, the proportion of deaths at hospital discharge remained higher in the vasopressor group than in the nonvasopressor group (81.87% [533/651] versus 56.22% [366/651]) (odds ratio, 3.52; 95% confidence interval, 2.73–4.53). Conclusion The study results suggest that vasopressor use in patients with severe isolated traumatic brain injury is associated with a higher mortality at hospital discharge.
Collapse
Affiliation(s)
- Sanae Hosomi
- Department of Traumatology and Acute Critical Medicine Osaka University Graduate School of Medicine Osaka Japan.,Division of Environmental Medicine and Population Sciences Department of Social and Environmental Medicine Osaka University Graduate School of Medicine Osaka Japan
| | - Tomotaka Sobue
- Division of Environmental Medicine and Population Sciences Department of Social and Environmental Medicine Osaka University Graduate School of Medicine Osaka Japan
| | - Tetsuhisa Kitamura
- Division of Environmental Medicine and Population Sciences Department of Social and Environmental Medicine Osaka University Graduate School of Medicine Osaka Japan
| | - Atsushi Hirayama
- Division of Environmental Medicine and Population Sciences Department of Social and Environmental Medicine Osaka University Graduate School of Medicine Osaka Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine Osaka University Graduate School of Medicine Osaka Japan
| | - Takeshi Shimazu
- Department of Traumatology and Acute Critical Medicine Osaka University Graduate School of Medicine Osaka Japan
| |
Collapse
|
14
|
Lachance BB, Chang W, Motta M, Parikh G, Podell J, Badjatia N, Simard JM, Schwartzbauer GT, Morris NA. Verticalization for Refractory Intracranial Hypertension: A Case Series. Neurocrit Care 2021; 36:463-470. [PMID: 34405321 DOI: 10.1007/s12028-021-01323-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Severe intracranial hypertension is strongly associated with mortality. Guidelines recommend medical management involving sedation, hyperosmotic agents, barbiturates, hypothermia, and surgical intervention. When these interventions are maximized or are contraindicated, refractory intracranial hypertension poses risk for herniation and death. We describe a novel intervention of verticalization for treating intracranial hypertension refractory to aggressive medical treatment. METHODS This study was a single-center retrospective review of six cases of refractory intracranial hypertension in a tertiary care center. All patients were treated with a standard-of-care algorithm for lowering intracranial pressure (ICP) yet maintained an ICP greater than 20 mmHg. They were then treated with verticalization for at least 24 h. We compared the median ICP, the number of ICP spikes greater than 20 mmHg, and the percentage of ICP values greater than 20 mmHg in the 24 h before verticalization vs. after verticalization. We assessed the use of hyperosmotic therapies and any changes in the mean arterial pressure and cerebral perfusion pressure related with the intervention. RESULTS Five patients were admitted with subarachnoid hemorrhage and one with intracerebral hemorrhage. All patients had ICP monitoring by external ventricular drain. The median opening pressure was 30 mmHg (25th-75th interquartile range 22.5-30 mmHg). All patients demonstrated a reduction in ICP after verticalization, with a significant decrease in the median ICP (12 vs. 8 mmHg; p < 0.001), the number of ICP spikes (12 vs. 2; p < 0.01), and the percentage of ICP values greater than 20 mmHg (50% vs. 8.3%; p < 0.01). There was a decrease in total medical interventions after verticalization (79 vs. 41; p = 0.05) and a lower total therapy intensity level score after verticalization. The most common adverse effects included asymptomatic bradycardia (n = 3) and pressure wounds (n = 4). CONCLUSIONS Verticalization is an effective noninvasive intervention for lowering ICP in intracranial hypertension that is refractory to aggressive standard management and warrants further study.
Collapse
Affiliation(s)
- Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - WanTsu Chang
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Melissa Motta
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Gunjan Parikh
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jamie Podell
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Neeraj Badjatia
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Gary T Schwartzbauer
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nicholas A Morris
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
15
|
Pigott A, Rudloff E. Traumatic Brain Injury-A Review of Intravenous Fluid Therapy. Front Vet Sci 2021; 8:643800. [PMID: 34307515 PMCID: PMC8299062 DOI: 10.3389/fvets.2021.643800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
This manuscript will review intravenous fluid therapy in traumatic brain injury. Both human and animal literature will be included. Basic treatment recommendations will also be discussed.
Collapse
Affiliation(s)
| | - Elke Rudloff
- BluePearl Specialty + Emergency Pet Hospital, Glendale, WI, United States
| |
Collapse
|
16
|
How do we identify the crashing traumatic brain injury patient - the neurosurgeon's view. Curr Opin Crit Care 2021; 27:87-94. [PMID: 33395087 DOI: 10.1097/mcc.0000000000000799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW To provide an overview on recent advances in the field of assessment and monitoring of patients with severe traumatic brain injury (sTBI) in neurocritical care from a neurosurgical point of view. RECENT FINDINGS In high-income countries, monitoring of patients with sTBI heavily relies on multimodal neurocritical parameters, nonetheless clinical assessment still has a solid role in decision-making. There are guidelines and consensus-based treatment algorithms that can be employed in both absence and presence of multimodal monitoring in the management of patients with sTBI. Additionally, novel dynamic monitoring options and machine learning-based prognostic models are introduced. Currently, the acute management and treatment of secondary injury/insults is focused on dealing with the objective evident pathology. An ongoing paradigm shift is emerging towards more proactive treatment of neuroworsening as soon as premonitory signs of deterioration are detected. SUMMARY Based on the current evidence, serial clinical assessment, neuroimaging, intracranial and cerebral perfusion pressure and brain tissue oxygen monitoring are key components of sTBI care. Clinical assessment has a crucial role in identifying the crashing patient with sTBI, especially from a neurosurgical standpoint. Multimodal monitoring and clinical assessment should be seen as complementary evaluation methods that support one another.
Collapse
|
17
|
Svedung Wettervik T, Howells T, Hillered L, Rostami E, Lewén A, Enblad P. Autoregulatory or Fixed Cerebral Perfusion Pressure Targets in Traumatic Brain Injury: Determining Which Is Better in an Energy Metabolic Perspective. J Neurotrauma 2021; 38:1969-1978. [PMID: 33504257 DOI: 10.1089/neu.2020.7290] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Current guidelines in traumatic brain injury (TBI) recommend a cerebral perfusion pressure (CPP) within the fixed interval of 60-70 mm Hg. However, the autoregulatory, optimal CPP target (CPPopt) might yield better cerebral blood flow (CBF) regulation. In this study, we investigated fixed versus autoregulatory CPP targets in relation to cerebral energy metabolism and clinical outcome after TBI. Ninety-eight non-craniectomized patients with severe TBI treated in the neurointensive care unit, Uppsala University Hospital, Sweden, 2008-2018, were included. Data from cerebral microdialysis (MD), intracranial pressure (ICP), pressure autoregulation, CPP and CPPopt55-15 (a variant of CPPopt based on filtered slow waves from 15-55 sec range) were analyzed the first 10 days. The good monitoring time (GMT %) below/within/above the fixed and autoregulatory CPP targets were calculated. CPPopt55-15 was >70 mm Hg 74% of the time the first 10 days. Higher GMT (%) ΔCPPopt55-15 ± 10 mm Hg correlated with lower lactate/pyruvate ratio (LPR) on day 1 and lower cerebral glycerol on days 6-10, and predicted favorable clinical outcome. Higher GMT (%) CPP within 60-70 mm Hg correlated with lower cerebral glucose on days 2-10 and higher LPR on days 6-10, but predicted favorable clinical outcome. Higher GMT (%) CPP >70 mm Hg had the opposite associations; that is, with higher cerebral glucose and lower LPR, but unfavorable clinical outcome. Autoregulatory CPP targets may be beneficial, because patients with CPP values close to the optimal CPP had both better cerebral energy metabolism and better clinical outcome, but this needs to be evaluated in randomized trials.
Collapse
Affiliation(s)
| | - Timothy Howells
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Lars Hillered
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Elham Rostami
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Anders Lewén
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Svedung Wettervik TM, Lewén A, Enblad P. Fine Tuning of Traumatic Brain Injury Management in Neurointensive Care-Indicative Observations and Future Perspectives. Front Neurol 2021; 12:638132. [PMID: 33716941 PMCID: PMC7943830 DOI: 10.3389/fneur.2021.638132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/20/2021] [Indexed: 01/01/2023] Open
Abstract
Neurointensive care (NIC) has contributed to great improvements in clinical outcomes for patients with severe traumatic brain injury (TBI) by preventing, detecting, and treating secondary insults and thereby reducing secondary brain injury. Traditional NIC management has mainly focused on generally applicable escalated treatment protocols to avoid high intracranial pressure (ICP) and to keep the cerebral perfusion pressure (CPP) at sufficiently high levels. However, TBI is a very heterogeneous disease regarding the type of injury, age, comorbidity, secondary injury mechanisms, etc. In recent years, the introduction of multimodality monitoring, including, e.g., pressure autoregulation, brain tissue oxygenation, and cerebral energy metabolism, in addition to ICP and CPP, has increased the understanding of the complex pathophysiology and the physiological effects of treatments in this condition. In this article, we will present some potential future approaches for more individualized patient management and fine-tuning of NIC, taking advantage of multimodal monitoring to further improve outcome after severe TBI.
Collapse
Affiliation(s)
| | - Anders Lewén
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Battaglini D, Anania P, Rocco PRM, Brunetti I, Prior A, Zona G, Pelosi P, Fiaschi P. Escalate and De-Escalate Therapies for Intracranial Pressure Control in Traumatic Brain Injury. Front Neurol 2020; 11:564751. [PMID: 33324317 PMCID: PMC7724991 DOI: 10.3389/fneur.2020.564751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/30/2020] [Indexed: 12/22/2022] Open
Abstract
Severe traumatic brain injury (TBI) is frequently associated with an elevation of intracranial pressure (ICP), followed by cerebral perfusion pressure (CPP) reduction. Invasive monitoring of ICP is recommended to guide a step-by-step “staircase approach” which aims to normalize ICP values and reduce the risks of secondary damage. However, if such monitoring is not available clinical examination and radiological criteria should be used. A major concern is how to taper the therapies employed for ICP control. The aim of this manuscript is to review the criteria for escalating and withdrawing therapies in TBI patients. Each step of the staircase approach carries a risk of adverse effects related to the duration of treatment. Tapering of barbiturates should start once ICP control has been achieved for at least 24 h, although a period of 2–12 days is often required. Administration of hyperosmolar fluids should be avoided if ICP is normal. Sedation should be reduced after at least 24 h of controlled ICP to allow neurological examination. Removal of invasive ICP monitoring is suggested after 72 h of normal ICP. For patients who have undergone surgical decompression, cranioplasty represents the final step, and an earlier cranioplasty (15–90 days after decompression) seems to reduce the rate of infection, seizures, and hydrocephalus.
Collapse
Affiliation(s)
- Denise Battaglini
- Department of Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
| | - Pasquale Anania
- Department of Neurosurgery, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health-Nano SAÚDE/Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Iole Brunetti
- Department of Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
| | - Alessandro Prior
- Department of Neurosurgery, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
| | - Gianluigi Zona
- Department of Neurosurgery, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Paolo Pelosi
- Department of Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy.,Department of Surgical Sciences and Integral Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Pietro Fiaschi
- Department of Neurosurgery, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
20
|
Tau T, Kelly A, lekgwara P. Predicting outcome in patients with traumatic brain injury who undergo a decompressive craniectomy at a single academic center in Pretoria, South Africa. INTERDISCIPLINARY NEUROSURGERY 2020. [DOI: 10.1016/j.inat.2020.100753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
21
|
Svedung Wettervik T, Howells T, Lewén A, Enblad P. Blood Pressure Variability and Optimal Cerebral Perfusion Pressure-New Therapeutic Targets in Traumatic Brain Injury. Neurosurgery 2020; 86:E300-E309. [PMID: 31807783 DOI: 10.1093/neuros/nyz515] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/14/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Optimal cerebral perfusion pressure (CPPopt) is an autoregulatory-oriented target in the neurointensive care (NIC) of patients with traumatic brain injury (TBI), and deviation from CPPopt is associated with poor outcome. We recently found that blood pressure variability (BPV) is associated with deviation from CPPopt. OBJECTIVE To evaluate BPV and other variables related to deviation from CPPopt and to evaluate challenges and strategies for autoregulatory-oriented treatment in TBI. METHODS Data including arterial blood pressure and intracranial pressure (ICP) from 362 TBI patients treated at the NIC unit, Uppsala University Hospital, Sweden, between 2008 and 2016, were retrospectively analyzed day 2 to 5. RESULTS Higher BPV was a strong predictor of both CPP deviation below and above CPPopt after multiple regression analyses. There was no other explanatory variable for CPP deviation above CPPopt, whereas also higher ICP and worse autoregulation (higher pressure reactivity index) were associated with CPP deviation below CPPopt. A higher BPV was, in turn, explained by older age, lower ICP, higher mean arterial blood pressure, and higher slow arterial blood pressure amplitude (0.018-0.067 Hz). CONCLUSION BPV was strongly associated with deviation from CPPopt. High age is a risk factor for high BPV and hence CPP insults. Our treatment protocol is focused on avoiding CPP below 60 mm Hg. It is possible that a more restrictive upper level could generate more stable blood pressure and less deviation from CPPopt.
Collapse
Affiliation(s)
| | - Timothy Howells
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Anders Lewén
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Affiliation(s)
- Patrick M Kochanek
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, John G. Rangos Research Center, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 6th Floor, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA, USA.
| | - Ruchira M Jha
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, John G. Rangos Research Center, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 6th Floor, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert S B Clark
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, John G. Rangos Research Center, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 6th Floor, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Vinje V, Eklund A, Mardal KA, Rognes ME, Støverud KH. Intracranial pressure elevation alters CSF clearance pathways. Fluids Barriers CNS 2020; 17:29. [PMID: 32299464 PMCID: PMC7161287 DOI: 10.1186/s12987-020-00189-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/28/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Infusion testing is a common procedure to determine whether shunting will be beneficial in patients with normal pressure hydrocephalus. The method has a well-developed theoretical foundation and corresponding mathematical models that describe the CSF circulation from the choroid plexus to the arachnoid granulations. Here, we investigate to what extent the proposed glymphatic or paravascular pathway (or similar pathways) modifies the results of the traditional mathematical models. METHODS We used a compartment model to estimate pressure in the subarachnoid space and the paravascular spaces. For the arachnoid granulations, the cribriform plate and the glymphatic circulation, resistances were calculated and used to estimate pressure and flow before and during an infusion test. Finally, different variations to the model were tested to evaluate the sensitivity of selected parameters. RESULTS At baseline intracranial pressure (ICP), we found a very small paravascular flow directed into the subarachnoid space, while 60% of the fluid left through the arachnoid granulations and 40% left through the cribriform plate. However, during the infusion, 80% of the fluid left through the arachnoid granulations, 20% through the cribriform plate and flow in the PVS was stagnant. Resistance through the glymphatic system was computed to be 2.73 mmHg/(mL/min), considerably lower than other fluid pathways, giving non-realistic ICP during infusion if combined with a lymphatic drainage route. CONCLUSIONS The relative distribution of CSF flow to different clearance pathways depends on ICP, with the arachnoid granulations as the main contributor to outflow. As such, ICP increase is an important factor that should be addressed when determining the pathways of injected substances in the subarachnoid space. Our results suggest that the glymphatic resistance is too high to allow for pressure driven flow by arterial pulsations and at the same time too small to allow for a direct drainage route from PVS to cervical lymphatics.
Collapse
Affiliation(s)
- Vegard Vinje
- Department of Scientific Computing and Numerical Analysis, Simula Research Laboratory, Lysaker, Norway.
| | - Anders Eklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Kent-Andre Mardal
- Department of Scientific Computing and Numerical Analysis, Simula Research Laboratory, Lysaker, Norway.,Department of Mathematics, University of Oslo, Oslo, Norway
| | - Marie E Rognes
- Department of Scientific Computing and Numerical Analysis, Simula Research Laboratory, Lysaker, Norway
| | | |
Collapse
|
24
|
Heming N, Mazeraud A, Azabou E, Moine P, Annane D. Vasopressor Therapy and the Brain: Dark Side of the Moon. Front Med (Lausanne) 2020; 6:317. [PMID: 31998736 PMCID: PMC6966606 DOI: 10.3389/fmed.2019.00317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022] Open
Abstract
Sepsis, a leading cause of morbidity and mortality, is caused by a deregulated host response to pathogens, and subsequent life-threatening organ dysfunctions. All major systems, including the cardiovascular, respiratory, renal, hepatic, hematological, and the neurological system may be affected by sepsis. Sepsis associated neurological dysfunction is triggered by multiple factors including neuro-inflammation, excitotoxicity, and ischemia. Ischemia results from reduced cerebral blood flow, caused by extreme variations of blood pressure, occlusion of cerebral vessels, or more subtle defects of the microcirculation. International guidelines comprehensively describe the initial hemodynamic management of sepsis, revolving around the normalization of systemic hemodynamics and of arterial lactate. By contrast, the management of sepsis patients suffering from brain dysfunction is poorly detailed, the only salient point being mentioned is that sedation and analgesia should be optimized. However, sepsis and the hemodynamic consequences thereof as well as vasopressors may have severe untoward neurological consequences. The current review describes the general neurological complications, as well as the consequences of vasopressor therapy on the brain and its circulation and addresses methods for cerebral monitoring during sepsis.
Collapse
Affiliation(s)
- Nicholas Heming
- General Intensive Care Unit, Raymond Poincaré Hospital, Garches, France.,U1173 Lab Inflammation and Infection, University of Versailles SQY-Paris Saclay - INSERM, Montigny-le-Bretonneux, France
| | - Aurélien Mazeraud
- Department of Neuro-Anesthesiology and Intensive Care Medicine, Sainte-Anne Teaching Hospital, Paris-Descartes University, Paris, France
| | - Eric Azabou
- U1173 Lab Inflammation and Infection, University of Versailles SQY-Paris Saclay - INSERM, Montigny-le-Bretonneux, France.,Department of Physiology, Assistance Publique-Hôpitaux de Paris, Raymond-Poincaré Hospital, Garches, France
| | - Pierre Moine
- General Intensive Care Unit, Raymond Poincaré Hospital, Garches, France.,U1173 Lab Inflammation and Infection, University of Versailles SQY-Paris Saclay - INSERM, Montigny-le-Bretonneux, France
| | - Djillali Annane
- General Intensive Care Unit, Raymond Poincaré Hospital, Garches, France.,U1173 Lab Inflammation and Infection, University of Versailles SQY-Paris Saclay - INSERM, Montigny-le-Bretonneux, France
| |
Collapse
|
25
|
Teuben M, Spijkerman R, Blokhuis T, Pfeifer R, Teuber H, Pape HC, Leenen L. Nonoperative management of splenic injury in closely monitored patients with reduced consciousness is safe and feasible. Scand J Trauma Resusc Emerg Med 2019; 27:108. [PMID: 31805978 PMCID: PMC6896516 DOI: 10.1186/s13049-019-0668-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Treatment of blunt splenic injury has changed over the past decades. Nonoperative management (NOM) is the treatment of choice. Adequate patient selection is a prerequisite for successful NOM. Impaired mental status is considered as a relative contra indication for NOM. However, the impact of altered consciousness in well-equipped trauma institutes is unclear. We hypothesized that impaired mental status does not affect outcome in patients with splenic trauma. METHODS Our prospectively composed trauma database was used and adult patients with blunt splenic injury were included during a 14-year time period. Treatment guidelines remained unaltered over time. Patients were grouped based on the presence (Group GCS: < 14) or absence (Group GCS: 14-15) of impaired mental status. Outcome was compared. RESULTS A total of 161 patients were included, of whom 82 were selected for NOM. 36% of patients had a GCS-score < 14 (N = 20). The median GCS-score in patients with reduced consciousness was 9 (range 6-12). Groups were comparable except for significantly higher injury severity scores in the impaired mental status group (19 vs. 17, p = 0.007). Length of stay (28 vs. 9 days, p < 0.001) and ICU-stay (8 vs. 0 days, p = 0.005) were longer in patients with decreased GCS-scores. Failure of NOM, total splenectomy rates, complications and mortality did not differ between both study groups. CONCLUSION This study shows that NOM for blunt splenic trauma is a viable treatment modality in well-equipped institutions, regardless of the patients mental status. However, the presence of neurologic impairment is associated with prolonged ICU-stay and hospitalization. We recommend, in institutions with adequate monitoring facilities, to attempt nonoperative management for blunt splenic injury, in all hemodynamically stable patients without hollow organ injuries, also in the case of reduced consciousness.
Collapse
Affiliation(s)
- Michel Teuben
- Department of Trauma, University Medical Centre Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, Suite G04.232, The Netherlands. .,Department of Traumatology, University Hospital Zurich, Zurich, Switzerland.
| | - Roy Spijkerman
- Department of Trauma, University Medical Centre Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, Suite G04.232, The Netherlands
| | - Taco Blokhuis
- Department of Trauma, University Medical Centre Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, Suite G04.232, The Netherlands
| | - Roman Pfeifer
- Department of Traumatology, University Hospital Zurich, Zurich, Switzerland
| | - Henrik Teuber
- Department of Traumatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Luke Leenen
- Department of Trauma, University Medical Centre Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, Suite G04.232, The Netherlands
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Traumatic brain injury (TBI) is a leading cause of morbidity and mortality; however, little definitive evidence exists about most clinical management strategies. Here, we highlight important differences between two major guidelines, the 2016 Brain Trauma Foundation guidelines and the Lund Concept, along with recent pre-clinical and clinical data. RECENT FINDINGS While intracranial pressure (ICP) monitoring has been questioned, the majority of literature demonstrates benefit in severe TBI. The optimal cerebral perfusion pressure (CPP) and ICP are yet unknown, but likely as important is the concept of ICP burden. The evidence for anti-hypertensive therapy is strengthening. Decompressive craniectomy improves mortality, but at the cost of increased morbidity. Plasma-based resuscitation has demonstrated benefit in multiple pre-clinical TBI studies. SUMMARY The management of hemodynamics and intravascular volume are crucial in TBI. Based on recent evidence, ICP monitoring, anti-hypertensive therapy, minimal use of vasopressors/inotropes, and plasma resuscitation may improve outcomes.
Collapse
Affiliation(s)
- Henry W. Caplan
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX
| | - Charles S. Cox
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW The acute care of a patient with severe neurological injury is organized around one relatively straightforward goal: avoid brain ischemia. A coherent strategy for fluid management in these patients has been particularly elusive, and a well considered fluid management strategy is essential for patients with critical neurological illness. RECENT FINDINGS In this review, several gaps in our collective knowledge are summarized, including a rigorous definition of volume status that can be practically measured; an understanding of how electrolyte derangements interact with therapy; a measurable endpoint against which we can titrate our patients' fluid balance; and agreement on the composition of fluid we should give in various clinical contexts. SUMMARY As the possibility grows closer that we can monitor the physiological parameters with direct relevance for neurological outcomes and the various complications associated with neurocritical illness, we may finally move away from static therapy recommendations, and toward individualized, precise therapy. Although we believe therapy should ultimately be individualized rather than standardized, it is clear that the monitoring tools and analytical methods used ought to be standardized to facilitate appropriately powered, prospective clinical outcome trials.
Collapse
|
28
|
Regner A, Meirelles LDS, Ikuta N, Cecchini A, Simon D. Prognostic utility of circulating nucleic acids in acute brain injuries. Expert Rev Mol Diagn 2018; 18:925-938. [PMID: 30307786 DOI: 10.1080/14737159.2018.1535904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Acute brain injuries represent major causes of morbidity and mortality worldwide. Nevertheless, therapeutic options are centered mainly on supportive care, and accurate prognosis prediction following traumatic brain injury (TBI) or stroke remains a challenge in clinical settings. Areas covered: Circulating DNA and RNA have shown potential as predictive molecules in acute brain injuries. In particular, plasma cell-free DNA (cfDNA) levels have been correlated to severity, mortality, and outcome after TBI and stroke. The real-time quantitative polymerase chain reaction (qPCR) is the most widely used technique for determination of cfDNA in brain injuries; however, to consider the use of cfDNA in emergency settings, a quicker and easier methodology for detection should be established. A recent study proposed detection of cfDNA applying a rapid fluorescent test that showed compatible results with qPCR. Expert commentary: As a promising perspective, detection of cfDNA levels using simple, rapid, and cheap methodology has potential to translate to clinic as a point-of-care marker, supporting the clinical decision-making in emergency care settings. Conversely, miRNA profiles may be used as signatures to determine the type and severity of injuries. Additionally, in the future, some miRNAs may constitute innovative neurorestorative therapies without the common hurdles associated with cell therapy.
Collapse
Affiliation(s)
- Andrea Regner
- a School of Medicine , Lutheran University of Brazil , Canoas , RS , Brazil.,b Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde) , Lutheran University of Brazil , Canoas , RS , Brazil
| | - Lindolfo da Silva Meirelles
- a School of Medicine , Lutheran University of Brazil , Canoas , RS , Brazil.,b Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde) , Lutheran University of Brazil , Canoas , RS , Brazil
| | - Nilo Ikuta
- b Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde) , Lutheran University of Brazil , Canoas , RS , Brazil
| | - Andre Cecchini
- a School of Medicine , Lutheran University of Brazil , Canoas , RS , Brazil.,b Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde) , Lutheran University of Brazil , Canoas , RS , Brazil.,c Neurosurgery Service , Cristo Redentor Hospital , Porto Alegre , Brazil
| | - Daniel Simon
- a School of Medicine , Lutheran University of Brazil , Canoas , RS , Brazil.,b Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde) , Lutheran University of Brazil , Canoas , RS , Brazil
| |
Collapse
|
29
|
Zhu J, Zhang W, Shen G, Yu X, Guo J, Zhong T. Lund exhaust on hemodynamic parameters and inflammatory mediators in patients undergoing cardiac valve replacement under cardiopulmonary bypass. Exp Ther Med 2018; 16:1747-1752. [PMID: 30186397 PMCID: PMC6122371 DOI: 10.3892/etm.2018.6354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/21/2018] [Indexed: 11/07/2022] Open
Abstract
The effect of Lund exhaust technique on hemodynamics and inflammatory mediators in patients undergoing cardiac valve replacement under cardiopulmonary bypass was evaluated. A total of 60 patients with heart disease undergoing elective heart valve replacement under elective cardiopulmonary bypass were randomly divided into Lund exhaust group (group A) and control group (group B), with 30 patients in each group. Group A underwent Lund exhaust during cardiopulmonary bypass, while group B was identical to group A except for not using the Lund exhaust technique during cardiopulmonary bypass. The hemodynamic parameters at different time-points showed that the indexes of MAP, PASP, CO, CI, PCWP, CVP and SVR in T1, T2, T3 and T4 moments between group A and group B were statistically significant (p<0.05). There was no statistical significance in IL-6, IL-8, IL-10, TNF-α and TIMP-1 between group A and group B patients at the T0 moment (p>0.05). The levels of IL-6, IL-8, IL-10, TNF-α and TIMP-1 in group B patients at T1, T2, T3 and T4 moments were statistically significant compared with those in group A (p<0.05). The IL-6, IL-8, TNF-α indexes of group B patients were statistically significant at the T5 moment compared with those in group A (p<0.05). The IL-10 and TIMP-1 of two groups were not statistically significant at the T5 moment. The operating time, CPB time, aortic clamp time, intraoperative blood loss, postoperative tube time, ICU stay time, hospital stay time and pulmonary infection of patients in group A were significantly less than those in group B. In conclusion, Lund exhaust technology can significantly reduce the fluctuation of hemodynamics, decrease the expression of inflammatory factors, improve lung function, and is conducive to the rehabilitation of patients.
Collapse
Affiliation(s)
- Jihong Zhu
- Department of Anesthesiology, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Weimin Zhang
- Heart Center, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Guoying Shen
- Out-patient Department, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xin Yu
- Department of Anesthesiology, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Jige Guo
- Heart Center, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Taidi Zhong
- Department of Anesthesiology, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
30
|
Brain Injured and Heart Strained*. Crit Care Med 2018; 46:1023-1024. [DOI: 10.1097/ccm.0000000000003096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|