1
|
Maden T, Bayramlar K, Tuncer A. The effect of cervical mobilization on joint position sense, balance and gait in patients with multiple sclerosis: a randomized crossover study. Neurol Res 2024; 46:568-577. [PMID: 38569564 DOI: 10.1080/01616412.2024.2338033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVE To investigate the effect of cervical mobilization on joint position sense, balance and gait in multiple sclerosis (MS) patients. METHODS Sixteen MS patients received traditional rehabilitation and traditional rehabilitation+cervical mobilization treatments in different orders, 2 days a week for 4 weeks. For the cervical mobilization, joint traction and shifts with myofascial release techniques were applied. Joint position sense was evaluated from the bilateral knee and ankle joints with a digital goniometer, balanced with the Berg Balance Test (BBT), the Functional Reach Test, and gait with the Dynamic Gait Index (DGI) and the Timed 25-Foot Walk Test. RESULTS Improvements were determined in joint position sense, balance, gait with both treatment methods (p < 0.05). With the addition of cervical mobilization to traditional treatment, there was observed to be an increased effect carried over in knee joint position sense and BBT (p < 0.05). The BBT and DGI scores improved in the group applied with cervical mobilization following the washout period (p < 0.05). CONCLUSIONS Cervical mobilization could be effective in improving joint position sense, balance and gait, and accelerated improvements in a short time. The application of cervical mobilization could be a supportive treatment method to improve position sense, balance and gait in patients with MS.
Collapse
Affiliation(s)
- Tuba Maden
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Gaziantep University, Gaziantep, Turkey
| | - Kezban Bayramlar
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep, Turkey
| | - Ayşenur Tuncer
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep, Turkey
| |
Collapse
|
2
|
Karanfil E, Salci Y, Fil Balkan A, Tuncer A, Karabudak R. The acute effect of cervical mobilization on balance in patients with multiple sclerosis: a single-blind, randomized, controlled trial. Neurol Res 2024; 46:65-71. [PMID: 37724548 DOI: 10.1080/01616412.2023.2257455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/10/2023] [Indexed: 09/21/2023]
Abstract
The cervical region plays an important role in providing proprioceptive and vestibular input to the postural control system. OBJECTIVE To investigate the effect of cervical mobilization on balance in multiple sclerosis (MS) patients. METHODS The study was undertaken at the neurological rehabilitation unit with 36 MS participants who were assigned randomly to the study (n = 18) and control group (n = 18). While the study group received a single session of 15 minutes of cervical and soft tissue mobilization, no intervention was applied to the control group to investigate the learning effect of the assessment. Patients were evaluated using Computerized Dynamic Posturography (CDP) (Sensory Organization Test (SOT), Limits of Stability (LoS), and Adaptation Test (ADT)), which reflects postural stability. RESULTS In the study group, a treatment effect was found on the vestibular ratio (VEST) score (p < 0.001) and the composite score of SOT (p = 0.002). Improvements were achieved in all parameters of the LoS and ADT in the study group. There was no statistically significant difference in terms of CDP results in the control group. CONCLUSION Cervical mobilization has beneficial effects on balance in MS patients. Our findings support that cervical mobilization can be included in MS balance rehabilitation programs.
Collapse
Affiliation(s)
- Ecem Karanfil
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Yeliz Salci
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Ayla Fil Balkan
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Aslı Tuncer
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Rana Karabudak
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Zhu Y, Auer F, Gelnaw H, Davis SN, Hamling KR, May CE, Ahamed H, Ringstad N, Nagel KI, Schoppik D. SAMPL is a high-throughput solution to study unconstrained vertical behavior in small animals. Cell Rep 2023; 42:112573. [PMID: 37267107 PMCID: PMC10592459 DOI: 10.1016/j.celrep.2023.112573] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/27/2023] [Accepted: 05/11/2023] [Indexed: 06/04/2023] Open
Abstract
Balance and movement are impaired in many neurological disorders. Recent advances in behavioral monitoring provide unprecedented access to posture and locomotor kinematics but without the throughput and scalability necessary to screen candidate genes/potential therapeutics. Here, we present a scalable apparatus to measure posture and locomotion (SAMPL). SAMPL includes extensible hardware and open-source software with real-time processing and can acquire data from D. melanogaster, C. elegans, and D. rerio as they move vertically. Using SAMPL, we define how zebrafish balance as they navigate vertically and discover small but systematic variations among kinematic parameters between genetic backgrounds. We demonstrate SAMPL's ability to resolve differences in posture and navigation as a function of effect size and data gathered, providing key data for screens. SAMPL is therefore both a tool to model balance and locomotor disorders and an exemplar of how to scale apparatus to support screens.
Collapse
Affiliation(s)
- Yunlu Zhu
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Franziska Auer
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hannah Gelnaw
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Samantha N Davis
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kyla R Hamling
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Christina E May
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hassan Ahamed
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Niels Ringstad
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Katherine I Nagel
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - David Schoppik
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
4
|
Zhu Y, Auer F, Gelnaw H, Davis SN, Hamling KR, May CE, Ahamed H, Ringstad N, Nagel KI, Schoppik D. Scalable Apparatus to Measure Posture and Locomotion (SAMPL): a high-throughput solution to study unconstrained vertical behavior in small animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.523102. [PMID: 36712122 PMCID: PMC9881893 DOI: 10.1101/2023.01.07.523102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Balance and movement are impaired in a wide variety of neurological disorders. Recent advances in behavioral monitoring provide unprecedented access to posture and locomotor kinematics, but without the throughput and scalability necessary to screen candidate genes / potential therapeutics. We present a powerful solution: a Scalable Apparatus to Measure Posture and Locomotion (SAMPL). SAMPL includes extensible imaging hardware and low-cost open-source acquisition software with real-time processing. We first demonstrate that SAMPL's hardware and acquisition software can acquire data from from D. melanogaster, C. elegans, and D. rerio as they move vertically. Next, we leverage SAMPL's throughput to rapidly (two weeks) gather a new zebrafish dataset. We use SAMPL's analysis and visualization tools to replicate and extend our current understanding of how zebrafish balance as they navigate through a vertical environment. Next, we discover (1) that key kinematic parameters vary systematically with genetic background, and (2) that such background variation is small relative to the changes that accompany early development. Finally, we simulate SAMPL's ability to resolve differences in posture or vertical navigation as a function of affect size and data gathered -- key data for screens. Taken together, our apparatus, data, and analysis provide a powerful solution for labs using small animals to investigate balance and locomotor disorders at scale. More broadly, SAMPL is both an adaptable resource for labs looking process videographic measures of behavior in real-time, and an exemplar of how to scale hardware to enable the throughput necessary for screening.
Collapse
Affiliation(s)
- Yunlu Zhu
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Franziska Auer
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Hannah Gelnaw
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Samantha N. Davis
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Kyla R. Hamling
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Christina E. May
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Hassan Ahamed
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine
| | - Niels Ringstad
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine
| | - Katherine I. Nagel
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - David Schoppik
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
- Lead Contact
| |
Collapse
|
5
|
Halperin O, Israeli‐Korn S, Yakubovich S, Hassin‐Baer S, Zaidel A. Self‐motion perception in Parkinson's disease. Eur J Neurosci 2020; 53:2376-2387. [DOI: 10.1111/ejn.14716] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Orly Halperin
- Gonda Multidisciplinary Brain Research Center Bar Ilan University Ramat Gan Israel
| | - Simon Israeli‐Korn
- Department of Neurology Movement Disorders Institute Sheba Medical Center Ramat Gan Israel
- The Sackler School of Medicine Tel Aviv University Tel Aviv Israel
| | - Sol Yakubovich
- Gonda Multidisciplinary Brain Research Center Bar Ilan University Ramat Gan Israel
| | - Sharon Hassin‐Baer
- Department of Neurology Movement Disorders Institute Sheba Medical Center Ramat Gan Israel
- The Sackler School of Medicine Tel Aviv University Tel Aviv Israel
| | - Adam Zaidel
- Gonda Multidisciplinary Brain Research Center Bar Ilan University Ramat Gan Israel
| |
Collapse
|
6
|
Kammermeier S, Maierbeck K, Dietrich L, Plate A, Lorenzl S, Singh A, Bötzel K, Maurer C. Qualitative postural control differences in Idiopathic Parkinson's Disease vs. Progressive Supranuclear Palsy with dynamic-on-static platform tilt. Clin Neurophysiol 2018; 129:1137-1147. [PMID: 29631169 DOI: 10.1016/j.clinph.2018.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVES We aimed to assess whether postural abnormalities in Progressive Supranuclear Palsy (PSP) and Idiopathic Parkinson's Disease (IPD) are qualitatively different by analysing spontaneous and reactive postural control. METHODS We assessed postural control upon platform tilts in 17 PSP, 11 IPD patients and 18 healthy control subjects using a systems analysis approach. RESULTS Spontaneous sway abnormalities in PSP resembled those of IPD patients. Spontaneous sway was smaller, slower and contained lower frequencies in both PSP and IPD as compared to healthy subjects. The amount of angular body excursions as a function of platform angular excursions (GAIN) in PSP was qualitatively different from both IPD and healthy subjects (GAIN cut-off value: 2.9, sensitivity of 94%, specificity of 72%). This effect was pronounced at the upper body level and at low as well as high frequencies. In contrast, IPD patients' stimulus-related body excursions were smaller compared to healthy subjects. Using a systems analysis approach, we were able to allocate these different postural strategies to differences in the use of sensory information as well as to different error correction efforts. CONCLUSIONS While both PSP and IPD patients show abnormal postural control, the underlying pathology seems to be different. SIGNIFICANCE The identification of disease-specific postural abnormalities shown here may be helpful for diagnostic as well as therapeutic discriminations of PSP vs. IPD.
Collapse
Affiliation(s)
- Stefan Kammermeier
- Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Neurologische Klinik und Poliklinik, Marchioninistraße 15, 81377 München, Germany.
| | - Kathrin Maierbeck
- Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Neurologische Klinik und Poliklinik, Marchioninistraße 15, 81377 München, Germany; Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Klinik für Anästhesiologie, Marchioninistraße 15, 81377 München, Germany
| | - Lucia Dietrich
- Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Neurologische Klinik und Poliklinik, Marchioninistraße 15, 81377 München, Germany; Abteilung für Allgemeinchirurgie, Kliniken Ostallgäu-Kaufbeuren, Dr.-Gutermann-Straße 2, 87600 Kaufbeuren, Germany
| | - Annika Plate
- Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Neurologische Klinik und Poliklinik, Marchioninistraße 15, 81377 München, Germany
| | - Stefan Lorenzl
- Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Neurologische Klinik und Poliklinik, Marchioninistraße 15, 81377 München, Germany; Abteilung für Neurologie, Krankenhaus Agatharied, Norbert-Kerkel-Platz, 83734 Hausham, Germany
| | - Arun Singh
- Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Neurologische Klinik und Poliklinik, Marchioninistraße 15, 81377 München, Germany; Department of Neurology, University of Iowa, Iowa, IA, United States
| | - Kai Bötzel
- Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Neurologische Klinik und Poliklinik, Marchioninistraße 15, 81377 München, Germany
| | - Christoph Maurer
- Klinik für Neurologie und Neurophysiologie, Universitätsklinikum Freiburg, Breisacher Str. 64, 79106 Freiburg im Breisgau, Germany
| |
Collapse
|
7
|
Kammermeier S, Dietrich L, Maierbeck K, Plate A, Lorenzl S, Singh A, Ahmadi A, Bötzel K. Postural Stabilization Differences in Idiopathic Parkinson's Disease and Progressive Supranuclear Palsy during Self-Triggered Fast Forward Weight Lifting. Front Neurol 2018; 8:743. [PMID: 29403423 PMCID: PMC5786748 DOI: 10.3389/fneur.2017.00743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/22/2017] [Indexed: 11/20/2022] Open
Abstract
Progressive supranuclear palsy (PSP) and late-stage idiopathic Parkinson’s disease (IPD) are neurodegenerative movement disorders resulting in different postural instability and falling symptoms. IPD falls occur usually forward in late stage, whereas PSP falls happen in early stages, mostly backward, unprovoked, and with high morbidity. Self-triggered, weighted movements appear to provoke falls in IPD, but not in PSP. Repeated self-triggered lifting of a 0.5–1-kg weight (<2% of body weight) with the dominant hand was performed in 17 PSP, 15 IPD with falling history, and 16 controls on a posturography platform. PSP showed excessive force scaling of weight and body motion with high-frequency multiaxial body sway, whereas IPD presented a delayed-onset forward body displacement. Differences in center of mass displacement apparent at very small weights indicate that both syndromes decompensate postural control already within stability limits. PSP may be subject to specific postural system devolution. IPD are susceptible to delayed forward falling. Differential physiotherapy strategies are suggested.
Collapse
Affiliation(s)
- Stefan Kammermeier
- Ludwig-Maximilians-Universität München, Neurologische Klinik und Poliklinik, München, Germany
| | - Lucia Dietrich
- Ludwig-Maximilians-Universität München, Neurologische Klinik und Poliklinik, München, Germany.,Abteilung für Allgemeinchirurgie, Kliniken Ostallgäu-Kaufbeuren, Kaufbeuren, Germany
| | - Kathrin Maierbeck
- Ludwig-Maximilians-Universität München, Neurologische Klinik und Poliklinik, München, Germany.,Klinikum der Universität München, Klinik für Anästhesiologie, München, Germany
| | - Annika Plate
- Ludwig-Maximilians-Universität München, Neurologische Klinik und Poliklinik, München, Germany
| | - Stefan Lorenzl
- Ludwig-Maximilians-Universität München, Neurologische Klinik und Poliklinik, München, Germany.,Abteilung für Neurologie, Krankenhaus Agatharied, Hausham, Germany
| | - Arun Singh
- Ludwig-Maximilians-Universität München, Neurologische Klinik und Poliklinik, München, Germany.,Department of Neurology, University of Iowa, Iowa, IA, United States
| | - Ahmad Ahmadi
- Ludwig-Maximilians-Universität München, Neurologische Klinik und Poliklinik, München, Germany
| | - Kai Bötzel
- Ludwig-Maximilians-Universität München, Neurologische Klinik und Poliklinik, München, Germany
| |
Collapse
|