1
|
Zhu YF, Wan MC, Gao P, Shen MJ, Zhu YN, Hao JX, Lu WC, Wang CY, Tay F, Ehrlich H, Niu LN, Jiao K. Fibrocyte: A missing piece in the pathogenesis of fibrous epulis. Oral Dis 2024; 30:4376-4389. [PMID: 38148479 DOI: 10.1111/odi.14847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/18/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
OBJECTIVES To explore the role of fibrocytes in the recurrence and calcification of fibrous epulides. METHODS Different subtypes of fibrous epulides and normal gingival tissue specimens were first collected for histological and immunofluorescence analyses to see if fibrocytes were present and whether they differentiated into myofibroblasts and osteoblasts upon stimulated by transforming growth factor-β1 (TGF-β1). Electron microscopy and elemental analysis were used to characterize the extracellular microenvironment in different subtypes of fibrous epulides. Human peripheral blood mononuclear cells (PBMCs) were subsequently isolated from in vitro models to mimic the microenvironment in fibrous epulides to identify whether TGF-β1 as well as the calcium and phosphorus ion concentration in the extracellular matrix (ECM) of a fibrous epulis trigger fibrocyte differentiation. RESULTS Fibrous epulides contain fibrocytes that accumulate in the local inflammatory environment and have the ability to differentiate into myofibroblasts or osteoblasts. TGF-β1 promotes fibrocytes differentiation into myofibroblasts in a concentration-dependent manner, while TGF-β1 stimulates the fibrocytes to differentiate into osteoblasts when combined with a high calcium and phosphorus environment. CONCLUSIONS Our study revealed fibrocytes play an important role in the fibrogenesis and osteogenesis in fibrous epulis, and might serve as a therapeutic target for the inhibition of recurrence of fibrous epulides.
Collapse
Affiliation(s)
- Yi-Fei Zhu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Prosthodontics, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Mei-Chen Wan
- Department of Prosthodontics, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Peng Gao
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Min-Juan Shen
- Department of Prosthodontics, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yi-Na Zhu
- Department of Prosthodontics, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jia-Xin Hao
- Department of Prosthodontics, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Wei-Cheng Lu
- Department of Prosthodontics, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Chen-Yu Wang
- Department of Prosthodontics, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Franklin Tay
- The Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Hermann Ehrlich
- Institute of Electronic and Sensor Materials, Freiberg, Germany
| | - Li-Na Niu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Prosthodontics, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
2
|
Yaniv D, Mattson B, Talbot S, Gleber-Netto FO, Amit M. Targeting the peripheral neural-tumour microenvironment for cancer therapy. Nat Rev Drug Discov 2024; 23:780-796. [PMID: 39242781 DOI: 10.1038/s41573-024-01017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
As the field of cancer neuroscience expands, the strategic targeting of interactions between neurons, cancer cells and other elements in the tumour microenvironment represents a potential paradigm shift in cancer treatment, comparable to the advent of our current understanding of tumour immunology. Cancer cells actively release growth factors that stimulate tumour neo-neurogenesis, and accumulating evidence indicates that tumour neo-innervation propels tumour progression, inhibits tumour-related pro-inflammatory cytokines, promotes neovascularization, facilitates metastasis and regulates immune exhaustion and evasion. In this Review, we give an up-to-date overview of the dynamics of the tumour microenvironment with an emphasis on tumour innervation by the peripheral nervous system, as well as current preclinical and clinical evidence of the benefits of targeting the nervous system in cancer, laying a scientific foundation for further clinical trials. Combining empirical data with a biomarker-driven approach to identify and hone neuronal targets implicated in cancer and its spread can pave the way for swift clinical integration.
Collapse
Affiliation(s)
- Dan Yaniv
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandi Mattson
- The Neurodegeneration Consortium, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Frederico O Gleber-Netto
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Li SN, Ran RY, Chen J, Liu MC, Dang YM, Lin H. Angiogenesis in heterotopic ossification: From mechanisms to clinical significance. Life Sci 2024; 351:122779. [PMID: 38851421 DOI: 10.1016/j.lfs.2024.122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/21/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Heterotopic ossification (HO) refers to the formation of pathologic bone in nonskeletal tissues (including muscles, tendons or other soft tissues). HO typically occurs after a severe injury and can occur in any part of the body. HO lesions are highly vascularized. Angiogenesis, which is the formation of new blood vessels, plays an important role in the pathophysiology of HO. Surgical resection is considered an effective treatment for HO. However, it is difficult to completely remove new vessels, which can lead to the recurrence of HO and is often accompanied by significant problems such as intraoperative hemorrhage, demonstrating the important role of angiogenesis in HO. Here, we broadly summarize the current understanding of how angiogenesis contributes to HO; in particular, we focus on new insights into the cellular and signaling mechanisms underlying HO angiogenesis. We also review the development and current challenges associated with antiangiogenic therapy for HO.
Collapse
Affiliation(s)
- Sai-Nan Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; First Clinical School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Ruo-Yue Ran
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; First Clinical School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Jie Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Meng-Chao Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yan-Miao Dang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Hui Lin
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
4
|
Li D, Liu C, Wang H, Li Y, Wang Y, An S, Sun S. The Role of Neuromodulation and Potential Mechanism in Regulating Heterotopic Ossification. Neurochem Res 2024; 49:1628-1642. [PMID: 38416374 DOI: 10.1007/s11064-024-04118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Heterotopic ossification (HO) is a pathological process characterized by the aberrant formation of bone in muscles and soft tissues. It is commonly triggered by traumatic brain injury, spinal cord injury, and burns. Despite a wide range of evidence underscoring the significance of neurogenic signals in proper bone remodeling, a clear understanding of HO induced by nerve injury remains rudimentary. Recent studies suggest that injury to the nervous system can activate various signaling pathways, such as TGF-β, leading to neurogenic HO through the release of neurotrophins. These pathophysiological changes lay a robust groundwork for the prevention and treatment of HO. In this review, we collected evidence to elucidate the mechanisms underlying the pathogenesis of HO related to nerve injury, aiming to enhance our understanding of how neurological repair processes can culminate in HO.
Collapse
Affiliation(s)
- Dengju Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong First Medical University, Jinan, Shandong, China
| | - Changxing Liu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Haojue Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yunfeng Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yaqi Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Senbo An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
| | - Shui Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Ben H, Kholinne E, Zeng CH, Alsaqri H, Lee JB, So SP, Koh KH, Jeon IH. Prevalence, Timing, Locational Distribution, and Risk Factors for Heterotopic Ossification After Elbow Arthroscopy. Am J Sports Med 2023; 51:3401-3408. [PMID: 37804157 DOI: 10.1177/03635465231198862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
BACKGROUND Arthroscopic techniques aim to reduce complications and accelerate recovery of the elbow after treatments for posttraumatic stiffness, arthritis diseases, lateral epicondylitis, ligament reconstruction, and elbow trauma. However, data on the true prevalence and characteristics of heterotopic ossification (HO) formation after elbow arthroscopy are limited. PURPOSE To investigate the prevalence, timing, locational distribution, and risk factors of HO after elbow arthroscopy. STUDY DESIGN Cohort study; Level of evidence, 4. METHODS Data on 205 patients undergoing elbow arthroscopy by a single senior elbow surgeon at a single institution between May 2011 and January 2022 were retrospectively reviewed. The patients were evaluated at 2 weeks, 8 weeks, 6 months, and then annually after surgery or more frequently if HO developed, with a minimum of 1 year of postoperative follow-up. Postoperative anteroposterior and lateral elbow radiographs were taken at 2 weeks to rule out fracture and at 8 weeks to identify HO. The clinical outcomes were evaluated based on the pain visual analog scale; the shortened version of the Disabilities of the Arm, Shoulder and Hand score; Mayo Elbow Performance Score; and the Single Assessment Numeric Evaluation scores before and after surgery. Bivariate logistic regression analyses were used to determine factors affecting HO prevalence. RESULTS Thirteen (12 male, 1 female) of 205 (6.3%) patients developed HO, with 10 (76.9%) with HO that formed on the medial compartment of the elbow. Ten (76.9%) patients were diagnosed at 8 weeks after arthroscopic surgery, 1 (7.7%) at 6 months after surgery, and 2 (15.4%) at 12 months after surgery. HO was not found at 2 weeks after surgery in any patient. The mean follow-up time was 3.5 years (range, 1.0-11.8 years). Eleven asymptomatic patients were treated nonoperatively, and 2 symptomatic patients underwent HO excision arthroscopically or had a combination of open surgery and arthroscopy. Age was a protective factor for HO formation (odds ratio [OR], 0.953; 95% CI, 0.910-0.999; P = .047). The risk factors for HO formation were tourniquet time (OR, 1.042; 95% CI, 1.019-1.065; P < .001) and surgical time (OR, 1.026; 95% CI, 1.011-1.041; P < .001). CONCLUSION Among 205 patients who underwent elbow arthroscopy, HO was a minor complication of elbow arthroscopy, with a prevalence rate of 6.3%, and was usually located on the medial compartment of the elbow. Although the presence of HO may not affect the clinical outcomes in most patients, it should be carefully monitored for a minimum of 8 weeks postoperatively. Younger age, longer tourniquet time, and longer surgical time contributed to HO formation after elbow arthroscopy.
Collapse
Affiliation(s)
- Hui Ben
- Department of Orthopaedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Erica Kholinne
- Faculty of Medicine, Universitas Trisakti, Department of Orthopedic Surgery, St Carolus Hospital, Jakarta, Indonesia
| | - Chu Hui Zeng
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | - Jun-Bum Lee
- Department of Orthopaedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Pil So
- Department of Orthopaedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Hwan Koh
- Department of Orthopaedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In-Ho Jeon
- Department of Orthopaedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Yuga ACQ, Pascual JSG, Valparaiso AP, Khu KJO. Extensive neuritis ossificans of the sciatic nerve: Systematic review and illustrative case. J Clin Neurosci 2022; 98:224-228. [DOI: 10.1016/j.jocn.2022.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
|
7
|
Yim CR, Uhrich RM, Perez L. Treatment of Temporomandibular Joint Heterotopic Ossificans: A Novel Protocol With Multimodal Therapy Based on Literature Review and Presentation of a Unique Case Reportc. J Oral Maxillofac Surg 2021; 80:869-888. [PMID: 35032438 DOI: 10.1016/j.joms.2021.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE The purpose of this study was to create a treatment protocol for cases of heterotopic ossification (HO) of the temporomandibular joint (TMJ), particularly those refractory to current TMJ HO protocols. In addition, we demonstrate the success of this protocol on a unique case of recurrent HO that failed multiple TMJ HO protocols in the setting of an improvised explosive device (IED) blast in a wounded warrior. METHODS An electronic literature review was conducted via PubMed and Web of Science. Twenty-five studies were identified to provide supporting evidence for a proposed, up-to-date protocol for the treatment of refractory TMJ HO. The authors present a case report of a wounded warrior with HO ankylosis of bilateral TMJs in the setting of IED blast and demonstrate successful use of our surgical and pharmacotherapeutic protocol. RESULTS Based on the literature review, our proposed protocol consists of pharmacotherapy with celecoxib and etidronate, with weekly forced dilation (brisement) and home physical therapy with the TheraBite Jaw Motion Rehab System. Surgically, the TMJ should be treated with two-stage reconstruction using initial polymethyl methacrylate spacers and subsequent total joint reconstruction with custom prostheses, fat grafting, and 3-dimensional-navigated total resection of HO. This protocol was successfully utilized in our patient's refractory HO ankylosed TMJ secondary to IED blast, and the patient's maximal incisal opening was regained and has remained stable 2 years after surgery without recurrent HO. CONCLUSIONS Our method for treatment in this case deviated from the standard TMJ Concepts HO protocol in that it included multimodal pharmacotherapy with celecoxib and etidronate. Based on our literature review and experience, we advise that clinicians utilize our protocol for the management of all craniofacial HO cases, particularly in cases of recurrent HO that fail conventional therapies and/or involving high-order blast trauma.
Collapse
Affiliation(s)
- Changmin Richard Yim
- Attending Surgeon, Department Oral & Maxillofacial Surgery, Walter Reed National Military Medical Center.
| | - Ross M Uhrich
- Attending Surgeon, Department Oral & Maxillofacial Surgery, Walter Reed National Military Medical Center & Washington Navy Yard Branch Health Clinic
| | - Leonel Perez
- Program Director and Attending Surgeon, Department of Oral & Maxillofacial Surgery, Walter Reed National Military Medical Center
| |
Collapse
|
8
|
Burn-induced heterotopic ossification from incidence to therapy: key signaling pathways underlying ectopic bone formation. Cell Mol Biol Lett 2021; 26:34. [PMID: 34315404 PMCID: PMC8313878 DOI: 10.1186/s11658-021-00277-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/20/2021] [Indexed: 01/02/2023] Open
Abstract
Burn injury is one of the potential causes of heterotopic ossification (HO), which is a rare but debilitating condition. The incidence ranges from 3.5 to 5.6 depending on body area. Burns that cover a larger percentage of the total body surface area (TBSA), require skin graft surgeries, or necessitate pulmonary intensive care are well-researched risk factors for HO. Since burns initiate such complex pathophysiological processes with a variety of molecular signal changes, it is essential to focus on HO in the specific context of burn injury to define best practices for its treatment. There are numerous key players in the pathways of burn-induced HO, including neutrophils, monocytes, transforming growth factor-β1-expressing macrophages and the adaptive immune system. The increased inflammation associated with burn injuries is also associated with pathway activation. Neurological and calcium-related contributions are also known. Endothelial-to-mesenchymal transition (EMT) and vascularization are known to play key roles in burn-induced HO, with hypoxia-inducible factor-1 (HIF-1) and vascular endothelial growth factor (VEGF) as potential initiators. Currently, non-steroidal anti-inflammatory drugs (NSAIDs) and radiotherapy are effective prophylaxes for HO. Limited joint motion, ankylosis and intolerable pain caused by burn-induced HO can be effectively tackled via surgery. Effective biomarkers for monitoring burn-induced HO occurrence and bio-prophylactic and bio-therapeutic strategies should be actively developed in the future.
Collapse
|
9
|
Wan Q, Qin W, Ma Y, Shen M, Li J, Zhang Z, Chen J, Tay FR, Niu L, Jiao K. Crosstalk between Bone and Nerves within Bone. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003390. [PMID: 33854888 PMCID: PMC8025013 DOI: 10.1002/advs.202003390] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Indexed: 05/11/2023]
Abstract
For the past two decades, the function of intrabony nerves on bone has been a subject of intense research, while the function of bone on intrabony nerves is still hidden in the corner. In the present review, the possible crosstalk between bone and intrabony peripheral nerves will be comprehensively analyzed. Peripheral nerves participate in bone development and repair via a host of signals generated through the secretion of neurotransmitters, neuropeptides, axon guidance factors and neurotrophins, with additional contribution from nerve-resident cells. In return, bone contributes to this microenvironmental rendezvous by housing the nerves within its internal milieu to provide mechanical support and a protective shelf. A large ensemble of chemical, mechanical, and electrical cues works in harmony with bone marrow stromal cells in the regulation of intrabony nerves. The crosstalk between bone and nerves is not limited to the physiological state, but also involved in various bone diseases including osteoporosis, osteoarthritis, heterotopic ossification, psychological stress-related bone abnormalities, and bone related tumors. This crosstalk may be harnessed in the design of tissue engineering scaffolds for repair of bone defects or be targeted for treatment of diseases related to bone and peripheral nerves.
Collapse
Affiliation(s)
- Qian‐Qian Wan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Wen‐Pin Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Yu‐Xuan Ma
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Min‐Juan Shen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Jing Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Zi‐Bin Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Ji‐Hua Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Franklin R. Tay
- College of Graduate StudiesAugusta UniversityAugustaGA30912USA
| | - Li‐Na Niu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
10
|
Zhang J, Tang J, Liu J, Yan B, Yan B, Huang M, Zhang Z, Wang L. Melatonin Promotes Heterotopic Ossification Through Regulation of Endothelial-Mesenchymal Transition in Injured Achilles Tendons in Rats. Front Cell Dev Biol 2021; 9:629274. [PMID: 33644068 PMCID: PMC7905064 DOI: 10.3389/fcell.2021.629274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/25/2021] [Indexed: 11/29/2022] Open
Abstract
Although heterotopic ossification (HO) has been reported to be a common complication of the posttraumatic healing process, the underlying mechanism remains unknown. Endothelial-mesenchymal transition (EndMT) is known to play a role in HO, and our recent study observed that neuroendocrine signals can promote HO by modulating EndMT. Melatonin, a neuroendocrine hormone secreted mainly by the pineal gland, has been documented to perform its function in the skeletal system. This study aimed at describing the expression of melatonin during the formation of HO in rat models of Achilles tendon injury and to further investigate its role in regulating EndMT in HO. Histological staining revealed the expression of melatonin throughout the formation of heterotopic bone in injured Achilles tendons, and the serum melatonin levels were increased after the initial injury. Double immunofluorescence showed that the MT2 melatonin receptor was notably expressed at the sites of injury. Micro-CT showed the enhancement of heterotopic bone volume and calcified areas in rats treated with melatonin. Additionally, our data showed that melatonin induced EndMT in primary rat aortic endothelial cells (RAOECs), which acquired traits including migratory function, invasive function and EndMT and MSC marker gene and protein expression. Furthermore, our data exhibited that melatonin promoted the osteogenic differentiation of RAOECs undergoing EndMT in vitro. Importantly, inhibition of the melatonin-MT2 pathway by using the MT2 selective inhibitor 4-P-PDOT inhibited melatonin-induced EndMT and osteogenesis both in vivo and in vitro. In conclusion, these findings demonstrated that melatonin promoted HO through the regulation of EndMT in injured Achilles tendons in rats, and these findings might provide additional directions for the management of HO.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Academy of Orthopedics, Guangzhou, China
| | - Jiajun Tang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Academy of Orthopedics, Guangzhou, China
| | - Jie Liu
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Academy of Orthopedics, Guangzhou, China
| | - Bo Yan
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Academy of Orthopedics, Guangzhou, China
| | - Bin Yan
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Academy of Orthopedics, Guangzhou, China
| | - Minjun Huang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Academy of Orthopedics, Guangzhou, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Academy of Orthopedics, Guangzhou, China
| |
Collapse
|
11
|
Kalinski AL, Yoon C, Huffman LD, Duncker PC, Kohen R, Passino R, Hafner H, Johnson C, Kawaguchi R, Carbajal KS, Jara JS, Hollis E, Geschwind DH, Segal BM, Giger RJ. Analysis of the immune response to sciatic nerve injury identifies efferocytosis as a key mechanism of nerve debridement. eLife 2020; 9:60223. [PMID: 33263277 PMCID: PMC7735761 DOI: 10.7554/elife.60223] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Sciatic nerve crush injury triggers sterile inflammation within the distal nerve and axotomized dorsal root ganglia (DRGs). Granulocytes and pro-inflammatory Ly6Chigh monocytes infiltrate the nerve first and rapidly give way to Ly6Cnegative inflammation-resolving macrophages. In axotomized DRGs, few hematogenous leukocytes are detected and resident macrophages acquire a ramified morphology. Single-cell RNA-sequencing of injured sciatic nerve identifies five macrophage subpopulations, repair Schwann cells, and mesenchymal precursor cells. Macrophages at the nerve crush site are molecularly distinct from macrophages associated with Wallerian degeneration. In the injured nerve, macrophages ‘eat’ apoptotic leukocytes, a process called efferocytosis, and thereby promote an anti-inflammatory milieu. Myeloid cells in the injured nerve, but not axotomized DRGs, strongly express receptors for the cytokine GM-CSF. In GM-CSF-deficient (Csf2-/-) mice, inflammation resolution is delayed and conditioning-lesion-induced regeneration of DRG neuron central axons is abolished. Thus, carefully orchestrated inflammation resolution in the nerve is required for conditioning-lesion-induced neurorepair.
Collapse
Affiliation(s)
- Ashley L Kalinski
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Choya Yoon
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Lucas D Huffman
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States.,Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, United States
| | - Patrick C Duncker
- Department of Neurology, University of Michigan Medical School, Ann Arbor, United States
| | - Rafi Kohen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States.,Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, United States
| | - Ryan Passino
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Hannah Hafner
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Kevin S Carbajal
- Department of Neurology, University of Michigan Medical School, Ann Arbor, United States
| | | | - Edmund Hollis
- Burke Neurological Institute, White Plains, United States.,The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, United States
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Benjamin M Segal
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, United States.,The Neurological Institute, The Ohio State University, Columbus, United States
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States.,Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, United States.,Department of Neurology, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
12
|
Lin H, Shi F, Jiang S, Wang Y, Zou J, Ying Y, Huang D, Luo L, Yan X, Luo Z. Metformin attenuates trauma-induced heterotopic ossification via inhibition of Bone Morphogenetic Protein signalling. J Cell Mol Med 2020; 24:14491-14501. [PMID: 33169942 PMCID: PMC7754007 DOI: 10.1111/jcmm.16076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/04/2020] [Accepted: 10/25/2020] [Indexed: 11/06/2022] Open
Abstract
AMP‐activated protein kinase (AMPK) is an intracellular sensor of energy homoeostasis that is activated under energy stress and suppressed in energy surplus. AMPK activation leads to inhibition of anabolic processes that consume ATP. Osteogenic differentiation is a process that highly demands ATP during which AMPK is inhibited. The bone morphogenetic proteins (BMPs) signalling pathway plays an essential role in osteogenic differentiation. The present study examines the inhibitory effect of metformin on BMP signalling, osteogenic differentiation and trauma‐induced heterotopic ossification. Our results showed that metformin inhibited Smad1/5 phosphorylation induced by BMP6 in osteoblast MC3T3‐E1 cells, concurrent with up‐regulation of Smad6, and this effect was attenuated by knockdown of Smad6. Furthermore, we found that metformin suppressed ALP activity and mineralization of the cells, an event that was attenuated by the dominant negative mutant of AMPK and mimicked by its constitutively active mutant. Finally, administration of metformin prevented the trauma‐induced heterotopic ossification in mice. In conjuncture, AMPK activity and Smad6 and Smurf1 expression were enhanced by metformin treatment in the muscle of injured area, concurrently with the reduction of ALK2. Collectively, our study suggests that metformin prevents heterotopic ossification via activation of AMPK and subsequent up‐regulation of Smad6. Therefore, metformin could be a potential therapeutic drug for heterotopic ossification induced by traumatic injury.
Collapse
Affiliation(s)
- Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Queen Mary School, Nanchang University, Nanchang, China
| | - Fuli Shi
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Queen Mary School, Nanchang University, Nanchang, China
| | - Shanshan Jiang
- Institute of Hematological Research, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yuanyuan Wang
- Clinical Systems Biology Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Junrong Zou
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Queen Mary School, Nanchang University, Nanchang, China
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Queen Mary School, Nanchang University, Nanchang, China
| | - Deqiang Huang
- Research Institute of Digestive Diseases, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Lingyu Luo
- Research Institute of Digestive Diseases, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xiaohua Yan
- Institute of Basic Biomedical Sciences and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Zhijun Luo
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Queen Mary School, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Zhao Y, Ouyang N, Chen L, Zhao H, Shen G, Dai J. Stimulating Factors and Origins of Precursor Cells in Traumatic Heterotopic Ossification Around the Temporomandibular Joint in Mice. Front Cell Dev Biol 2020; 8:445. [PMID: 32626707 PMCID: PMC7314999 DOI: 10.3389/fcell.2020.00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
The contributing factors and the origins of precursor cells in traumatic heterotopic ossification around the temporomandibular joint (THO-TMJ), which causes obvious restriction of mouth opening and maxillofacial malformation, remain unclear. In this study, our findings demonstrated that injured chondrocytes in the condylar cartilage, but not osteoblasts in the injured subchondral bone, played definite roles in the development of THO-TMJ in mice. Injured condylar chondrocytes without articular disc reserves might secrete growth factors, such as IGF1 and TGFβ2, that stimulate precursor cells, such as endothelial cells and muscle-derived cells, to differentiate into chondrocytes or osteoblasts and induce THO-TMJ. Preserved articular discs can alleviate the pressure on the injured cartilage and inhibit the development of THO-TMJ by inhibiting the secretion of these growth factors from injured chondrocytes. However, the exact molecular relationships among trauma, the injured condylar cartilage, growth factors such as TGFβ2, and pressure need to be explored in detail in the future.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Oral & Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Disease, Shanghai, China
| | - Ningjuan Ouyang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Long Chen
- Department of Oral & Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Disease, Shanghai, China
| | - Hanjiang Zhao
- Department of Oral & Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Disease, Shanghai, China
| | - Guofang Shen
- Department of Oral & Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Disease, Shanghai, China
| | - Jiewen Dai
- Department of Oral & Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Disease, Shanghai, China
| |
Collapse
|
14
|
Matrine attenuates heterotopic ossification by suppressing TGF-β induced mesenchymal stromal cell migration and osteogenic differentiation. Biomed Pharmacother 2020; 127:110152. [PMID: 32559842 DOI: 10.1016/j.biopha.2020.110152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/30/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE OF THE STUDY Heterotopic ossification (HO) is a debilitating disease characterized by extraskeletal bone formation. Active TGF-β recruits mesenchymal stromal cells (MSCs), which contribute to trauma-induced HO. Inhibiting TGF-β induced MSC migration and osteogenic differentiation could be a promising treatment for HO. Matrine is an alkaloid from the genus Sophora that can suppress pancreatic and hepatic fibrosis by regulating TGF-β/Smad signaling. We conducted this study to evaluate the effects of matrine on HO and explore the mechanisms, we carried out this study. MATERIALS AND METHODS Achilles tendon puncture was performed in C57BL/6J male mice to establish the HO model. Following treatment with matrine for 3, 6, 9, and 15 weeks, mice were sacrificed and tendons were collected. In vivo, micro-CT, hematoxylin and eosin staining, CD73 and CD90 immunofluorescence, and osteocalcin staining were used to evaluate the development of HO. In vitro, a transwell migration assay was used to evaluate MSC migration. Immunohistochemistry, immunofluorescence and western blotting were used to evaluate the TGF-β/Smad2/3 pathway. Real-time PCR was conducted to analyze the transcription of alkaline phosphatase (Alp), runt-related transcription factor-2 (Runx2), osteocalcin (Ocn), osteopontin (Opn), and type I collagen (Col1). ALP activity and alizarin red staining were used to assess MSC osteogenic differentiation. RESULTS In vivo, matrine significantly reduced ossification and inhibited HO progression. In vitro, matrine significantly suppressed MSC migration, ALP activity, and mineralization of MSCs. Mechanistically, matrine inhibited TGF-β induced Smad2/3 phosphorylation and transcription of Runx2, Alp, and Ocn after osteoinduction. CONCLUSIONS Matrine inhibited HO by suppressing the migration and osteogenic differentiation of TGF-β-induced-MSCsin mice.
Collapse
|
15
|
Shi F, Gao J, Zou J, Ying Y, Lin H. Targeting heterotopic ossification by inhibiting activin receptor‑like kinase 2 function (Review). Mol Med Rep 2019; 20:2979-2989. [PMID: 31432174 PMCID: PMC6755183 DOI: 10.3892/mmr.2019.10556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/15/2019] [Indexed: 11/17/2022] Open
Abstract
Heterotopic ossification (HO) refers to the appearance of osteoblasts in soft tissues under pathological conditions, such as trauma or infection. HO arises in an unpredictable way without any recognizable initiation. Activin receptor-like kinase-2 (ALK2) is a type I cell surface receptor for bone morphogenetic proteins (BMPs). The dysregulation of ALK2 signaling is associated with a variety of diseases, including cancer and HO. At present, the prevention and treatment of HO in the clinic predominantly includes nonsteroidal anti-inflammatory drugs (NSAIDs), bisphosphonates and other drug treatments, low-dose local radiation therapy and surgical resection, rehabilitation treatment and physical therapy. However, most of these therapies have adverse effects. These methods do not prevent the occurrence of HO. The pathogenesis of HO is not being specifically targeted; the current treatment strategies target the symptoms, not the disease. These treatments also cannot solve the fundamental problem of the occurrence of HO. Therefore, scholars have been working to develop targeted therapies based on the pathogenesis of HO. The present review focuses on advances in the understanding of the underlying mechanisms of HO, and possible options for the prevention and treatment of HO. In addition, the role of ALK2 in the process of HO is introduced and the progress made towards the targeted inhibition of ALK2 is discussed. The present study aims to offer a platform for further research on possible targets for the prevention and treatment of HO.
Collapse
Affiliation(s)
- Fuli Shi
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Jiayu Gao
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Junrong Zou
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
16
|
Tirone M, Giovenzana A, Vallone A, Zordan P, Sormani M, Nicolosi PA, Meneveri R, Gigliotti CR, Spinelli AE, Bocciardi R, Ravazzolo R, Cifola I, Brunelli S. Severe Heterotopic Ossification in the Skeletal Muscle and Endothelial Cells Recruitment to Chondrogenesis Are Enhanced by Monocyte/Macrophage Depletion. Front Immunol 2019; 10:1640. [PMID: 31396210 PMCID: PMC6662553 DOI: 10.3389/fimmu.2019.01640] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/01/2019] [Indexed: 01/04/2023] Open
Abstract
Altered macrophage infiltration upon tissue damage results in inadequate healing due to inappropriate remodeling and stem cell recruitment and differentiation. We investigated in vivo whether cells of endothelial origin phenotypically change upon heterotopic ossification induction and whether infiltration of innate immunity cells influences their commitment and alters the ectopic bone formation. Liposome-encapsulated clodronate was used to assess macrophage impact on endothelial cells in the skeletal muscle upon acute damage in the ECs specific lineage-tracing Cdh5CreERT2:R26REYFP/dtTomato transgenic mice. Macrophage depletion in the injured skeletal muscle partially shifts the fate of ECs toward endochondral differentiation. Upon ectopic stimulation of BMP signaling, monocyte depletion leads to an enhanced contribution of ECs chondrogenesis and to ectopic bone formation, with increased bone volume and density, that is reversed by ACVR1/SMAD pathway inhibitor dipyridamole. This suggests that macrophages contribute to preserve endothelial fate and to limit the bone lesion in a BMP/injury-induced mouse model of heterotopic ossification. Therefore, alterations of the macrophage-endothelial axis may represent a novel target for molecular intervention in heterotopic ossification.
Collapse
Affiliation(s)
- Mario Tirone
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Giovenzana
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Arianna Vallone
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Paola Zordan
- Division of Regenerative Medicine, San Raffaele Scientific Institute, Milan, Italy
| | - Martina Sormani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Raffaela Meneveri
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Antonello E Spinelli
- Centre for Experimental Imaging, San Raffaele Scientific Institute, Milan, Italy
| | - Renata Bocciardi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy.,U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Roberto Ravazzolo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy.,U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Ingrid Cifola
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Milan, Italy
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
17
|
Wang Q, Zhang P, Li P, Song X, Hu H, Li X, Chen W, Wang X. Ultrasonography Monitoring of Trauma-Induced Heterotopic Ossification: Guidance for Rehabilitation Procedures. Front Neurol 2018; 9:771. [PMID: 30271377 PMCID: PMC6149315 DOI: 10.3389/fneur.2018.00771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/24/2018] [Indexed: 12/21/2022] Open
Abstract
Traumatic injury is one of varying causes of heterotopic ossification (HO). After HO occurrence, rehabilitation training need alterations to avoid the aggravation of HO. Therefore, monitoring of HO development plays an important role in the rehabilitation procedure. The aims of this study are to evaluate the post-traumatic HO occurring at various joints, to describe the features of HO development in ultrasound images, and to provide a guidance for the orthopedist to make individualized rehabilitation therapy. Eight subjects with the post-traumatic HO were recruited in this study. The joints on the injured side was examined by plain radiography. The joints on the injured side and the corresponding sites on the uninjured sides were scanned by ultrsonography. The HO tissues were segmented automatically using a semi-supervised segmentation algorithm. Then the HO tissues were evaluated in comparison with the corresponding region of the uninjured side. During the development stage of immature HO, ultrasonography was sensitive to observe the involved soft tissue and the calcification of HO. The characteristics of HO tissues in ultrasound image included the hyperechoic mass occasionally accompanied with acoustic shadow and the irregular muscular architecture. It was found that the mean grayscale value of HO was significantly higher (p < 0.001) than that of the uninjured side at the middle and late stages. During the development period of HO, the HO grayscale value gradually increased and the mean grayscale of value of mature HO was significantly higher (p < 0.05) than that of immature HO. According to the information of HO provided by ultrasound, the orthopedist properly adjusted the rehabilitation treatment. The results demonstrated that the visualization of HO using ultrasonography revealed the development of HO in the muscle tissues around the injured joints and thus provide a guidance for the orthopedist to make individualized rehabilitation therapy. Ultrasound could be a useful imaging modality for quantitative evaluation of HO during the rehabilitation of traumatic injury.
Collapse
Affiliation(s)
- Qing Wang
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Peizhen Zhang
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Pengdong Li
- Guangdong Work Injury Rehabilitation Center, Guangzhou, China
| | - Xiangfen Song
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Huijing Hu
- Guangdong Work Injury Rehabilitation Center, Guangzhou, China
| | - Xuan Li
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wufan Chen
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Xiaoyun Wang
- Guangdong Work Injury Rehabilitation Center, Guangzhou, China
| |
Collapse
|