1
|
Lagerweij SAJEA, van Zijl JC, Smit M, Eggink H, Oterdoom DLM, van Dijk JMC, van Egmond ME, Elting JW, Tijssen MAJ. Intermuscular coherence during co-contraction eliciting tasks as a biomarker for dystonia and GPi-DBS efficacy. Clin Neurophysiol 2024; 170:70-79. [PMID: 39700629 DOI: 10.1016/j.clinph.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/25/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVE Clinical rating scales often fail to capture the full spectrum of dystonic symptoms. Deep brain stimulation of the globus pallidus interna (GPi-DBS) effectively treats dystonia, but response variability necessitates a reliable biomarker. Intermuscular coherence (4-12 Hz) has been linked to abnormal activity in the cortico-basal ganglia-thalamo-cortical (CBGTC) loop and may serve as an objective measure of dystonia and GPi-DBS effectiveness. METHODS A retrospective cohort study included 12 dystonia patients undergoing GPi-DBS implantation. Clinical rating scales and a neurophysiological assessment were performed before and one year post-DBS. Coherence in the 4-12 Hz range was analyzed from electromyography (EMG) of antagonistic arm muscles. Comparisons were made between patients with and without arm dystonia, t-tests evaluated the differences between pre- and post-DBS, and correlations between coherence and clinical scales were performed. RESULTS Seven patients with arm dystonia appeared to have higher pre-operative intermuscular coherence compared to those without. Coherence was significantly decreased after GPi-DBS in the arm dystonia group. No strong correlations were found between coherence and clinical rating scales. CONCLUSION Intermuscular coherence is present in dystonic muscles and decreases following GPi-DBS. Correlations with motor scores were inconclusive due to patient heterogeneity and ill-fitting clinical scales. SIGNIFICANCE Intermuscular coherence has potential to aid GPi-DBS patient selection and optimization but larger studies are needed to validate its use.
Collapse
Affiliation(s)
- S A J E A Lagerweij
- Department of Neurology, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), the Netherlands
| | - J C van Zijl
- Department of Neurology, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), the Netherlands
| | - M Smit
- Department of Neurology, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), the Netherlands
| | - H Eggink
- Department of Neurology, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), the Netherlands
| | - D L M Oterdoom
- Department of Neurosurgery, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700RB Groningen, the Netherlands
| | - J M C van Dijk
- Department of Neurosurgery, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700RB Groningen, the Netherlands
| | - M E van Egmond
- Department of Neurology, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands; Department of Clinical Neurophysiology, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), the Netherlands
| | - J W Elting
- Department of Neurology, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands; Department of Clinical Neurophysiology, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), the Netherlands
| | - M A J Tijssen
- Department of Neurology, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), the Netherlands.
| |
Collapse
|
2
|
Lagerweij SAJEA, Smit M, Centen LM, van Dijk JMC, van Egmond ME, Elting JW, Tijssen MAJ. Connecting the dots - A systematic review on coherence analysis in dystonia. Neurobiol Dis 2024; 200:106616. [PMID: 39103021 DOI: 10.1016/j.nbd.2024.106616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Increased 4-12 Hz oscillatory activity in the cortico-basal ganglia-thalamo-cortical (CBGTC) loop is reported in dystonia. Coherence analysis is a measure of linear coupling between two signals, revealing oscillatory activity drives that are common across motor units. By performing coherence analysis, activity of the CBGTC-loop can be measured with modalities like local field potentials (LFPs), electromyography (EMG), and electro-encephalography (EEG). The aim of this study is to perform a systematic review on the use of coherence analysis for clinical assessment and treatment of dystonia. METHODS A systematic review was performed on a search in Embase and PubMed on June 28th, 2023. All studies incorporating coherence analysis and an adult dystonia cohort were included. Three authors evaluated the eligibility of the articles. Quality was assessed using the QUADAS-2 checklist. RESULTS A total of 41 articles were included, with data of 395 adult dystonia patients. In the selected records, six different types of coherence were investigated: corticocortical, corticopallidal, corticomuscular, pallidopallidal, pallidomuscular, and intermuscular coherence. Various types of 4-12 coherence were found to be increased in all dystonia subtypes. CONCLUSION There is increased 4-12 Hz coherence found between the cortex, basal ganglia, and affected muscles in all dystonia subtypes. However, the relationship between 4-12 Hz coherence and the dystonic clinical state has not been established. DBS treatment leads to a reduction of 4-12 Hz coherence. In combination with the results of this review, the 4-12 Hz frequency band can be used as a promising phenomenon for the development of a biomarker.
Collapse
Affiliation(s)
- S A J E A Lagerweij
- Departments of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen. University of Groningen, the Netherlands
| | - M Smit
- Departments of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen. University of Groningen, the Netherlands
| | - L M Centen
- Departments of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen. University of Groningen, the Netherlands
| | - J M C van Dijk
- Departments of Neurosurgery, University Medical Center Groningen. University of Groningen, the Netherlands
| | - M E van Egmond
- Departments of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands; Departments of Clinical Neurophysiology, University Medical Center Groningen, University of Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen. University of Groningen, the Netherlands
| | - J W Elting
- Departments of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands; Departments of Clinical Neurophysiology, University Medical Center Groningen, University of Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen. University of Groningen, the Netherlands
| | - M A J Tijssen
- Departments of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen. University of Groningen, the Netherlands.
| |
Collapse
|
3
|
Geng X, Quan Z, Zhang R, Zhu G, Nie Y, Wang S, Rolls E, Zhang J, Hu L. Subthalamic and pallidal oscillations and their couplings reflect dystonia severity and improvements by deep brain stimulation. Neurobiol Dis 2024; 199:106581. [PMID: 38936434 DOI: 10.1016/j.nbd.2024.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) targeting the globus pallidus internus (GPi) and subthalamic nucleus (STN) is employed for the treatment of dystonia. Pallidal low-frequency oscillations have been proposed as a pathophysiological marker for dystonia. However, the role of subthalamic oscillations and STN-GPi coupling in relation to dystonia remains unclear. OBJECTIVE We aimed to explore oscillatory activities within the STN-GPi circuit and their correlation with the severity of dystonia and efficacy achieved by DBS treatment. METHODS Local field potentials were recorded simultaneously from the STN and GPi from 13 dystonia patients. Spectral power analysis was conducted for selected frequency bands from both nuclei, while power correlation and the weighted phase lag index were used to evaluate power and phase couplings between these two nuclei, respectively. These features were incorporated into generalized linear models to assess their associations with dystonia severity and DBS efficacy. RESULTS The results revealed that pallidal theta power, subthalamic beta power and subthalamic-pallidal theta phase coupling and beta power coupling all correlated with clinical severity. The model incorporating all selected features predicts empirical clinical scores and DBS-induced improvements, whereas the model relying solely on pallidal theta power failed to demonstrate significant correlations. CONCLUSIONS Beyond pallidal theta power, subthalamic beta power, STN-GPi couplings in theta and beta bands, play a crucial role in understanding the pathophysiological mechanism of dystonia and developing optimal strategies for DBS.
Collapse
Affiliation(s)
- Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhaoyu Quan
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Ruili Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tian-Tan Hospital, Beijing Neurosurgical Institute, Capital Medical University, China
| | - Yingnan Nie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Edmund Rolls
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Oxford Centre for Computational Neuroscience, University of Oxford, Oxford, UK
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tian-Tan Hospital, Beijing Neurosurgical Institute, Capital Medical University, China.
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Wu Y, Li Y, Li H, Wang T, Huang P, Wu Y, Sun B, Pan Y, Li D. Prediction of subthalamic stimulation efficacy on isolated dystonia via support vector regression. Heliyon 2024; 10:e31475. [PMID: 38818146 PMCID: PMC11137530 DOI: 10.1016/j.heliyon.2024.e31475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Deep brain stimulation (DBS) of subthalamic nucleus (STN) has been well-established and increasingly applied in patients with isolated dystonia. Nevertheless, the surgical efficacy varies among patients. This study aims to explore the factors affecting clinical outcomes of STN-DBS on isolated dystonia and establish a well-performed prediction model. Methods In this prospective study, thirty-two dystonia patients were recruited and received bilateral STN-DBS at our center. Their baseline characteristics and up to one-year follow-up outcomes were assessed. Implanted electrodes of each subject were reconstructed with their contact coordinates and activated volumes calculated. We explored correlations between distinct clinical characteristics and surgical efficacy. Those features were then trained for the model in outcome prediction via support vector regression (SVR) algorithm and testified through cross-validation. Results Patients demonstrated an average clinical improvement of 56 ± 25 % after STN-DBS, significantly affected by distinct symptom forms and activated volumes. The optimal targets and activated volumes were concentratedly located at the dorsal posterior region to STN. Most patients had a rapid response to STN-DBS, and their motor score improvement within one week was highly associated with long-term outcomes. The trained SVR model, contributed by distinct weights of features, could reach a maximum prediction accuracy with mean errors of 11 ± 7 %. Conclusion STN-DBS demonstrated significant and rapid therapeutic effects in patients with isolated dystonia, by possibly affecting the pallidofugal fibers. Early improvement highly indicates the ultimate outcomes. SVR proves valid in outcome prediction. Patients with predominant phasic and generalized symptoms, shorter disease duration, and younger onset age may be more favorable to STN-DBS in the long run.
Collapse
Affiliation(s)
- Yunhao Wu
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxia Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Huang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Pan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Matsuda T, Morigaki R, Hayasawa H, Koyama H, Oda T, Miyake K, Takagi Y. Striatal parvalbumin interneurons are activated in a mouse model of cerebellar dystonia. Dis Model Mech 2024; 17:dmm050338. [PMID: 38616770 PMCID: PMC11128288 DOI: 10.1242/dmm.050338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 04/09/2024] [Indexed: 04/16/2024] Open
Abstract
Dystonia is thought to arise from abnormalities in the motor loop of the basal ganglia; however, there is an ongoing debate regarding cerebellar involvement. We adopted an established cerebellar dystonia mouse model by injecting ouabain to examine the contribution of the cerebellum. Initially, we examined whether the entopeduncular nucleus (EPN), substantia nigra pars reticulata (SNr), globus pallidus externus (GPe) and striatal neurons were activated in the model. Next, we examined whether administration of a dopamine D1 receptor agonist and dopamine D2 receptor antagonist or selective ablation of striatal parvalbumin (PV, encoded by Pvalb)-expressing interneurons could modulate the involuntary movements of the mice. The cerebellar dystonia mice had a higher number of cells positive for c-fos (encoded by Fos) in the EPN, SNr and GPe, as well as a higher positive ratio of c-fos in striatal PV interneurons, than those in control mice. Furthermore, systemic administration of combined D1 receptor agonist and D2 receptor antagonist and selective ablation of striatal PV interneurons relieved the involuntary movements of the mice. Abnormalities in the motor loop of the basal ganglia could be crucially involved in cerebellar dystonia, and modulating PV interneurons might provide a novel treatment strategy.
Collapse
Affiliation(s)
- Taku Matsuda
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Ryoma Morigaki
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
- Department of Advanced Brain Research, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
- Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima 770-8503, Japan
| | - Hiroaki Hayasawa
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hiroshi Koyama
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Teruo Oda
- Department of Advanced Brain Research, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Kazuhisa Miyake
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Yasushi Takagi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
- Department of Advanced Brain Research, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
6
|
Su F, Wang H, Zu L, Chen Y. Closed-loop modulation of model parkinsonian beta oscillations based on CAR-fuzzy control algorithm. Cogn Neurodyn 2023; 17:1185-1199. [PMID: 37786652 PMCID: PMC10542090 DOI: 10.1007/s11571-022-09820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Abstract
Closed-loop deep brain stimulation (DBS) can apply on-demand stimulation based on the feedback signal (e.g. beta band oscillation), which is deemed to lower side effects of clinically used open-loop DBS. To facilitate the application of model-based closed-loop DBS in clinical, studies must consider state variations, e.g., variation of desired signal with different movement conditions and variation of model parameters with time. This paper proposes to use the controlled autoregressive (CAR)-fuzzy control algorithm to modulate the pathological beta band (13-35 Hz) oscillation of a basal ganglia-cortex-thalamus model. The CAR model is used to identify the relationship between DBS frequency parameter and beta oscillation power. Then the error between the one-step-ahead predicted beta power of CAR model and the desired value is innovatively used as the input of fuzzy controller to calculate the next step stimulation frequency. Compared with 130 Hz open-loop DBS, the proposed closed-loop DBS method could lower the mean stimulation frequency to 74.04 Hz with similar beta oscillation suppression performance. The Mamdani fuzzy controller is selected because which could establish fuzzy controller rules according to human operation experience. Adding prediction module to closed-loop control improves the accuracy of fuzzy control, compared with proportional-integral control and fuzzy control, the proposed CAR-fuzzy control algorithm has higher tracking reliability, response speed and robustness.
Collapse
Affiliation(s)
- Fei Su
- School of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian, 271018 China
| | - Hong Wang
- School of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian, 271018 China
| | - Linlu Zu
- School of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian, 271018 China
| | - Yan Chen
- Department of Neurology, Shanghai Jiahui International Hospital, Shanghai, 200233 China
| |
Collapse
|
7
|
Lumsden DE. Spastic dystonia: Still a valid term. Dev Med Child Neurol 2023; 65:1308-1315. [PMID: 36940234 DOI: 10.1111/dmcn.15582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/21/2023]
Abstract
Hypertonia in childhood may arise because of a variable combination of neuronal and non-neuronal factors. Involuntary muscle contraction may be due to spasticity or dystonia, which represent disorders of the spinal reflex arch and of central motor output respectively. Whilst consensus definitions for dystonia have been established, definitions of spasticity vary, highlighting the lack of a single unifying nomenclature in the field of clinical movement science. The term spastic dystonia refers to involuntary tonic muscle contraction in the context of an upper motor neuron (UMN) lesion. This review considers the utility of the term spastic dystonia, exploring our understanding of the pathophysiology of dystonia and the UMN syndrome. An argument is advanced that spastic dystonia is a valid construct that warrants further exploration. WHAT THIS PAPER ADDS: There is no single universally accepted definitions for terms commonly used to describe motor disorders. Spasticity and dystonia are phenomenologically and pathophysiologically distinct entities. Spastic dystonia represents a subset of dystonia, but with pathophysiological mechanisms more in common with spasticity.
Collapse
Affiliation(s)
- Daniel E Lumsden
- Complex Motor Disorders Service, Children's Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Perinatal imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
8
|
Zhang R, Nie Y, Dai W, Wang S, Geng X. Balance between pallidal neural oscillations correlated with dystonic activity and severity. Neurobiol Dis 2023:106178. [PMID: 37268239 DOI: 10.1016/j.nbd.2023.106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/14/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The balance between neural oscillations provides valuable insights into the organisation of neural oscillations related to brain states, which may play important roles in dystonia. We aim to investigate the relationship of the balance in the globus pallidus internus (GPi) with the dystonic severity under different muscular contraction conditions. METHODS Twenty-one patients with dystonia were recruited. All of them underwent bilateral GPi implantation, and local field potentials (LFPs) from the GPi were recorded via simultaneous surface electromyography. The power spectral ratio between neural oscillations was computed as the measure of neural balance. This ratio was calculated under high and low dystonic muscular contraction conditions, and its correlation with the dystonic severity was assessed using clinical scores. RESULTS The power spectral of the pallidal LFPs peaked in the theta and alpha bands. Within participant comparison showed that the power spectral of the theta oscillations significantly increased during high muscle contraction compared with that during low contraction. The power spectral ratios between the theta and alpha, theta and low beta, and theta and high gamma oscillations were significantly higher during high contraction than during low contraction. The total score and motor score were associated with the power spectral ratio between the low and high beta oscillations, which was correlated with the dystonic severity both during high and low contractions. The power spectral ratios between the low beta and low gamma and between the low beta and high gamma oscillations showed a significantly positive correlation with the total score during both high and low contractions; a correlation with the motor scale score was found only during high contraction. Meanwhile, the power spectral ratio between the theta and alpha oscillations during low contraction showed a significantly negative correlation with the total score. The power spectral ratios between the alpha and high beta, alpha and low gamma, and alpha and high gamma oscillations were significantly correlated with the dystonic severity only during low contraction. CONCLUSION The balance between neural oscillations, as quantified by the power ratio between specific frequency bands, differed between the high and low muscular contraction conditions and was correlated with the dystonic severity. The balance between the low and high beta oscillations was correlated with the dystonic severity during both conditions, making this parameter a new possible biomarker for closed-loop deep brain stimulation in patients with dystonia.
Collapse
Affiliation(s)
- Ruili Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Yingnan Nie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Wen Dai
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Shanghai, China; Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, China; Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, China
| | - Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Shanghai, China.
| |
Collapse
|
9
|
Fischer P, Piña-Fuentes D, Kassavetis P, Sadnicka A. Physiology of dystonia: Human studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:137-162. [PMID: 37482391 DOI: 10.1016/bs.irn.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
In this chapter, we discuss neurophysiological techniques that have been used in the study of dystonia. We examine traditional disease models such as inhibition and excessive plasticity and review the evidence that these play a causal role in pathophysiology. We then review the evidence for sensory and peripheral influences within pathophysiology and look at an emergent literature that tries to probe how oscillatory brain activity may be linked to dystonia pathophysiology.
Collapse
Affiliation(s)
- Petra Fischer
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Dan Piña-Fuentes
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands; Department of Neurology, OLVG, Amsterdam, The Netherlands
| | | | - Anna Sadnicka
- Motor Control and Movement Disorders Group, St George's University of London, London, United Kingdom; Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
10
|
Gelineau-Morel R, Kruer MC, Garris JF, Libdeh AA, Barbosa DAN, Coffman KA, Moon D, Barton C, Vera AZ, Bruce AB, Larsh T, Wu SW, Gilbert DL, O’Malley JA. Deep Brain Stimulation for Pediatric Dystonia: A Review of the Literature and Suggested Programming Algorithm. J Child Neurol 2022; 37:813-824. [PMID: 36053123 PMCID: PMC9912476 DOI: 10.1177/08830738221115248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Deep brain stimulation (DBS) is an established intervention for use in pediatric movement disorders, especially dystonia. Although multiple publications have provided guidelines for deep brain stimulation patient selection and programming in adults, there are no evidence-based or consensus statements published for pediatrics. The result is lack of standardized care and underutilization of this effective treatment. To this end, we assembled a focus group of 13 pediatric movement disorder specialists and 1 neurosurgeon experienced in pediatric deep brain stimulation to review recent literature and current practices and propose a standardized approach to candidate selection, implantation target site selection, and programming algorithms. For pediatric dystonia, we provide algorithms for (1) programming for initial session and follow-up sessions, and (2) troubleshooting side effects encountered during programming. We discuss common side effects, how they present, and recommendations for management. This topical review serves as a resource for movement disorders specialists interested in using deep brain stimulation for pediatric dystonia.
Collapse
Affiliation(s)
- Rose Gelineau-Morel
- Division of Neurology, Department of Pediatrics, Children’s Mercy Hospital, University of Missouri-Kansas City School of Medicine, 2401 Gillham Road, Kansas City, Missouri, 64108
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children’s Hospital & University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85016
| | - Jordan F Garris
- Division of Pediatric Neurology, Department of Neurology, University of Virginia, PO Box 800394, Charlottesville, VA, 22908−0394
| | - Amal Abu Libdeh
- Division of Pediatric Neurology, Department of Neurology, University of Virginia, PO Box 800394, Charlottesville, VA, 22908−0394
| | - Daniel A N Barbosa
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, Edwards Bldg, Stanford, CA, 94305
| | - Keith A Coffman
- Division of Neurology, Department of Pediatrics, Children’s Mercy Hospital, University of Missouri-Kansas City School of Medicine, 2401 Gillham Road, Kansas City, Missouri, 64108
| | - David Moon
- Department of Child Neurology, Division of Neurosciences, Helen DeVos Children’s Hospital, 100 Michigan St NE, Grand Rapids, MI 49503
| | - Christopher Barton
- Department of Neurology, University of Louisville School of Medicine, Louisville, Kentucky; Division of Child Neurology, Norton Children’s Medical Group, 231 E Chestnut St, Louisville, KY 40202
| | - Alonso Zea Vera
- Department of Neurology, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC, 20010
| | - Adrienne B Bruce
- Division of Pediatric Neurology, Department of Pediatrics, Prisma Health, 200 Patewood Drive A350, Greenville, SC, USA 29615; University of South Carolina School of Medicine Greenville, 607 Grove Road, Greenville, SC, 29605
| | - Travis Larsh
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, 3333 Burnet Ave, Location E4, Suite 110, Cincinnati, OH 45229
| | - Steve W Wu
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, 3333 Burnet Ave, Location E4, Suite 110, Cincinnati, OH 45229
| | - Donald L Gilbert
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, 3333 Burnet Ave, Location E4, Suite 110, Cincinnati, OH 45229
| | - Jennifer A O’Malley
- Department of Neurology, Division of Child Neurology, Stanford University School of Medicine, 750 Welch Road, Suite 317, Palo Alto, California, 94304
| |
Collapse
|
11
|
Rauschenberger L, Güttler C, Volkmann J, Kühn AA, Ip CW, Lofredi R. A translational perspective on pathophysiological changes of oscillatory activity in dystonia and parkinsonism. Exp Neurol 2022; 355:114140. [PMID: 35690132 DOI: 10.1016/j.expneurol.2022.114140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/14/2022] [Accepted: 06/03/2022] [Indexed: 11/19/2022]
Abstract
Intracerebral recordings from movement disorders patients undergoing deep brain stimulation have allowed the identification of pathophysiological patterns in oscillatory activity that correlate with symptom severity. Changes in oscillatory synchrony occur within and across brain areas, matching the classification of movement disorders as network disorders. However, the underlying mechanisms of oscillatory changes are difficult to assess in patients, as experimental interventions are technically limited and ethically problematic. This is why animal models play an important role in neurophysiological research of movement disorders. In this review, we highlight the contributions of translational research to the mechanistic understanding of pathological changes in oscillatory activity, with a focus on parkinsonism and dystonia, while addressing the limitations of current findings and proposing possible future directions.
Collapse
Affiliation(s)
- Lisa Rauschenberger
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Christopher Güttler
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Andrea A Kühn
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany; NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany; DZNE, German Center for Neurodegenerative Diseases, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Roxanne Lofredi
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany.
| |
Collapse
|
12
|
Lofredi R, Kühn AA. Brain oscillatory dysfunctions in dystonia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:249-257. [PMID: 35034739 DOI: 10.1016/b978-0-12-819410-2.00026-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dystonia is a hyperkinetic movement disorder associated with loss of inhibition, abnormal plasticity, dysfunctional sensorimotor integration, and brain oscillatory dysfunctions at cortical and subcortical levels of the central nervous system. Hence, dystonia is considered a network disorder that can, in many cases, be efficiently treated by pallidal deep brain stimulation (DBS). Abnormal oscillatory activity has been identified across the motor circuit of patients with dystonia. Increased low frequency (LF) synchronization in the internal pallidum is the most prominent abnormality. LF oscillations have been associated with the severity of dystonic motor symptoms; they are suppressed by DBS and localized to the clinically most effective stimulation site. Although the origin of these pathologic changes in brain activity needs further clarifications, their characterization will help in adjusting DBS parameters for successful clinical outcome.
Collapse
Affiliation(s)
- Roxanne Lofredi
- Department of Neurology, Movement disorders and Neuromodulation Unit, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Movement disorders and Neuromodulation Unit, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Exploring the connections between basal ganglia and cortex revealed by transcranial magnetic stimulation, evoked potential and deep brain stimulation in dystonia. Eur J Paediatr Neurol 2022; 36:69-77. [PMID: 34922163 DOI: 10.1016/j.ejpn.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/30/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022]
Abstract
We review the findings for motor cortical excitability, plasticity and evoked potentials in dystonia. Plasticity can be induced and assessed in cortical areas by non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) and the invasive technique of deep brain stimulation (DBS), which allows access to deep brain structures. Single-pulse TMS measures have been widely studied in dystonia and consistently showed reduced silent period duration. Paired pulse TMS measures showed reduced short and long interval intracortical inhibition, interhemispheric inhibition, long-latency afferent inhibition and increased intracortical facilitation in dystonia. Repetitive transcranial magnetic stimulation (rTMS) of the premotor cortex improved handwriting with prolongation of the silent period in focal hand dystonia patients. Continuous theta-burst stimulation (cTBS) of the cerebellum or cTBS of the dorsal premotor cortex improved dystonia in some studies. Plasticity induction protocols in dystonia demonstrated excessive motor cortical plasticity with the reduction in cortico-motor topographic specificity. Bilateral DBS of the globus pallidus internus (GPi) improves dystonia, associated pain and functional disability. Local field potentials recordings in dystonia patients suggested that there is increased power in the low-frequency band (4-12 Hz) in the GPi. Cortical evoked potentials at peak latencies of 10 and 25 ms can be recorded with GPi stimulation in dystonia. Plasticity induction protocols based on the principles of spike timing dependent plasticity that involved repeated pairing of GPi-DBS and motor cortical TMS at latencies of cortical evoked potentials induced motor cortical plasticity. These studies expanded our knowledge of the pathophysiology of dystonia and how cortical excitability and plasticity are altered with different treatments such as DBS.
Collapse
|
14
|
Morigaki R, Miyamoto R, Matsuda T, Miyake K, Yamamoto N, Takagi Y. Dystonia and Cerebellum: From Bench to Bedside. Life (Basel) 2021; 11:776. [PMID: 34440520 PMCID: PMC8401781 DOI: 10.3390/life11080776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022] Open
Abstract
Dystonia pathogenesis remains unclear; however, findings from basic and clinical research suggest the importance of the interaction between the basal ganglia and cerebellum. After the discovery of disynaptic pathways between the two, much attention has been paid to the cerebellum. Basic research using various dystonia rodent models and clinical studies in dystonia patients continues to provide new pieces of knowledge regarding the role of the cerebellum in dystonia genesis. Herein, we review basic and clinical articles related to dystonia focusing on the cerebellum, and clarify the current understanding of the role of the cerebellum in dystonia pathogenesis. Given the recent evidence providing new hypotheses regarding dystonia pathogenesis, we discuss how the current evidence answers the unsolved clinical questions.
Collapse
Affiliation(s)
- Ryoma Morigaki
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (N.Y.); (Y.T.)
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| | - Ryosuke Miyamoto
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan;
| | - Taku Matsuda
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| | - Kazuhisa Miyake
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| | - Nobuaki Yamamoto
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (N.Y.); (Y.T.)
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan;
| | - Yasushi Takagi
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (N.Y.); (Y.T.)
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| |
Collapse
|
15
|
Johnson V, Wilt R, Gilron R, Anso J, Perrone R, Beudel M, Piña-Fuentes D, Saal J, Ostrem JL, Bledsoe I, Starr P, Little S. Embedded adaptive deep brain stimulation for cervical dystonia controlled by motor cortex theta oscillations. Exp Neurol 2021; 345:113825. [PMID: 34331900 DOI: 10.1016/j.expneurol.2021.113825] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/08/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022]
Abstract
Dystonia is a disabling movement disorder characterized by excessive muscle contraction for which the underlying pathophysiology is incompletely understood and treatment interventions limited in efficacy. Here we utilize a novel, sensing-enabled, deep brain stimulator device, implanted in a patient with cervical dystonia, to record local field potentials from chronically implanted electrodes in the sensorimotor cortex and subthalamic nuclei bilaterally. This rechargeable device was able to record large volumes of neural data at home, in the naturalistic environment, during unconstrained activity. We confirmed the presence of theta (3-7 Hz) oscillatory activity, which was coherent throughout the cortico-subthalamic circuit and specifically suppressed by high-frequency stimulation. Stimulation also reduced the duration, rate and height of theta bursts. These findings motivated a proof-of-principle trial of a new form of adaptive deep brain stimulation - triggered by theta-burst activity recorded from the motor cortex. This facilitated increased peak stimulation amplitudes without induction of dyskinesias and demonstrated improved blinded clinical ratings compared to continuous DBS, despite reduced total electrical energy delivered. These results further strengthen the pathophysiological role of low frequency (theta) oscillations in dystonia and demonstrate the potential for novel adaptive stimulation strategies linked to cortico-basal theta bursts.
Collapse
Affiliation(s)
- Vinith Johnson
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA
| | - Robert Wilt
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA
| | - Roee Gilron
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA
| | - Juan Anso
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA
| | - Randy Perrone
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA
| | - Martijn Beudel
- Department of Neurology, Amsterdam Neuroscience Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Dan Piña-Fuentes
- Department of Neurology, Amsterdam Neuroscience Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Jeremy Saal
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA
| | - Jill L Ostrem
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA
| | - Ian Bledsoe
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA
| | - Philip Starr
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA
| | - Simon Little
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
16
|
Sirica D, Hewitt AL, Tarolli CG, Weber MT, Zimmerman C, Santiago A, Wensel A, Mink JW, Lizárraga KJ. Neurophysiological biomarkers to optimize deep brain stimulation in movement disorders. Neurodegener Dis Manag 2021; 11:315-328. [PMID: 34261338 PMCID: PMC8977945 DOI: 10.2217/nmt-2021-0002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Intraoperative neurophysiological information could increase accuracy of surgical deep brain stimulation (DBS) lead placement. Subsequently, DBS therapy could be optimized by specifically targeting pathological activity. In Parkinson’s disease, local field potentials (LFPs) excessively synchronized in the beta band (13–35 Hz) correlate with akinetic-rigid symptoms and their response to DBS therapy, particularly low beta band suppression (13–20 Hz) and high frequency gamma facilitation (35–250 Hz). In dystonia, LFPs abnormally synchronize in the theta/alpha (4–13 Hz), beta and gamma (60–90 Hz) bands. Phasic dystonic symptoms and their response to DBS correlate with changes in theta/alpha synchronization. In essential tremor, LFPs excessively synchronize in the theta/alpha and beta bands. Adaptive DBS systems will individualize pathological characteristics of neurophysiological signals to automatically deliver therapeutic DBS pulses of specific spatial and temporal parameters.
Collapse
Affiliation(s)
- Daniel Sirica
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Angela L Hewitt
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA.,Division of Child Neurology, Department of Neurology, University of Rochester, Rochester, NY 14623, USA
| | - Christopher G Tarolli
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA.,Center for Health & Technology (CHeT), University of Rochester, Rochester, NY 14642, USA
| | - Miriam T Weber
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Carol Zimmerman
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Aida Santiago
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Andrew Wensel
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA.,Department of Neurosurgery, University of Rochester, Rochester, NY 14618, USA
| | - Jonathan W Mink
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA.,Division of Child Neurology, Department of Neurology, University of Rochester, Rochester, NY 14623, USA
| | - Karlo J Lizárraga
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA.,Center for Health & Technology (CHeT), University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
17
|
Litvak V, Florin E, Tamás G, Groppa S, Muthuraman M. EEG and MEG primers for tracking DBS network effects. Neuroimage 2020; 224:117447. [PMID: 33059051 DOI: 10.1016/j.neuroimage.2020.117447] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022] Open
Abstract
Deep brain stimulation (DBS) is an effective treatment method for a range of neurological and psychiatric disorders. It involves implantation of stimulating electrodes in a precisely guided fashion into subcortical structures and, at a later stage, chronic stimulation of these structures with an implantable pulse generator. While the DBS surgery makes it possible to both record brain activity and stimulate parts of the brain that are difficult to reach with non-invasive techniques, electroencephalography (EEG) and magnetoencephalography (MEG) provide complementary information from other brain areas, which can be used to characterize brain networks targeted through DBS. This requires, however, the careful consideration of different types of artifacts in the data acquisition and the subsequent analyses. Here, we review both the technical issues associated with EEG/MEG recordings in DBS patients and the experimental findings to date. One major line of research is simultaneous recording of local field potentials (LFPs) from DBS targets and EEG/MEG. These studies revealed a set of cortico-subcortical coherent networks functioning at distinguishable physiological frequencies. Specific network responses were linked to clinical state, task or stimulation parameters. Another experimental approach is mapping of DBS-targeted networks in chronically implanted patients by recording EEG/MEG responses during stimulation. One can track responses evoked by single stimulation pulses or bursts as well as brain state shifts caused by DBS. These studies have the potential to provide biomarkers for network responses that can be adapted to guide stereotactic implantation or optimization of stimulation parameters. This is especially important for diseases where the clinical effect of DBS is delayed or develops slowly over time. The same biomarkers could also potentially be utilized for the online control of DBS network effects in the new generation of closed-loop stimulators that are currently entering clinical use. Through future studies, the use of network biomarkers may facilitate the integration of circuit physiology into clinical decision making.
Collapse
Affiliation(s)
- Vladimir Litvak
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Gertrúd Tamás
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Sergiu Groppa
- Movement disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Muthuraman Muthuraman
- Movement disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany.
| |
Collapse
|
18
|
Neurophysiological insights in dystonia and its response to deep brain stimulation treatment. Exp Brain Res 2020; 238:1645-1657. [PMID: 32638036 PMCID: PMC7413898 DOI: 10.1007/s00221-020-05833-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/11/2020] [Indexed: 01/29/2023]
Abstract
Dystonia is a movement disorder characterised by involuntary muscle contractions resulting in abnormal movements, postures and tremor. The pathophysiology of dystonia is not fully understood but loss of neuronal inhibition, excessive sensorimotor plasticity and defective sensory processing are thought to contribute to network dysfunction underlying the disorder. Neurophysiology studies have been important in furthering our understanding of dystonia and have provided insights into the mechanism of effective dystonia treatment with pallidal deep brain stimulation. In this article we review neurophysiology studies in dystonia and its treatment with Deep Brain Stimulation, including Transcranial magnetic stimulation studies, studies of reflexes and sensory processing, and oscillatory activity recordings including local field potentials, micro-recordings, EEG and evoked potentials.
Collapse
|
19
|
Gault JM, Thompson JA, Maharajh K, Hosokawa P, Stevens KE, Olincy A, Liedtke EI, Ojemann A, Ojemann S, Abosch A. Striatal and Thalamic Auditory Response During Deep Brain Stimulation for Essential Tremor: Implications for Psychosis. Neuromodulation 2020; 23:478-488. [PMID: 32022409 DOI: 10.1111/ner.13101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/04/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The P50, a positive auditory-evoked potential occurring 50 msec after an auditory click, has been characterized extensively with electroencephalography (EEG) to detect aberrant auditory electrophysiology in disorders like schizophrenia (SZ) where 61-74% have an auditory gating deficit. The P50 response occurs in primary auditory cortex and several thalamocortical regions. In rodents, the gated P50 response has been identified in the reticular thalamic nucleus (RT)-a deep brain structure traversed during deep brain stimulation (DBS) targeting of the ventral intermediate nucleus (VIM) of the thalamus to treat essential tremor (ET) allowing for interspecies comparison. The goal was to utilize the unique opportunity provided by DBS surgery for ET to map the P50 response in multiple deep brain structures in order to determine the utility of intraoperative P50 detection for facilitating DBS targeting of auditory responsive subterritories. MATERIALS AND METHODS We developed a method to assess P50 response intraoperatively with local field potentials (LFP) using microelectrode recording during routine clinical electrophysiologic mapping for awake DBS surgery in seven ET patients. Recording sites were mapped into a common stereotactic space. RESULTS Forty significant P50 responses of 155 recordings mapped to the ventral thalamus, RT and CN head/body interface at similar rates of 22.7-26.7%. P50 response exhibited anatomic specificity based on distinct positions of centroids of positive and negative responses within brain regions and the fact that P50 response was not identified in the recordings from either the internal capsule or the dorsal thalamus. CONCLUSIONS Detection of P50 response intraoperatively may guide DBS targeting RT and subterritories within CN head/body interface-DBS targets with the potential to treat psychosis and shown to modulate schizophrenia-like aberrancies in mouse models.
Collapse
Affiliation(s)
- Judith M Gault
- Department of Neurosurgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA.,Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - John A Thompson
- Department of Neurosurgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Keeran Maharajh
- Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA.,Department of Neurology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Patrick Hosokawa
- Department of Neurosurgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Karen E Stevens
- Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Ann Olincy
- Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Erin I Liedtke
- Department of Neurosurgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Alex Ojemann
- Department of Neurosurgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Steven Ojemann
- Department of Neurosurgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Aviva Abosch
- Department of Neurosurgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA.,Department of Neurology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
20
|
Scheller U, Lofredi R, Wijk BC, Saryyeva A, Krauss JK, Schneider G, Kroneberg D, Krause P, Neumann W, Kühn AA. Pallidal low‐frequency activity in dystonia after cessation of long‐term deep brain stimulation. Mov Disord 2019; 34:1734-1739. [DOI: 10.1002/mds.27838] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 01/05/2023] Open
Affiliation(s)
- Ute Scheller
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
| | - Roxanne Lofredi
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
| | - Bernadette C.M. Wijk
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
- Integrative Model‐Based Cognitive Neuroscience Research Unit, Department of Psychology University of Amsterdam Amsterdam the Netherlands
- Wellcome Centre for Human Neuroimaging University College London Institute of Neurology London UK
| | - Assel Saryyeva
- Medizinische Hochschule Hannover Department of Neurosurgery Hannover Germany
| | - Joachim K. Krauss
- Medizinische Hochschule Hannover Department of Neurosurgery Hannover Germany
| | - Gerd‐Helge Schneider
- Charité, Universitätsmedizin Berlin Campus Mitte, Department of Neurosurgery Berlin Germany
| | - Daniel Kroneberg
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
| | - Patricia Krause
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
| | - Wolf‐Julian Neumann
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
| | - Andrea A. Kühn
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
- NeuroCure Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|