1
|
Orban B, Tengölics R, Zavori L, Simon D, Erdo-Bonyar S, Molnar T, Schwarcz A, Csecsei P. The Difference in Serum Metabolomic Profiles between the Good and Poor Outcome Groups at 3 Months in the Early and Late Phases of Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2024; 25:6597. [PMID: 38928303 PMCID: PMC11203497 DOI: 10.3390/ijms25126597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
We aimed to investigate the characteristics of serum metabolomics in aneurysmal subarachnoid hemorrhage patients (aSAH) with different 3-month outcomes (good = modified Rankin score: 0-3 vs. poor = mRS 4-6). We collected serum samples from 46 aSAH patients at 24 (D1) and 168 (D7) hours after injury for analysis by liquid chromatography-mass spectrometry. Ninety-six different metabolites were identified. Groups were compared using multivariate (orthogonal partial least squares discriminant analysis), univariate, and receiving operator characteristic (ROC) methods. We observed a marked decrease in serum homocysteine levels at the late phase (D7) compared to the early phase (D1). At both D1 and D7, mannose and sorbose levels were notably higher, alongside elevated levels of kynurenine (D1) and increased 2-hydroxybutyrate, methyl-galactoside, creatine, xanthosine, p-hydroxyphenylacetate, N-acetylalanine, and N-acetylmethionine (all D7) in the poor outcome group. Conversely, levels of guanidinoacetate (D7) and several amino acids (both D1 and D7) were significantly lower in patients with poor outcomes. Our results indicate significant changes in energy metabolism, shifting towards ketosis and alternative energy sources, both in the early and late phases, even with adequate enteral nutrition, particularly in patients with poor outcomes. The early activation of the kynurenine pathway may also play a role in this process.
Collapse
Affiliation(s)
- Brigitta Orban
- Department of Neurosurgery, Medical School, University of Pecs, 7632 Pecs, Hungary; (B.O.); (A.S.)
| | - Roland Tengölics
- Metabolomics Lab, Biological Research Centre, Hungarian Research Network, 6726 Szeged, Hungary;
- Core Facilities, Biological Research Centre, Hungarian Research Network, 6726 Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine—Biological Research Centre Metabolic Systems Biology Lab, 6726 Szeged, Hungary
| | - Laszlo Zavori
- Emergency Department, Saudi German Hospital, Dubai 391093, United Arab Emirates;
| | - Diana Simon
- Department of Immunology and Biotechnology, Medical School, University of Pecs, 7632 Pecs, Hungary; (D.S.); (S.E.-B.)
| | - Szabina Erdo-Bonyar
- Department of Immunology and Biotechnology, Medical School, University of Pecs, 7632 Pecs, Hungary; (D.S.); (S.E.-B.)
| | - Tihamer Molnar
- Department of Anaesthesiology and Intensive Care, Medical School, University of Pecs, 7632 Pecs, Hungary;
| | - Attila Schwarcz
- Department of Neurosurgery, Medical School, University of Pecs, 7632 Pecs, Hungary; (B.O.); (A.S.)
| | - Peter Csecsei
- Department of Neurosurgery, Medical School, University of Pecs, 7632 Pecs, Hungary; (B.O.); (A.S.)
| |
Collapse
|
2
|
Ho WM, Schmidt FA, Thomé C, Petr O. CSF metabolomics alterations after aneurysmal subarachnoid hemorrhage: what do we know? Acta Neurol Belg 2023; 123:2111-2114. [PMID: 37121932 PMCID: PMC10682053 DOI: 10.1007/s13760-023-02266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/05/2023] [Indexed: 05/02/2023]
Abstract
PURPOSE The purpose of this mini review is to describe metabolomics in cerebrospinal fluid (CSF) and its potential in aneurysmal subarachnoid hemorrhage (aSAH). In brain injury, patients' micro dialysis enables detecting biochemical change in brain tissue. Indicators for ischemia were detected such as lactate, pyruvate, glucose, and glutamate. In aSAH patients, the pathophysiology and the factor for poor outcome are not completely understood yet. Routine use of biomarkers in CSF, particularly in aSAH patients, is still lacking. METHODS This mini review was performed on the role of metabolomics alterations after aneurysmal subarachnoid hemorrhage. RESULTS We identified five clinical studies that addressed metabolomics in patients with aneurysmal subarachnoid hemorrhage. CONCLUSION There is increasing evidence suggesting that biomarkers can give insight in the pathogenesis and can serve as an outcome predictor. In this mini review, we present a brief overview of metabolomics profiling in neuroscience and wish to discuss the predictive and therapeutic value in aSAH patients.
Collapse
Affiliation(s)
- Wing Mann Ho
- Department of Neurosurgery, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Franziska A Schmidt
- Department of Neurosurgery, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Ondra Petr
- Department of Neurosurgery, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
3
|
Batista S, Bocanegra-Becerra JE, Claassen B, Rubião F, Rabelo NN, Figueiredo EG, Oberman DZ. Biomarkers in aneurysmal subarachnoid hemorrhage: A short review. World Neurosurg X 2023; 19:100205. [PMID: 37206060 PMCID: PMC10189293 DOI: 10.1016/j.wnsx.2023.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
Poor outcomes of aneurysmal subarachnoid hemorrhage (aSAH) can be the result of the initial catastrophic event or the many acute or delayed neurological complications. Recent evidence suggests that some molecules play a critical role in both events, through some unknown pathways involved. Understanding the role of these molecules in these events could allow to improve diagnostic accuracy, guide management, and prevent long-term disability in aSAH. Here we present the studies on aSAH biomarkers present in current medical literature, highlighting their roles and main results.
Collapse
Affiliation(s)
- Sávio Batista
- Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Bernardo Claassen
- Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Rubião
- Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Dan Zimelewicz Oberman
- Department of Neurosurgery, Hospital de Força Aérea do Galeão, Rio de Janeiro, Brazil
- Corresponding author. Neurosurgery Department Hospital Força Aérea do Galeão, Estrada do Galeão, 4101 - Galeão, Rio de Janeiro - RJ, 21941-353, Brazil.
| |
Collapse
|
4
|
Tartara F, Montalbetti A, Crobeddu E, Armocida D, Tavazzi E, Cardia A, Cenzato M, Boeris D, Garbossa D, Cofano F. Compartmental Cerebrospinal Fluid Events Occurring after Subarachnoid Hemorrhage: An "Heparin Oriented" Systematic Review. Int J Mol Sci 2023; 24:7832. [PMID: 37175544 PMCID: PMC10178276 DOI: 10.3390/ijms24097832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) represents a severe acute event with high morbidity and mortality due to the development of early brain injury (EBI), secondary delayed cerebral ischemia (DCI), and shunt-related hydrocephalus. Secondary events (SSE) such as neuroinflammation, vasospasm, excitotoxicity, blood-brain barrier disruption, oxidative cascade, and neuronal apoptosis are related to DCI. Despite improvement in management strategies and therapeutic protocols, surviving patients frequently present neurological deficits with neurocognitive impairment. The aim of this paper is to offer to clinicians a practical review of the actually documented pathophysiological events following subarachnoid hemorrhage. To reach our goal we performed a literature review analyzing reported studies regarding the mediators involved in the pathophysiological events following SAH occurring in the cerebrospinal fluid (CSF) (hemoglobin degradation products, platelets, complement, cytokines, chemokines, leucocytes, endothelin-1, NO-synthase, osteopontin, matricellular proteins, blood-brain barrier disruption, microglia polarization). The cascade of pathophysiological events secondary to SAH is very complex and involves several interconnected, but also distinct pathways. The identification of single therapeutical targets or specific pharmacological agents may be a limited strategy able to block only selective pathophysiological paths, but not the global evolution of SAH-related events. We report furthermore on the role of heparin in SAH management and discuss the rationale for use of intrathecal heparin as a pleiotropic therapeutical agent. The combination of the anticoagulant effect and the ability to interfere with SSE theoretically make heparin a very interesting molecule for SAH management.
Collapse
Affiliation(s)
- Fulvio Tartara
- IRCCS Fondazione Istituto Neurologico Nazionale C. Mondino, 27100 Pavia, Italy
| | - Andrea Montalbetti
- A.O.U. Maggiore della Carità University Hospital, Department of Neurosurgery, 28100 Novara, Italy
| | - Emanuela Crobeddu
- A.O.U. Maggiore della Carità University Hospital, Department of Neurosurgery, 28100 Novara, Italy
| | - Daniele Armocida
- A.U.O. Policlinico Umberto I, Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Eleonora Tavazzi
- IRCCS Fondazione Istituto Neurologico Nazionale C. Mondino, 27100 Pavia, Italy
| | - Andrea Cardia
- Department of Neurosurgery, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Marco Cenzato
- Ospedale Niguarda Ca’ Granda, Department of Neurosurgery, 20162 Milan, Italy
| | - Davide Boeris
- Ospedale Niguarda Ca’ Granda, Department of Neurosurgery, 20162 Milan, Italy
| | - Diego Garbossa
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10095 Turin, Italy
| | - Fabio Cofano
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10095 Turin, Italy
| |
Collapse
|
5
|
Weller J, Lampmann T, Asoglu H, Schneider M, Ehrentraut SF, Lehmann F, Güresir E, Dorn F, Petzold GC, Vatter H, Zimmermann J. Additive prognostic impact of the cerebrospinal fluid arginine/ornithine ratio to established clinical scores in aneurysmal subarachnoid hemorrhage. Front Neurol 2023; 14:1156505. [PMID: 37122295 PMCID: PMC10140294 DOI: 10.3389/fneur.2023.1156505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Cerebrospinal fluid (CSF) metabolites are increasingly recognized as prognostic factors in aneurysmal subarachnoid hemorrhage (SAH). The CSF arginine/ornithine ratio (Arg/Orn) was shown to predict cerebral vasospasms and clinical outcome in SAH. The additive prognostic value of Arg/Orn over established prognostic scores has not been investigated. CSF Arg/Orn and the established prognostic scores SAH, FRESH, SAH-PDS, HAIR, Rosen-McDonald, Hunt and Hess, WFNS and modified Fisher scale were determined in a prospective cohort of patients with aneurysmal SAH. Logistic regression models to predict a favorable outcome, defined as a modified Rankin Scale score of 0-3 at 3 months follow-up, were constructed for each score, both with and without the addition of Arg/Orn. The impact of Arg/Orn was assessed comparing logistic regression models containing the respective score with and without Arg/Orn with the likelihood ratio chi-squared test. CSF Arg/Orn and clinical scores were determined in 38 SAH patients. Arg/Orn was an independent predictor of clinical outcome when added to established prognostic scores (p < 0.05) with the exception of HAIR (p = 0.078). All models were significantly improved if Arg/Orn was added as a covariable (p < 0.05). The results of this study confirm Arg/Orn as an independent prognostic factor and its addition improves established prognostic models in SAH.
Collapse
Affiliation(s)
- Johannes Weller
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Tim Lampmann
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Harun Asoglu
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | | | | | - Felix Lehmann
- Department of Anesthesiology, University Hospital Bonn, Bonn, Germany
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Franziska Dorn
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Gabor C. Petzold
- Department of Neurology, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|
6
|
Snider S, Albano L, Gagliardi F, Comai S, Roncelli F, De Domenico P, Pompeo E, Panni P, Bens N, Calvi MR, Mortini P, Ruban A. Substantially elevated serum glutamate and CSF GOT-1 levels associated with cerebral ischemia and poor neurological outcomes in subarachnoid hemorrhage patients. Sci Rep 2023; 13:5246. [PMID: 37002262 PMCID: PMC10066256 DOI: 10.1038/s41598-023-32302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
Brain injury and cerebral vasospasm during the 14 days after the subarachnoid hemorrhage (SAH) are considered the leading causes of poor outcomes. The primary injury induces a cascade of events, including increased intracranial pressure, cerebral vasospasm and ischemia, glutamate excitotoxicity, and neuronal cell death. The objective of this study was to monitor the time course of glutamate, and associated enzymes, such as glutamate-oxaloacetate transaminase (GOT1), glutamate-pyruvate transaminase (GPT) in cerebrospinal fluid (CSF) and serum, shortly after SAH, and to assess their prognostic value. A total of 74 participants participated in this study: 45 participants with SAH and 29 controls. Serum and CSF were sampled up to 14 days after SAH. SAH participants' clinical and neurological status were assessed at hospitalization, at discharge from the hospital, and 3 months after SAH. Furthermore, a logistic regression analysis was carried out to evaluate the ability of GOT1 and glutamate levels to predict neurological outcomes. Our results demonstrated consistently elevated serum and CSF glutamate levels after SAH. Furthermore, serum glutamate level was significantly higher in patients with cerebral ischemia and poor neurological outcome. CSF GOT1 was significantly higher in patients with uncontrolled intracranial hypertension and cerebral ischemia post-SAH, and independently predicted poor neurological outcomes.
Collapse
Affiliation(s)
- Silvia Snider
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Albano
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Filippo Gagliardi
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Francesca Roncelli
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pierfrancesco De Domenico
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Pompeo
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pietro Panni
- Department of Neuroradiology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Nicole Bens
- Behavioral Neuroscience, Human Movement Science, Mathematics, Pre-Medicine, Northeastern University COS, Boston, MA, USA
| | - Maria Rosa Calvi
- Department of Neurocritical Care, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Ruban
- Sackler Faculty of Medicine, Steyer School of Health Professions, Tel Aviv University, P.O. Box 39040, 6997801, Tel-Aviv, Israel.
- Sagol School of Neuroscience, Tel-Aviv University, P.O. Box 39040, 6997801, Tel-Aviv, Israel.
| |
Collapse
|
7
|
Bobeff EJ, Bukowiecka-Matusiak M, Stawiski K, Wiśniewski K, Burzynska-Pedziwiatr I, Kordzińska M, Kowalski K, Sendys P, Piotrowski M, Szczesna D, Stefańczyk L, Wozniak LA, Jaskólski DJ. Plasma Amino Acids May Improve Prediction Accuracy of Cerebral Vasospasm after Aneurysmal Subarachnoid Haemorrhage. J Clin Med 2022; 11:jcm11020380. [PMID: 35054073 PMCID: PMC8779950 DOI: 10.3390/jcm11020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/25/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
Aneurysmal subarachnoid haemorrhages (aSAH) account for 5% of strokes and continues to place a great burden on patients and their families. Cerebral vasospasm (CVS) is one of the main causes of death after aSAH, and is usually diagnosed between day 3 and 14 after bleeding. Its pathogenesis remains poorly understood. To verify whether plasma concentration of amino acids have prognostic value in predicting CVS, we analysed data from 35 patients after aSAH (median age 55 years, IQR 39-62; 20 females, 57.1%), and 37 healthy volunteers (median age 50 years, IQR 38-56; 19 females, 51.4%). Fasting peripheral blood samples were collected on postoperative day one and seven. High performance liquid chromatography-mass spectrometry (HPLC-MS) analysis was performed. The results showed that plasma from patients after aSAH featured a distinctive amino acids concentration which was presented in both principal component analysis and direct comparison. No significant differences were noted between postoperative day one and seven. A total of 18 patients from the study group (51.4%) developed CVS. Hydroxyproline (AUC = 0.7042, 95%CI 0.5259-0.8826, p = 0.0248) and phenylalanine (AUC = 0.6944, 95%CI 0.5119-0.877, p = 0.0368) presented significant CVS prediction potential. Combining the Hunt-Hess Scale and plasma levels of hydroxyproline and phenylalanine provided the model with the best predictive performance and the lowest leave-one-out cross-validation of performance error. Our results suggest that plasma amino acids may improve sensitivity and specificity of Hunt-Hess scale in predicting CVS.
Collapse
Affiliation(s)
- Ernest Jan Bobeff
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland; (K.W.); (M.P.); (D.J.J.)
- Correspondence: ; Tel.: +48-42-677-6770; Fax: +48-42-677-6781
| | - Malgorzata Bukowiecka-Matusiak
- Department of Structural Biology, Medical University of Lodz, 90-419 Lodz, Poland; (M.B.-M.); (I.B.-P.); (D.S.); (L.A.W.)
| | - Konrad Stawiski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Mazowiecka 15 Street, 92-215 Lodz, Poland;
| | - Karol Wiśniewski
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland; (K.W.); (M.P.); (D.J.J.)
| | - Izabela Burzynska-Pedziwiatr
- Department of Structural Biology, Medical University of Lodz, 90-419 Lodz, Poland; (M.B.-M.); (I.B.-P.); (D.S.); (L.A.W.)
| | - Magdalena Kordzińska
- Department of Radiology, Barlicki Memorial Teaching Hospital, Medical University of Lodz, Kopcinskiego 22 Street, 90-153 Lodz, Poland; (M.K.); (L.S.)
| | - Konrad Kowalski
- Laboratorium Diagnostyczne Masdiag, ul. Żeromskiego 33, 01-882 Warszawa, Poland; (K.K.); (P.S.)
| | - Przemyslaw Sendys
- Laboratorium Diagnostyczne Masdiag, ul. Żeromskiego 33, 01-882 Warszawa, Poland; (K.K.); (P.S.)
| | - Michał Piotrowski
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland; (K.W.); (M.P.); (D.J.J.)
| | - Dorota Szczesna
- Department of Structural Biology, Medical University of Lodz, 90-419 Lodz, Poland; (M.B.-M.); (I.B.-P.); (D.S.); (L.A.W.)
| | - Ludomir Stefańczyk
- Department of Radiology, Barlicki Memorial Teaching Hospital, Medical University of Lodz, Kopcinskiego 22 Street, 90-153 Lodz, Poland; (M.K.); (L.S.)
| | - Lucyna Alicja Wozniak
- Department of Structural Biology, Medical University of Lodz, 90-419 Lodz, Poland; (M.B.-M.); (I.B.-P.); (D.S.); (L.A.W.)
| | - Dariusz Jan Jaskólski
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland; (K.W.); (M.P.); (D.J.J.)
| |
Collapse
|
8
|
Zimmermann J, Weller J, Grub S, Kebir S, Lehmann F, Vatter H, Schuss P, Güresir E, Müller M. Arginase-1 Released into CSF After Aneurysmal Subarachnoid Hemorrhage Decreases Arginine/Ornithine Ratio: a Novel Prognostic Biomarker. Transl Stroke Res 2021; 13:382-390. [PMID: 34599427 PMCID: PMC9046143 DOI: 10.1007/s12975-021-00944-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 11/03/2022]
Abstract
We hypothesized that the enzyme arginase-1 is released into the cerebrospinal fluid (CSF) during red blood cell lysis and contributes to dysregulated metabolism of the nitric oxide (NO) precursor L-arginine during aneurysmal subarachnoid hemorrhage (SAH). This prospective case-control study included 43 patients with aneurysmal SAH and ventricular drainage for clinical reasons. Longitudinal CSF samples (99) were obtained in the course of SAH. Patients were dichotomized regarding the occurrence of cerebral vasospasm syndrome (CVS) (N = 19). Arginase-1 and the amino acids L-arginine and L-ornithine were quantified in CSF. Outcome assessments included delayed cerebral ischemia (DCI) and functional status after 3 months using the modified Rankin Scale (mRS). Arginase-1 was released into the CSF of SAH patients whereas this enzyme was undetectable in controls. Compared to patients without CVS, arginase-1 levels were higher in CVS patients until day 14 after clinical event. The well-known surrogate parameter for arginase acitivity, the L-arginine to L-ornithine ratio (Arg/Orn), correlated with CSF arginase-1 levels. Arg/Orn was reduced in patients with CVS from disease onset (days 1-3, p = 0.0009) until day 14. Logistic regression analysis of early Arg/Orn was predictive for CVS (p = 0.008) and DCI (p = 0.035), independent of age, Hunt and Hess grade, and intraventricular blood. Arg/Orn < 2.71 at disease onset predicted CVS with a sensitivity of 86.7% and specificity of 72.2%. Arg/Orn ≥ 2.71 predicted excellent functional outcome. We propose a novel mechanism contributing to NO deprivation during SAH: arginase-1 is released from erythrocytes into the CSF, leading to L-arginine consumption and reduced NO bioavailability. Furthermore, Arg/Orn is a robust predictor for occurrence of CVS, DCI, and functional outcome 3 months after aneurysmal SAH. Our data provide a novel prognostic biomarker and may contribute to the development of novel therapeutic strategies in SAH. Clinical Trial Registration-URL: http://www.drks.de . Unique identifier: DRKS00015293, date of registration: 13.09.2018.
Collapse
Affiliation(s)
- Julian Zimmermann
- Department of Neurology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Johannes Weller
- Department of Neurology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Sven Grub
- Department of Neurology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Sied Kebir
- Department of Neurology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Felix Lehmann
- Department of Anaesthesiology and Intensive Care, University Hospital Bonn, Bonn, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Patrick Schuss
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Marcus Müller
- Department of Neurology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| |
Collapse
|
9
|
Sun JY, Zhao SJ, Wang HB, Hou YJ, Mi QJ, Yang MF, Yuan H, Ni QB, Sun BL, Zhang ZY. Ifenprodil Improves Long-Term Neurologic Deficits Through Antagonizing Glutamate-Induced Excitotoxicity After Experimental Subarachnoid Hemorrhage. Transl Stroke Res 2021; 12:1067-1080. [PMID: 33713028 DOI: 10.1007/s12975-021-00906-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 11/24/2022]
Abstract
Excessive glutamate leading to excitotoxicity worsens brain damage after SAH and contributes to long-term neurological deficits. The drug ifenprodil is a non-competitive antagonist of GluN1-GluN2B N-methyl-d-aspartate (NMDA) receptor, which mediates excitotoxic damage in vitro and in vivo. Here, we show that cerebrospinal fluid (CSF) glutamate level within 48 h was significantly elevated in aSAH patients who later developed poor outcome. In rat SAH model, ifenprodil can improve long-term sensorimotor and spatial learning deficits. Ifenprodil attenuates experimental SAH-induced neuronal death of basal cortex and hippocampal CA1 area, cellular and mitochondrial Ca2+ overload of basal cortex, blood-brain barrier (BBB) damage, and cerebral edema of early brain injury. Using in vitro models, ifenprodil declines the high-concentration glutamate-mediated intracellular Ca2+ increase and cell apoptosis in primary cortical neurons, reduces the high-concentration glutamate-elevated endothelial permeability in human brain microvascular endothelial cell (HBMEC). Altogether, our results suggest ifenprodil improves long-term neurologic deficits through antagonizing glutamate-induced excitotoxicity.
Collapse
Affiliation(s)
- Jing-Yi Sun
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250021, Shandong, China.,Department of Neurology, Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation, Shandong First Medical University & Shandong Academy of Medical Sciences, Yingsheng East Road No.2, Taian, 271016, China
| | - Shi-Jun Zhao
- Department of Neurology, Baotou Central Hospital, Baotou, 014040, Inner Mongolia, People's Republic of China
| | - Hong-Bin Wang
- Department of Neurology, Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation, Shandong First Medical University & Shandong Academy of Medical Sciences, Yingsheng East Road No.2, Taian, 271016, China
| | - Ya-Jun Hou
- Department of Neurology, Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation, Shandong First Medical University & Shandong Academy of Medical Sciences, Yingsheng East Road No.2, Taian, 271016, China
| | - Qiong-Jie Mi
- Department of Neurology, Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation, Shandong First Medical University & Shandong Academy of Medical Sciences, Yingsheng East Road No.2, Taian, 271016, China
| | - Ming-Feng Yang
- Department of Neurology, Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation, Shandong First Medical University & Shandong Academy of Medical Sciences, Yingsheng East Road No.2, Taian, 271016, China
| | - Hui Yuan
- Department of Neurology, Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation, Shandong First Medical University & Shandong Academy of Medical Sciences, Yingsheng East Road No.2, Taian, 271016, China
| | - Qing-Bin Ni
- Postdoctoral Workstation, Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Bao-Liang Sun
- Department of Neurology, Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation, Shandong First Medical University & Shandong Academy of Medical Sciences, Yingsheng East Road No.2, Taian, 271016, China.
| | - Zong-Yong Zhang
- Department of Neurology, Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation, Shandong First Medical University & Shandong Academy of Medical Sciences, Yingsheng East Road No.2, Taian, 271016, China.
| |
Collapse
|
10
|
Wang HB, Wu QJ, Zhao SJ, Hou YJ, Li HX, Yang MF, Wang BJ, Sun BL, Zhang ZY. Early High Cerebrospinal Fluid Glutamate: A Potential Predictor for Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage. ACS OMEGA 2020; 5:15385-15389. [PMID: 32637812 PMCID: PMC7331073 DOI: 10.1021/acsomega.0c01472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Delayed cerebral ischemia (DCI) is an important complication after aneurysmal subarachnoid hemorrhage (aSAH). Early identification of cerebrospinal fluid (CSF) markers is helpful for warning of impending DCI. This study assessed whether early high CSF glutamate levels can be observed in aSAH patients who later developed DCI. In this prospective clinical study, patients with normal pressure hydrocephalus or aSAH were enrolled. We found that the early CSF levels of glutamate were significantly elevated in aSAH patients compared to patients with normal pressure hydrocephalus. There was a significant difference in early CSF levels of glutamate between aSAH patients without DCI and with DCI. The early CSF levels of glutamate are significantly related to the Hunt and Hess grade, the World Federation of Neurological Surgeons (WFNS) grade, and the modified Fisher score on admission and occurrence of DCI in aSAH patients. Preliminary evidence of this study suggests that early high CSF glutamate levels are correlated with DCI in aSAH patients.
Collapse
Affiliation(s)
- Hong-Bin Wang
- School of Medicine, Shandong University, Jinan 250012, People’s
Republic of China
- Key Lab of Cerebral Microcirculation, School
of Basic Medical Sciences, Shandong First
Medical University & Shandong Academy of Medical Sciences, Taian 271016, People’s Republic of China
| | - Qing-Jian Wu
- Department
of Emergency, Jining No. 1 People’s
Hospital, Jining 272011, People’s Republic of China
| | - Shi-jun Zhao
- Department of Neurology, Baotou Central
Hospital, Baotou 014040, People’s Republic of China
| | - Ya-jun Hou
- Key Lab of Cerebral Microcirculation, School
of Basic Medical Sciences, Shandong First
Medical University & Shandong Academy of Medical Sciences, Taian 271016, People’s Republic of China
| | - Han-xia Li
- Key Lab of Cerebral Microcirculation, School
of Basic Medical Sciences, Shandong First
Medical University & Shandong Academy of Medical Sciences, Taian 271016, People’s Republic of China
| | - Ming-feng Yang
- Key Lab of Cerebral Microcirculation, School
of Basic Medical Sciences, Shandong First
Medical University & Shandong Academy of Medical Sciences, Taian 271016, People’s Republic of China
| | - Bao-Jun Wang
- Department of Neurology, Baotou Central
Hospital, Baotou 014040, People’s Republic of China
| | - Bao-liang Sun
- Key Lab of Cerebral Microcirculation, School
of Basic Medical Sciences, Shandong First
Medical University & Shandong Academy of Medical Sciences, Taian 271016, People’s Republic of China
| | - Zong-yong Zhang
- Key Lab of Cerebral Microcirculation, School
of Basic Medical Sciences, Shandong First
Medical University & Shandong Academy of Medical Sciences, Taian 271016, People’s Republic of China
| |
Collapse
|
11
|
Ho WM, Görke AS, Glodny B, Oberacher H, Helbok R, Thomé C, Petr O. Time Course of Metabolomic Alterations in Cerebrospinal Fluid After Aneurysmal Subarachnoid Hemorrhage. Front Neurol 2020; 11:589. [PMID: 32655487 PMCID: PMC7324721 DOI: 10.3389/fneur.2020.00589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/22/2020] [Indexed: 11/13/2022] Open
Abstract
Object: The aim of this study was to investigate metabolite levels in cerebrospinal fluid (CSF) in their time-dependent course after aneurysmal subarachnoid hemorrhage (aSAH) comparing them to patients harboring unruptured intracranial aneurysms. Methods: Eighty CSF samples of 16 patients were analyzed. The study population included patients undergoing endovascular/microsurgical treatment of ruptured intracranial aneurysms (n = 8), which were assessed for 9 days after aSAH. Control samples were collected from the basal cisterns in elective aneurysm surgery (n = 8). The CSF samples were consecutively collected with extraventricular drain (EVD) placement/intraoperatively, 6 h later, and daily thereafter (day 1-9). The endogenous metabolites were analyzed with a targeted quantitative and quality controlled metabolomics approach using the AbsoluteIDQ®p180Kit. Differences inbetween timepoints and compared to the control group were evaluated. Results: Numerous alterations of amino acid (AA) levels were detected within the first hours after bleeding. The highest mean concentrations occurred 1 week after aSAH. AA levels were continuously increasing over time starting 6 h after aSAH. Taurine concentration was highest briefly after aSAH starting to decrease already after 6 h (vs. day 1-9, p = 0.02). The levels of sphingomyelins/ phosphatidylcholines/ lysophosphatidylcholines/mono-unsaturated fatty acid chain were highly elevated on day 0 (compared to other timepoints or controls, p < 0.01) and decreased over the next several days to concentrations comparable to the control group. Carnitine concentrations were decreased after SAH (vs. day 7, p < 0.01), while they recovered within the next day. The Fischer ratio of branched-chain AA to aromatic AA was lowest immediately after SAH and increased in 7 days (p < 0.001). Conclusion: AA levels in CSF increased overtime and often differ from patients without SAH. There was a peak concentration of structural AA within the first 6 h after aneurysm treatment. Time-dependent alterations of CSF metabolites and compounds may elucidate pathophysiological processes after aSAH, providing potential predictors assessed non-invasively by routine lab testing.
Collapse
Affiliation(s)
- Wing Mann Ho
- Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria
| | - Alice S Görke
- Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria
| | - Bernhard Glodny
- Department of Radiology, Medical University Innsbruck, Innsbruck, Austria
| | - Herbert Oberacher
- Department of Forensic Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Raimund Helbok
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria
| | - Ondra Petr
- Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Lin QS, Wang WX, Lin YX, Lin ZY, Yu LH, Kang Y, Kang DZ. Annexin A7 induction of neuronal apoptosis via effect on glutamate release in a rat model of subarachnoid hemorrhage. J Neurosurg 2020; 132:777-787. [PMID: 30717037 DOI: 10.3171/2018.9.jns182003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/28/2018] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Glutamate excitotoxicity and neuronal apoptosis are suggested to contribute to early brain injury after subarachnoid hemorrhage (SAH). Annexin A7 (ANXA7) has been shown to regulate glutamate release. However, the role of ANXA7 in early brain injury after SAH has not been illustrated. In this study, we aimed to investigate the effect of ANXA7 knockdown in reducing the severity of early brain injury after SAH, and determine the underlying mechanisms. METHODS Endovascular perforation was performed to induce SAH in male Sprague-Dawley rats. ANXA7-siRNA was administered via intraventricular injection 5 days before SAH induction. Neurological test, evaluation of SAH grade, assessment of blood-brain barrier (BBB) permeability, measurement of brain water content, Western blot, double immunofluorescence staining, TUNEL staining, and enzyme-linked immunosorbent assay (ELISA) were performed at 24 hours of SAH induction. RESULTS ANXA7 protein expression increased significantly after SAH induction and was seen mainly in neurons. High expression of ANXA7 was associated with poor neurological status. ANXA7 knockdown dramatically ameliorated early brain injury through alleviating BBB disruption and brain edema. Further investigation of the mechanism showed that inhibiting ANXA7 expression can rescue neuronal apoptosis. In addition, ANXA7 knockdown also significantly reduced glutamate release, which was consistent with a significant increase of Bcl-2 expression and decreases of Bax and cleaved caspase-3 expression. CONCLUSIONS ANXA7 can induce neuronal apoptosis by affecting glutamate release in rats with SAH. Downregulating the expression of ANXA7 can significantly attenuate early brain injury after SAH. Future therapy targeting ANXA7 may be a promising new choice.
Collapse
|
13
|
Zhang C, Jiang M, Wang WQ, Zhao SJ, Yin YX, Mi QJ, Yang MF, Song YQ, Sun BL, Zhang ZY. Selective mGluR1 Negative Allosteric Modulator Reduces Blood-Brain Barrier Permeability and Cerebral Edema After Experimental Subarachnoid Hemorrhage. Transl Stroke Res 2019; 11:799-811. [PMID: 31833035 DOI: 10.1007/s12975-019-00758-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/21/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) disruption leads to the vasogenic brain edema and contributes to the early brain injury (EBI) after subarachnoid hemorrhage (SAH). However, the mechanisms underlying the BBB damage following SAH are poorly understood. Here we reported that the neurotransmitter glutamate of cerebrospinal fluid (CSF) was dramatically increased in SAH patients with symptoms of cerebral edema. Using the rat SAH model, we found that SAH caused the increase of CSF glutamate level and BBB permeability in EBI, intracerebroventricular injection of exogenous glutamate deteriorated BBB damage and cerebral edema, while intraperitoneally injection of metabotropic glutamate receptor 1(mGluR1) negative allosteric modulator JNJ16259685 significantly attenuated SAH-induced BBB damage and cerebral edema. In an in vitro BBB model, we showed that glutamate increased monolayer permeability of human brain microvascular endothelial cells (HBMEC), whereas JNJ16259685 preserved glutamate-damaged BBB integrity in HBMEC. Mechanically, glutamate downregulated the level and phosphorylation of vasodilator-stimulated phosphoprotein (VASP), decreased the tight junction protein occludin, and increased AQP4 expression at 72 h after SAH. However, JNJ16259685 significantly increased VASP, p-VASP, and occludin, and reduced AQP level at 72 h after SAH. Altogether, our results suggest an important role of glutamate in disruption of BBB function and inhibition of mGluR1 with JNJ16259685 reduced BBB damage and cerebral edema after SAH.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Lab of Cerebral Microcirculation of Shandong, First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, People's Republic of China
| | - Ming Jiang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, People's Republic of China
| | - Wei-Qi Wang
- Key Lab of Cerebral Microcirculation of Shandong, First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, People's Republic of China.,Medical College of Qingdao University, Qingdao, 266021, Shandong, People's Republic of China
| | - Shi-Jun Zhao
- Department of Neurology, Baotou Central Hospital, Baotou, 014040, People's Republic of China
| | - Yan-Xin Yin
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, People's Republic of China
| | - Qiong-Jie Mi
- Key Lab of Cerebral Microcirculation of Shandong, First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, People's Republic of China
| | - Ming-Feng Yang
- Key Lab of Cerebral Microcirculation of Shandong, First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, People's Republic of China
| | - Yu-Qiang Song
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Bao-Liang Sun
- Key Lab of Cerebral Microcirculation of Shandong, First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, People's Republic of China.
| | - Zong-Yong Zhang
- Key Lab of Cerebral Microcirculation of Shandong, First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, People's Republic of China.
| |
Collapse
|
14
|
Li YC, Wang R, Xu MM, Jing XR, A JY, Sun RB, Na SJ, Liu T, Ding XS, Sun CY, Ge WH. Aneurysmal Subarachnoid Hemorrhage Onset Alters Pyruvate Metabolism in Poor-Grade Patients and Clinical Outcome Depends on More: A Cerebrospinal Fluid Metabolomic Study. ACS Chem Neurosci 2019; 10:1660-1667. [PMID: 30521753 DOI: 10.1021/acschemneuro.8b00581] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cerebral metabolism alterations influence cerebrospinal fluid (CSF) composition and are sensitive to brain injury. In subarachnoid hemorrhage (SAH) patients, Fisher scale, Hunt-Hess scale, and World Federation of Neurological Societies (WFNS) grading scale evaluating SAH severity are inadequate to predict long-term outcome; therefore, in an effort to determine metabolite pattern disparity and discover corresponding biomarkers, we designed an untargeted CSF metabolomic study covering a broad range of metabolites of SAH patients with different severity and outcome. The present study demonstrated the SAH altered the cerebrospinal fluid metabolome involving carbohydrate, lipid, and amino acid metabolism. Pyruvate metabolism was enhanced in SAH patients with Hunt-Hess scale above III, and the CSF pyruvate level was significantly associated with WFNS grading scale above III. There is no significant variation among CSF metabolome in SAH patients with merely different amounts and distribution of bleeding. SAH patients with unfavorable outcome present upregulated CSF amino acids level and enhanced lipid biosynthesis. The present study provides a novel possibility of early identification of patients who might possess unfavorable outcome and further clarification of the underlying pathophysiology.
Collapse
Affiliation(s)
- Yi-Chen Li
- Department of Pharmacy, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China 210008
- Department of Neurosurgery, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China 210008
| | - Rong Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China 210008
| | - Man-Man Xu
- Department of Neurosurgery, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China 210008
- Department of Neurology, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China 210008
| | - Xiang-Ru Jing
- Department of Neurosurgery, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China 210008
- Nanjing Yuequn Hospital, 158 South Jiefang Road, Nanjing, China 210007
| | - Ji-Ye A
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China 210009
| | - Run-Bin Sun
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China 210009
| | - Shi-Jie Na
- Department of Neurosurgery, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China 210008
| | - Tao Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China 210008
| | - Xuan-Sheng Ding
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 210009
| | - Cui-Yun Sun
- Department of Neurosurgery, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China 210008
- Department of Rehabilitation, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China 210008
| | - Wei-Hong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China 210008
| |
Collapse
|