1
|
Barkasi M, Bansal A, Jörges B, Harris LR. Online reach adjustments induced by real-time movement sonification. Hum Mov Sci 2024; 96:103250. [PMID: 38964027 DOI: 10.1016/j.humov.2024.103250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Movement sonification can improve motor control in both healthy subjects (e.g., learning or refining a sport skill) and those with sensorimotor deficits (e.g., stroke patients and deafferented individuals). It is not known whether improved motor control and learning from movement sonification are driven by feedback-based real-time ("online") trajectory adjustments, adjustments to internal models over multiple trials, or both. We searched for evidence of online trajectory adjustments (muscle twitches) in response to movement sonification feedback by comparing the kinematics and error of reaches made with online (i.e., real-time) and terminal sonification feedback. We found that reaches made with online feedback were significantly more jerky than reaches made with terminal feedback, indicating increased muscle twitching (i.e., online trajectory adjustment). Using a between-subject design, we found that online feedback was associated with improved motor learning of a reach path and target over terminal feedback; however, using a within-subjects design, we found that switching participants who had learned with online sonification feedback to terminal feedback was associated with a decrease in error. Thus, our results suggest that, with our task and sonification, movement sonification leads to online trajectory adjustments which improve internal models over multiple trials, but which themselves are not helpful online corrections.
Collapse
Affiliation(s)
- Michael Barkasi
- Centre for Vision Research, York University, 4700 Keele Street, Toronto M3J 1P3, Ontario, Canada; Department of Neuroscience, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis 63110-1010, MO, USA.
| | - Ambika Bansal
- Centre for Vision Research, York University, 4700 Keele Street, Toronto M3J 1P3, Ontario, Canada.
| | - Björn Jörges
- Centre for Vision Research, York University, 4700 Keele Street, Toronto M3J 1P3, Ontario, Canada.
| | - Laurence R Harris
- Centre for Vision Research, York University, 4700 Keele Street, Toronto M3J 1P3, Ontario, Canada.
| |
Collapse
|
2
|
Urbina J, Abarca VE, Elias DA. Integration of music-based game approaches with wearable devices for hand neurorehabilitation: a narrative review. J Neuroeng Rehabil 2024; 21:89. [PMID: 38811987 PMCID: PMC11134927 DOI: 10.1186/s12984-024-01379-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Restoring hand functionality is critical for fostering independence in individuals with neurological disorders. Various therapeutic approaches have emerged to address motor function restoration, with music-based therapies demonstrating notable advantages in enhancing neuroplasticity, an integral component of neurorehabilitation. Despite the positive effects observed, there remains a gap in the literature regarding implementing music treatments in neurorehabilitation, such as Neurologic Music Therapy (NMT), especially in conjunction with emerging fields like wearable devices and game-based therapies. METHODS A literature search was conducted in various databases, including PubMed, Scopus, IEEE Xplore, and ACM Digital Library. The search was performed using a literature search methodology based on keywords. Information collected from the studies pertained to the approach used in music therapy, the design of the video games, and the types of wearable devices utilized. RESULTS A total of 158 articles were found, including 39 from PubMed, 34 from IEEE Xplore, 48 from Scopus, 37 from ACM Digital Library, and 35 from other sources. Duplicate entries, of which there were 41, were eliminated. In the first screening phase, 152 papers were screened for title and abstract. Subsequently, 89 articles were removed if they contained at least one exclusion criterion. Sixteen studies were considered after 63 papers had their full texts verified. CONCLUSIONS The convergence of NMT with emerging fields, such as gamification and wearable devices designed for hand functionality, not only expands therapeutic horizons but also lays the groundwork for innovative, personalized approaches to neurorehabilitation. However, challenges persist in effectively incorporating NMT into rehabilitation programs, potentially hindering its effectiveness.
Collapse
Affiliation(s)
- Javier Urbina
- Biomechanics and Applied Robotics Research Laboratory, Pontificia Universidad Católica del Perú, 15008, Lima, Peru
| | - Victoria E Abarca
- Biomechanics and Applied Robotics Research Laboratory, Pontificia Universidad Católica del Perú, 15008, Lima, Peru.
| | - Dante A Elias
- Biomechanics and Applied Robotics Research Laboratory, Pontificia Universidad Católica del Perú, 15008, Lima, Peru
| |
Collapse
|
3
|
Peyre I, Roby-Brami A, Segalen M, Giron A, Caramiaux B, Marchand-Pauvert V, Pradat-Diehl P, Bevilacqua F. Effect of sonification types in upper-limb movement: a quantitative and qualitative study in hemiparetic and healthy participants. J Neuroeng Rehabil 2023; 20:136. [PMID: 37798637 PMCID: PMC10552218 DOI: 10.1186/s12984-023-01248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Movement sonification, the use of real-time auditory feedback linked to movement parameters, have been proposed to support rehabilitation. Nevertheless, if promising results have been reported, the effect of the type of sound used has not been studied systematically. The aim of this study was to investigate in a single session the effect of different types of sonification both quantitatively and qualitatively on patients with acquired brain lesions and healthy participants. METHODS An experimental setup enabling arm sonification was developed using three different categories of sonification (direct sound modulation, musical interaction, and soundscape). Simple moving forward movements performed while sliding on a table with both arms were investigated with all participants. Quantitative analysis on the movement timing were performed considering various parameters (sound condition, affected arm and dominance, sonification categories). Qualitative analysis of semi-structured interviews were also conducted, as well as neuropsychological evaluation of music perception. RESULTS For both the patient and healthy groups (15 participants each), average duration for performing the arm movement is significantly longer with sonification compared to the no-sound condition (p < 0.001). Qualitative analysis of semi-structured interviews revealed different aspects of motivational and affective aspects of sonification. Most participants of both groups preferred to complete the task with sound (29 of 30 participants), and described the experience as playful (22 of 30 participants). More precisely, the soundscape (nature sounds) was the most constantly preferred (selected first by 14 of 30 participants). CONCLUSION Overall, our results confirm that the sonification has an effect on the temporal execution of the movement during a single-session. Globally, sonification is welcomed by the participants, and we found convergent and differentiated appreciations of the different sonification types.
Collapse
Affiliation(s)
- Iseline Peyre
- UMR STMS, Ircam, CNRS, Sorbonne Université, 75004, Paris, France
- ISIR, CNRS UMR 7222, Inserm U1150, Sorbonne Université, 75005, Paris, France
- Laboratoire d'Imagerie Biomédicale (LIB), Inserm, CNRS, Sorbonne Université, 75006, Paris, France
| | - Agnès Roby-Brami
- ISIR, CNRS UMR 7222, Inserm U1150, Sorbonne Université, 75005, Paris, France
| | - Maël Segalen
- UMR STMS, Ircam, CNRS, Sorbonne Université, 75004, Paris, France
- ISIR, CNRS UMR 7222, Inserm U1150, Sorbonne Université, 75005, Paris, France
| | - Alain Giron
- Laboratoire d'Imagerie Biomédicale (LIB), Inserm, CNRS, Sorbonne Université, 75006, Paris, France
| | - Baptiste Caramiaux
- ISIR, CNRS UMR 7222, Inserm U1150, Sorbonne Université, 75005, Paris, France
| | | | - Pascale Pradat-Diehl
- Laboratoire d'Imagerie Biomédicale (LIB), Inserm, CNRS, Sorbonne Université, 75006, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Maladies du Système Nerveux, 75013, Paris, France
- GRC HaMCRe, Sorbonne Université, 75013, Paris, France
| | | |
Collapse
|
4
|
Papaleo ED, D'Alonzo M, Fiori F, Piombino V, Falato E, Pilato F, De Liso A, Di Lazzaro V, Di Pino G. Integration of proprioception in upper limb prostheses through non-invasive strategies: a review. J Neuroeng Rehabil 2023; 20:118. [PMID: 37689701 PMCID: PMC10493033 DOI: 10.1186/s12984-023-01242-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023] Open
Abstract
Proprioception plays a key role in moving our body dexterously and effortlessly. Nevertheless, the majority of investigations evaluating the benefits of providing supplemental feedback to prosthetics users focus on delivering touch restitution. These studies evaluate the influence of touch sensation in an attempt to improve the controllability of current robotic devices. Contrarily, investigations evaluating the capabilities of proprioceptive supplemental feedback have yet to be comprehensively analyzed to the same extent, marking a major gap in knowledge within the current research climate. The non-invasive strategies employed so far to restitute proprioception are reviewed in this work. In the absence of a clearly superior strategy, approaches employing vibrotactile, electrotactile and skin-stretch stimulation achieved better and more consistent results, considering both kinesthetic and grip force information, compared with other strategies or any incidental feedback. Although emulating the richness of the physiological sensory return through artificial feedback is the primary hurdle, measuring its effects to eventually support the integration of cumbersome and energy intensive hardware into commercial prosthetic devices could represent an even greater challenge. Thus, we analyze the strengths and limitations of previous studies and discuss the possible benefits of coupling objective measures, like neurophysiological parameters, as well as measures of prosthesis embodiment and cognitive load with behavioral measures of performance. Such insights aim to provide additional and collateral outcomes to be considered in the experimental design of future investigations of proprioception restitution that could, in the end, allow researchers to gain a more detailed understanding of possibly similar behavioral results and, thus, support one strategy over another.
Collapse
Affiliation(s)
- Ermanno Donato Papaleo
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico Di Roma, Via Álvaro Del Portillo 21, 00128, Rome, Italy
| | - Marco D'Alonzo
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico Di Roma, Via Álvaro Del Portillo 21, 00128, Rome, Italy
| | - Francesca Fiori
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico Di Roma, Via Álvaro Del Portillo 21, 00128, Rome, Italy
| | - Valeria Piombino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico Di Roma, Via Álvaro Del Portillo 21, 00128, Rome, Italy
| | - Emma Falato
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Fabio Pilato
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Alfredo De Liso
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Vincenzo Di Lazzaro
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Giovanni Di Pino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico Di Roma, Via Álvaro Del Portillo 21, 00128, Rome, Italy.
| |
Collapse
|
5
|
Park KS, Buseth L, Hong J, Etnier JL. Music-based multicomponent exercise training for community-dwelling older adults with mild-to-moderate cognitive decline: a feasibility study. Front Med (Lausanne) 2023; 10:1224728. [PMID: 37671396 PMCID: PMC10475546 DOI: 10.3389/fmed.2023.1224728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction This study explored the feasibility and preliminary efficacy of a music-based, multicomponent exercise intervention among community-dwelling older adults with mild-to-moderate cognitive impairment. Methods 16 older adults aged 85±9 years with mild-to-moderate cognitive impairment received music-based multicomponent exercise training for 20 weeks at an independent living facility. Participants received aerobic, resistance, and balance training paired with beat-accentuated music stimulation. Participants' adherence to the training was tracked down and their cognitive and physical functioning and health-related quality of life were assessed at pre- and post-test. Results 3 participants withdrew due to unexpected issues unrelated to the intervention and thus 13 participants (7 females) attended an average of 4.6 days/week over 20 weeks and reported high satisfaction with the intervention (90.6%). Participants showed significant improvement in global cognition, cognitive processing speed, and walking endurance/aerobic fitness at post-test. Discussion These findings support the feasibility of music-based, multicomponent exercise training for older adults in an independent living facility and set the stage for future studies to test the efficacy of music on physical activity and ensuing health outcomes. We conclude that music-based, multicomponent exercise training can be beneficial for community-dwelling older adults with mild-to-moderate cognitive decline. As a form of rhythmic auditory stimulation, beat-accentuated music can be combined with exercise training to manipulate exercise tempo and may provide a source of motivation to help older adults adhere to exercise.
Collapse
Affiliation(s)
- Kyoung Shin Park
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Lake Buseth
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Jiyeong Hong
- Freelance Musician, Greensboro, NC, United States
| | - Jennifer L. Etnier
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
6
|
Auditory Stimulation Improves Gait and Posture in Cerebral Palsy: A Systematic Review with Between- and Within-Group Meta-Analysis. CHILDREN 2022; 9:children9111752. [DOI: 10.3390/children9111752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
The past decade has seen an increased interest in the implementation of auditory stimulation (AStim) for managing gait and postural deficits in people with cerebral palsy. Although existing reviews report beneficial effects of AStim on the spatiotemporal and kinematic parameters of gait, there are still numerous limitations that need to be addressed to correctly interpret these results. For instance, existing reviews have failed to characterize the effects of AStim by conducting separate between and within-group meta-analyses, these reviews have not evaluated the influence of AStim on postural outcomes, and nor have included several high-quality existing trials. In this study, we conducted between- and within-group meta-analyses to establish a state of evidence for the influence of AStim on gait and postural outcomes in people with cerebral palsy. We searched the literature according to PRISMA-P guidelines across 10 databases. Of 1414 records, 14 studies, including a total of 325 people with cerebral palsy, met the inclusion criterion. We report a significant enhancement in gait speed, stride length, cadence, and gross motor function (standing and walking) outcomes with AStim compared to conventional physiotherapy. The findings from this analysis reveal the beneficial influence of AStim on the spatiotemporal and kinematic parameters of gait and postural stability in people with cerebral palsy. Furthermore, we discuss the futurized implementation of smart wearables that can deliver person-centred AStim rehabilitation in people with cerebral palsy.
Collapse
|
7
|
Yang S, Suh JH, Kwon S, Chang MC. The effect of neurologic music therapy in patients with cerebral palsy: A systematic narrative review. Front Neurol 2022; 13:852277. [PMID: 36176557 PMCID: PMC9514322 DOI: 10.3389/fneur.2022.852277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
Background Cerebral palsy (CP) is one of the most common causes of disability in children. It is characterized by impairment in motor function and coordination and difficulties in performing daily life activities. Previous research supports that neurologic music therapy (NMT) was effective in improving motor function, cognition, and emotional wellbeing in patients with various neurologic disorders. However, the benefit of NMT in patients with CP have not yet been thoroughly investigated. The aim of this review was to investigate the potential effect of NMT motor rehabilitation techniques for patients. Materials and methods We searched articles published up to May 24, 2022 in PubMed, Embase, Scopus, Cochrane library, Web of science, and Ovid MEDLINEdatabases. We included studies that investigated the effect of NMT in patients with CP. Results After search, 4,117 articles were identified using the search terms. After reading the titles and abstracts, 4,089 articles that did not meet our inclusion criteria were excluded. The remaining 28 articles which were assessed for eligibility. Finally, 15 studies were included in this systematic review. Among 15 studies that investigated the effect of NMT on patients with CP, 7 studies were on rhythmic auditory stimulation (RAS), 6 studies were on therapeutic instrumental music performance (TIMP), and 2 studies were on patterned sensory enhancement (PSE). Conclusions Various techniques of NMT brings beneficial effects for gross and fine motor improvements in patients with CP. NMT techniques, such as RAS, TIMP, and PSE, may be a potential alternative rehabilitation strategy to enhance gross and fine motor skills for patients with CP.
Collapse
Affiliation(s)
- Seoyon Yang
- Department of Rehabilitation Medicine, College of Medicine, Ewha Woman's University, Seoul, South Korea
| | - Jee Hyun Suh
- Department of Rehabilitation Medicine, College of Medicine, Ewha Woman's University, Seoul, South Korea
| | - SuYeon Kwon
- Department of Rehabilitation Medicine, College of Medicine, Ewha Woman's University, Seoul, South Korea
| | - Min Cheol Chang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, South Korea
- *Correspondence: Min Cheol Chang
| |
Collapse
|
8
|
Kogutek D, Ready E, Holmes JD, Grahn JA. Synchronization during Improvised Active Music Therapy in clients with Parkinson’s disease. NORDIC JOURNAL OF MUSIC THERAPY 2022. [DOI: 10.1080/08098131.2022.2107054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Demian Kogutek
- Faculty of Music, Wilfrid Laurier University, London, ON, Canada
| | - Emily Ready
- Brain and Mind Institute, Western University, London, ON, Canada
| | - Jeffrey D. Holmes
- School of Occupational Therapy, Elborn College, Western University, London, ON, Canada
| | - Jessica A. Grahn
- Department of Psychology and Brain and Mind Institute, Western University, London, ON, Canada
| |
Collapse
|
9
|
Hankinson K, Shaykevich A, Vallence AM, Rodger J, Rosenberg M, Etherton-Beer C. A Tailored Music-Motor Therapy and Real-Time Biofeedback Mobile Phone App (‘GotRhythm’) to Promote Rehabilitation Following Stroke: A Pilot Study. Neurosci Insights 2022; 17:26331055221100587. [PMID: 35615116 PMCID: PMC9125048 DOI: 10.1177/26331055221100587] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 04/25/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Stroke persists as an important cause of long-term disability world-wide with the need for rehabilitation strategies to facilitate plasticity and improve motor function in stroke survivors. Rhythm-based interventions can improve motor function in clinical populations. This study tested a novel music-motor software application ‘GotRhythm’ on motor function after stroke. Methods: Participants were 22 stroke survivors undergoing inpatient rehabilitation in a subacute stroke ward. Participants were randomised to the GotRhythm intervention (combining individualised music and augmented auditory feedback along with wearable sensors to deliver a personalised rhythmic auditory stimulation training protocol) or usual care. Intervention group participants were offered 6-weeks of the GotRhythm intervention, consisting of a supervised 20-minute music-motor therapy session using GotRhythm conducted 3 times a week for 6 weeks. The primary feasibility outcomes were adherence to the intervention and physical function (change in the Fugl-Meyer Assessment of Motor Recovery score) measured at baseline, after 3-weeks and at end of the intervention period (6-weeks). Results: Three of 10 participants randomised to the intervention did not receive any of the GotRhythym music-motor therapy. Of the remaining 7 intervention group participants, only 5 completed the 3-week mid-intervention assessment and only 2 completed the 6-week post-intervention assessment. Participants who used the intervention completed 5 (IQR 4,7) sessions with total ‘dose’ of the intervention of 70 (40, 201) minutes. Conclusion: Overall, adherence to the intervention was poor, highlighting that application of technology assisted music-based interventions for stroke survivors in clinical environments is challenging along with usual care, recovery, and the additional clinical load.
Collapse
Affiliation(s)
- Katherine Hankinson
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Alex Shaykevich
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Ann-Maree Vallence
- College of Science, Health, Engineering, and Education, Murdoch University, Murdoch, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch, Australia
| | - Jennifer Rodger
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Michael Rosenberg
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Christopher Etherton-Beer
- WA Centre for Health and Ageing, Medical School, University of Western Australia, Crawley, WA, Australia
- Medical Division, Royal Perth Bentley Group, Perth, Western Australia
| |
Collapse
|
10
|
Proulx CE, Louis Jean MT, Higgins J, Gagnon DH, Dancause N. Somesthetic, Visual, and Auditory Feedback and Their Interactions Applied to Upper Limb Neurorehabilitation Technology: A Narrative Review to Facilitate Contextualization of Knowledge. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:789479. [PMID: 36188924 PMCID: PMC9397809 DOI: 10.3389/fresc.2022.789479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022]
Abstract
Reduced hand dexterity is a common component of sensorimotor impairments for individuals after stroke. To improve hand function, innovative rehabilitation interventions are constantly developed and tested. In this context, technology-based interventions for hand rehabilitation have been emerging rapidly. This paper offers an overview of basic knowledge on post lesion plasticity and sensorimotor integration processes in the context of augmented feedback and new rehabilitation technologies, in particular virtual reality and soft robotic gloves. We also discuss some factors to consider related to the incorporation of augmented feedback in the development of technology-based interventions in rehabilitation. This includes factors related to feedback delivery parameter design, task complexity and heterogeneity of sensory deficits in individuals affected by a stroke. In spite of the current limitations in our understanding of the mechanisms involved when using new rehabilitation technologies, the multimodal augmented feedback approach appears promising and may provide meaningful ways to optimize recovery after stroke. Moving forward, we argue that comparative studies allowing stratification of the augmented feedback delivery parameters based upon different biomarkers, lesion characteristics or impairments should be advocated (e.g., injured hemisphere, lesion location, lesion volume, sensorimotor impairments). Ultimately, we envision that treatment design should combine augmented feedback of multiple modalities, carefully adapted to the specific condition of the individuals affected by a stroke and that evolves along with recovery. This would better align with the new trend in stroke rehabilitation which challenges the popular idea of the existence of an ultimate good-for-all intervention.
Collapse
Affiliation(s)
- Camille E. Proulx
- School of Rehabilitation, Faculty of Medecine, Université de Montréal, Montreal, QC, Canada
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal – Site Institut universitaire sur la réadaptation en déficience physique de Montréal, CIUSSS Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
- *Correspondence: Camille E. Proulx
| | | | - Johanne Higgins
- School of Rehabilitation, Faculty of Medecine, Université de Montréal, Montreal, QC, Canada
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal – Site Institut universitaire sur la réadaptation en déficience physique de Montréal, CIUSSS Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Dany H. Gagnon
- School of Rehabilitation, Faculty of Medecine, Université de Montréal, Montreal, QC, Canada
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal – Site Institut universitaire sur la réadaptation en déficience physique de Montréal, CIUSSS Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Numa Dancause
- Department of Neurosciences, Faculty of Medecine, Université de Montréal, Montreal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
11
|
Braun Janzen T, Koshimori Y, Richard NM, Thaut MH. Rhythm and Music-Based Interventions in Motor Rehabilitation: Current Evidence and Future Perspectives. Front Hum Neurosci 2022; 15:789467. [PMID: 35111007 PMCID: PMC8801707 DOI: 10.3389/fnhum.2021.789467] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
Research in basic and clinical neuroscience of music conducted over the past decades has begun to uncover music’s high potential as a tool for rehabilitation. Advances in our understanding of how music engages parallel brain networks underpinning sensory and motor processes, arousal, reward, and affective regulation, have laid a sound neuroscientific foundation for the development of theory-driven music interventions that have been systematically tested in clinical settings. Of particular significance in the context of motor rehabilitation is the notion that musical rhythms can entrain movement patterns in patients with movement-related disorders, serving as a continuous time reference that can help regulate movement timing and pace. To date, a significant number of clinical and experimental studies have tested the application of rhythm- and music-based interventions to improve motor functions following central nervous injury and/or degeneration. The goal of this review is to appraise the current state of knowledge on the effectiveness of music and rhythm to modulate movement spatiotemporal patterns and restore motor function. By organizing and providing a critical appraisal of a large body of research, we hope to provide a revised framework for future research on the effectiveness of rhythm- and music-based interventions to restore and (re)train motor function.
Collapse
Affiliation(s)
- Thenille Braun Janzen
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Yuko Koshimori
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, CAMH, Toronto, ON, Canada
| | - Nicole M. Richard
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Faculty of Music, Belmont University, Nashville, TN, United States
| | - Michael H. Thaut
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- *Correspondence: Michael H. Thaut,
| |
Collapse
|
12
|
Oppici L, Grütters K, Garofolini A, Rosenkranz R, Narciss S. Deliberate Practice and Motor Learning Principles to Underpin the Design of Training Interventions for Improving Lifting Movement in the Occupational Sector: A Perspective and a Pilot Study on the Role of Augmented Feedback. Front Sports Act Living 2021; 3:746142. [PMID: 34796319 PMCID: PMC8593185 DOI: 10.3389/fspor.2021.746142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
Spine posture during repetitive lifting is one of the main risk factors for low-back injuries in the occupational sector. It is thus critical to design appropriate intervention strategies for training workers to improve their posture, reducing load on the spine during lifting. The main approach to train safe lifting to workers has been educational; however, systematic reviews and meta-analyses have shown that this approach does not improve lifting movement nor reduces the risk of low back injury. One of the main limitations of this approach lies in the amount, quality and context of practice of the lifting movement. In this article, first we argue for integrating psychologically-grounded perspectives of practice design in the development of training interventions for safe lifting. Principles from deliberate practice and motor learning are combined and integrated. Given the complexity of lifting, a training intervention should occur in the workplace and invite workers to repeatedly practice/perform the lifting movement with the clear goal of improving their lifting-related body posture. Augmented feedback has a central role in creating the suitable condition for achieving such intervention. Second, we focus on spine bending as risk factor and present a pilot study examining the benefits and boundary conditions of different feedback modalities for reducing bending during lifting. The results showed how feedback modalities meet differently key requirements of deliberate practice conditions, i.e., feedback has to be informative, individualized and actionable. Following the proposed approach, psychology will gain an active role in the development of training interventions, contributing to finding solutions for a reduction of risk factors for workers.
Collapse
Affiliation(s)
- Luca Oppici
- Psychology of Learning and Instruction, Department of Psychology, School of Science, Technische Universität Dresden, Dresden, Germany.,Centre for Tactile Internet With Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany
| | - Kim Grütters
- Psychology of Learning and Instruction, Department of Psychology, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Alessandro Garofolini
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
| | - Robert Rosenkranz
- Centre for Tactile Internet With Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany.,Acoustic and Haptic Engineering, Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Dresden, Germany
| | - Susanne Narciss
- Psychology of Learning and Instruction, Department of Psychology, School of Science, Technische Universität Dresden, Dresden, Germany.,Centre for Tactile Internet With Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
13
|
Ghai S, Maso FD, Ogourtsova T, Porxas AX, Villeneuve M, Penhune V, Boudrias MH, Baillet S, Lamontagne A. Neurophysiological Changes Induced by Music-Supported Therapy for Recovering Upper Extremity Function after Stroke: A Case Series. Brain Sci 2021; 11:brainsci11050666. [PMID: 34065395 PMCID: PMC8161385 DOI: 10.3390/brainsci11050666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022] Open
Abstract
Music-supported therapy (MST) follows the best practice principles of stroke rehabilitation and has been proven to instigate meaningful enhancements in motor recovery post-stroke. The existing literature has established that the efficacy and specificity of MST relies on the reinforcement of auditory-motor functional connectivity in related brain networks. However, to date, no study has attempted to evaluate the underlying cortical network nodes that are key to the efficacy of MST post-stroke. In this case series, we evaluated changes in connectivity within the auditory-motor network and changes in upper extremity function following a 3-week intensive piano training in two stroke survivors presenting different levels of motor impairment. Connectivity was assessed pre- and post-training in the α- and the β-bands within the auditory-motor network using magnetoencephalography while participants were passively listening to a standardized melody. Changes in manual dexterity, grip strength, movement coordination, and use of the upper extremity were also documented in both stroke survivors. After training, an increase in the clinical measures was accompanied by enhancements in connectivity between the auditory and motor network nodes for both the α- and the β-bands, especially in the affected hemisphere. These neurophysiological changes associated with the positive effects of post-stroke MST on motor outcomes delineate a path for a larger scale clinical trial.
Collapse
Affiliation(s)
- Shashank Ghai
- School of Physical and Occupational Therapy, McGill University, Montreal, QC H3G 1Y5, Canada; (T.O.); (M.-H.B.); (A.L.)
- Feil & Oberfeld Research Centre of the Jewish Rehabilitation Hospital–CISSS Laval, A Research Site of the Centre for Interdisciplinary Research of Greater Montreal (CRIR), Laval, QC H7V 1R2, Canada;
- Correspondence:
| | - Fabien Dal Maso
- Laboratory of Simulation and Movement Modelling, School of Kinesiology and Physical Activity, Université de Montréal, Montreal, QC H3T 1J4, Canada;
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage, Montréal, QC H7N 0A5, Canada
| | - Tatiana Ogourtsova
- School of Physical and Occupational Therapy, McGill University, Montreal, QC H3G 1Y5, Canada; (T.O.); (M.-H.B.); (A.L.)
- Feil & Oberfeld Research Centre of the Jewish Rehabilitation Hospital–CISSS Laval, A Research Site of the Centre for Interdisciplinary Research of Greater Montreal (CRIR), Laval, QC H7V 1R2, Canada;
| | - Alba-Xifra Porxas
- Graduate Program in Biological and Biomedical Engineering, McGill University, Montreal, QC H3A 0C3, Canada;
| | - Myriam Villeneuve
- Feil & Oberfeld Research Centre of the Jewish Rehabilitation Hospital–CISSS Laval, A Research Site of the Centre for Interdisciplinary Research of Greater Montreal (CRIR), Laval, QC H7V 1R2, Canada;
| | - Virginia Penhune
- Department of Psychology, Concordia University, Montreal, QC H3G 1M8, Canada;
- Laboratory for Brain Music and Sound (BRAMS), Centre for Research in Brain, Language and Music, Montreal, QC H2V 2S9, Canada
| | - Marie-Hélène Boudrias
- School of Physical and Occupational Therapy, McGill University, Montreal, QC H3G 1Y5, Canada; (T.O.); (M.-H.B.); (A.L.)
- Feil & Oberfeld Research Centre of the Jewish Rehabilitation Hospital–CISSS Laval, A Research Site of the Centre for Interdisciplinary Research of Greater Montreal (CRIR), Laval, QC H7V 1R2, Canada;
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada;
| | - Anouk Lamontagne
- School of Physical and Occupational Therapy, McGill University, Montreal, QC H3G 1Y5, Canada; (T.O.); (M.-H.B.); (A.L.)
- Feil & Oberfeld Research Centre of the Jewish Rehabilitation Hospital–CISSS Laval, A Research Site of the Centre for Interdisciplinary Research of Greater Montreal (CRIR), Laval, QC H7V 1R2, Canada;
| |
Collapse
|
14
|
Schaffert N, Braun Janzen T, Ploigt R, Schlüter S, Vuong V, Thaut MH. Development and evaluation of a novel music-based therapeutic device for upper extremity movement training: A pre-clinical, single-arm trial. PLoS One 2020; 15:e0242552. [PMID: 33211773 PMCID: PMC7676671 DOI: 10.1371/journal.pone.0242552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Restoration of upper limb motor function and patient functional independence are crucial treatment targets in neurological rehabilitation. Growing evidence indicates that music-based intervention is a promising therapeutic approach for the restoration of upper extremity functional abilities in neurologic conditions such as cerebral palsy, stroke, and Parkinson's Disease. In this context, music technology may be particularly useful to increase the availability and accessibility of music-based therapy and assist therapists in the implementation and assessment of targeted therapeutic goals. In the present study, we conducted a pre-clinical, single-arm trial to evaluate a novel music-based therapeutic device (SONATA) for upper limb extremity movement training. The device consists of a graphical user interface generated by a single-board computer displayed on a 32" touchscreen with built-in speakers controlled wirelessly by a computer tablet. The system includes two operational modes that allow users to play musical melodies on a virtual keyboard or draw figures/shapes whereby every action input results in controllable sensory feedback. Four motor tasks involving hand/finger movement were performed with 21 healthy individuals (13 males, aged 26.4 ± 3.5 years) to evaluate the device's operational modes and main features. The results of the functional tests suggest that the device is a reliable system to present pre-defined sequences of audiovisual stimuli and shapes and to record response and movement data. This preliminary study also suggests that the device is feasible and adequate for use with healthy individuals. These findings open new avenues for future clinical research to further investigate the feasibility and usability of the SONATA as a tool for upper extremity motor function training in neurological rehabilitation. Directions for future clinical research are discussed.
Collapse
Affiliation(s)
- Nina Schaffert
- Department of Movement and Training Science, Institute for Human Movement Science, University of Hamburg, Hamburg, Germany
- BeSB GmbH Berlin, Sound Engineering, Berlin, Germany
| | - Thenille Braun Janzen
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Roy Ploigt
- BeSB GmbH Berlin, Sound Engineering, Berlin, Germany
| | | | - Veronica Vuong
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, Canada
| | - Michael H. Thaut
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, Canada
| |
Collapse
|
15
|
Audio Feedback for Device-Supported Balance Training: Parameter Mapping and Influencing Factors. ACOUSTICS 2020. [DOI: 10.3390/acoustics2030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent studies suggest that real-time auditory feedback is an effective method to facilitate motor learning. The evaluation of the parameter mapping (sound-to-movement mapping) is a crucial, yet frequently neglected step in the development of audio feedback. We therefore conducted two experiments to evaluate audio parameters with target finding exercises designed for balance training. In the first experiment with ten participants, five different audio parameters were evaluated on the X-axis (mediolateral movement). Following that, in a larger experiment with twenty participants in a two-dimensional plane (mediolateral and anterior-posterior movement), a basic and synthetic audio model was compared to a more complex audio model with musical characteristics. Participants were able to orient themselves and find the targets with the audio models. In the one-dimensional condition of experiment one, percussion sounds and synthetic sound wavering were the overall most effective audio parameters. In experiment two, the synthetic model was more effective and better evaluated by the participants. In general, basic sounds were more helpful than complex (musical) sound models. Musical abilities and age were correlated with certain exercise scores. Audio feedback is a promising approach for balance training and should be evaluated with patients. Preliminary evaluation of the respective parameter mapping is highly advisable.
Collapse
|
16
|
Ghai S, Ghai I, Lamontagne A. Virtual reality training enhances gait poststroke: a systematic review and meta-analysis. Ann N Y Acad Sci 2020; 1478:18-42. [PMID: 32659041 DOI: 10.1111/nyas.14420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/14/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022]
Abstract
Virtual reality (VR)-based interventions are gaining widespread attention for managing neurological disorders such as stroke. A metastatistical consensus regarding the intervention is strongly warranted. In this study, we attempt to address this gap in the literature and provide the current state of evidence for the effects of VR on gait performance. We conducted both between- and within-group meta-analyses to provide a state of evidence for VR. Moreover, we conducted a search adhering to PRISMA guidelines on nine databases. Out of 1866 records, 32 studies involving a total of 809 individuals were included in this review. Considering all included studies, significant enhancements in gait parameters were observed with VR-based interventions compared with conventional therapy. A between-group meta-analysis reported beneficial significant medium effects of VR training on cadence (Hedge's g = 0.55), stride length ((STrL; Hedge's g = 0.46), and gait speed (Hedge's g = 0.30). Similarly, a within-group meta-analysis further revealed positive medium effects of VR on cadence (Hedge's g = 0.76), STrL (Hedge's g = 0.61), and gait speed (Hedge's g = 0.69). Additional subgroup analyses revealed beneficial effects of joint application of VR and robot-assisted gait training on gait speed (Hedge's g = 0.50). Collectively, findings from this review provide evidence for the effectiveness of VR-based gait training for stroke survivors.
Collapse
Affiliation(s)
- Shashank Ghai
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada.,Feil & Oberfeld Research Centre of the Jewish Rehabilitation Hospital, Centre for Interdisciplinary Research of Greater Montreal (CRIR), Laval, Quebec, Canada
| | | | - Anouk Lamontagne
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada.,Feil & Oberfeld Research Centre of the Jewish Rehabilitation Hospital, Centre for Interdisciplinary Research of Greater Montreal (CRIR), Laval, Quebec, Canada
| |
Collapse
|
17
|
Tian R, Zhang B, Zhu Y. Rhythmic Auditory Stimulation as an Adjuvant Therapy Improved Post-stroke Motor Functions of the Upper Extremity: A Randomized Controlled Pilot Study. Front Neurosci 2020; 14:649. [PMID: 32714133 PMCID: PMC7344203 DOI: 10.3389/fnins.2020.00649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/26/2020] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVES To explore whether rhythmic auditory stimulation (RAS) could improve motor functions of post-stroke hemiparetic upper extremity. DESIGN A prospective, randomized controlled, assessor-blinded pilot study. METHODS Thirty stroke patients were randomly distributed into the RAS group (n = 15) and the control group (n = 15). Both groups received regular therapies. The RAS group received additional 30 min of RAS training, while the control group received additional 30 min of regular therapies for 5 days per week for 4 weeks. The Fugl-Meyer Assessment-Upper Extremity (FMA-UE), Wolf Motor Function Test (WMFT), and Barthel Index (BI) were used. The co-activation interval and co-contraction index were calculated from surface electromyography (sEMG) recordings on the affected biceps and triceps during elbow flexion and extension. Assessments were performed before and after the treatments. RESULTS Significant improvements in motor functions were observed within both groups (p < 0.05 in the FMA-UE, WMFT, and BI, respectively), as well as between groups after the treatments (higher scores in the RAS group, all p < 0.05 except for p = 0.052 in the FMA-UE; group × time interaction, all p < 0.05). Statistical significance was found in the co-activation interval between groups after the treatments (lower in the RAS group; p = 0.022 during elbow extension; p = 0.001 during elbow flexion; group × time interaction, p < 0.05 only during elbow extension). No statistical significance was found in the co-contraction index between groups; an inversed pattern of changes was observed between groups supported by relatively higher increments in the triceps recruitments to the biceps. CONCLUSION Using RAS in task-oriented exercises was effective in moderating co-contraction, facilitating task-oriented movements of the hemiparetic upper extremity, and improving ADLs among those who had emerging isolated joint movements. The effects were evident on sEMG possibly by adjusting the balance of recruitments between the agonist and the antagonist. CLINICAL TRIAL REGISTRATION The study was registered at the Chinese Clinical Trial Registry (No. 1900026665).
Collapse
Affiliation(s)
- Rujin Tian
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Sports Medicine and Rehabilitation Center, Qingdao Municipal Hospital, Qingdao, China
| | - Bei Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yulian Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Peyre I, Hanna-Boutros B, Lackmy-Vallee A, Kemlin C, Bayen E, Pradat-Diehl P, Marchand-Pauvert V. Music Restores Propriospinal Excitation During Stroke Locomotion. Front Syst Neurosci 2020; 14:17. [PMID: 32327977 PMCID: PMC7161673 DOI: 10.3389/fnsys.2020.00017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/10/2020] [Indexed: 11/24/2022] Open
Abstract
Music-based therapy for rehabilitation induces neuromodulation at the brain level and improves the functional recovery. In line with this, musical rhythmicity improves post-stroke gait. Moreover, an external distractor also helps stroke patients to improve locomotion. We raised the question whether music with irregular tempo (arrhythmic music), and its possible influence on attention would induce neuromodulation and improve the post-stroke gait. We tested music-induced neuromodulation at the level of a propriospinal reflex, known to be particularly involved in the control of stabilized locomotion; after stroke, the reflex is enhanced on the hemiparetic side. The study was conducted in 12 post-stroke patients and 12 controls. Quadriceps EMG was conditioned by electrical stimulation of the common peroneal nerve, which produces a biphasic facilitation on EMG, reflecting the level of activity of the propriospinal reflex between ankle dorsiflexors and quadriceps (CPQ reflex). The CPQ reflex was tested during treadmill locomotion at the preferred speed of each individual, in 3 conditions randomly alternated: without music vs. 2 arrhythmic music tracks, including a pleasant melody and unpleasant aleatory electronic sounds (AES); biomechanical and physiological parameters were also investigated. The CPQ reflex was significantly larger in patients during walking without sound, compared to controls. During walking with music, irrespective of the theme, there was no more difference between groups. In controls, music had no influence on the size of CPQ reflex. In patients, CPQ reflex was significantly larger during walking without sound than when listening to the melody or AES. No significant differences have been revealed concerning the biomechanical and the physiological parameters in both groups. Arrhythmic music listening modulates the spinal excitability during post-stroke walking, restoring the CPQ reflex activity to normality. The plasticity was not accompanied by any clear improvement of gait parameters, but the patients reported to prefer walking with music than without. The role of music as external focus of attention is discussed. This study has shown that music can modulate propriospinal neural network particularly involved in the gait control during the first training session. It is speculated that repetition may help to consolidate plasticity and would contribute to gait recovery after stroke.
Collapse
Affiliation(s)
- Iseline Peyre
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France.,Sorbonne Université, CNRS, Institut de Recherche et de Coordination en Acoustique Musique (IRCAM), UMR Sciences et Technologies de la Musique et du Son (STMS), Paris, France
| | | | | | - Claire Kemlin
- Sorbonne Université, AP-HP, GRC n°24, Handicap Moteur et Cognitif & Réadaptation (HaMCRe), Paris, France
| | - Eléonore Bayen
- Sorbonne Université, AP-HP, GRC n°24, Handicap Moteur et Cognitif & Réadaptation (HaMCRe), Paris, France
| | - Pascale Pradat-Diehl
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France.,Sorbonne Université, AP-HP, GRC n°24, Handicap Moteur et Cognitif & Réadaptation (HaMCRe), Paris, France
| | | |
Collapse
|
19
|
Maier M, Ballester BR, Verschure PFMJ. Principles of Neurorehabilitation After Stroke Based on Motor Learning and Brain Plasticity Mechanisms. Front Syst Neurosci 2019; 13:74. [PMID: 31920570 PMCID: PMC6928101 DOI: 10.3389/fnsys.2019.00074] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 11/19/2019] [Indexed: 01/19/2023] Open
Abstract
What are the principles underlying effective neurorehabilitation? The aim of neurorehabilitation is to exploit interventions based on human and animal studies about learning and adaptation, as well as to show that the activation of experience-dependent neuronal plasticity augments functional recovery after stroke. Instead of teaching compensatory strategies that do not reduce impairment but allow the patient to return home as soon as possible, functional recovery might be more sustainable as it ensures a long-term reduction in impairment and an improvement in quality of life. At the same time, neurorehabilitation permits the scientific community to collect valuable data, which allows inferring about the principles of brain organization. Hence neuroscience sheds light on the mechanisms of learning new functions or relearning lost ones. However, current rehabilitation methods lack the exact operationalization of evidence gained from skill learning literature, leading to an urgent need to bridge motor learning theory and present clinical work in order to identify a set of ingredients and practical applications that could guide future interventions. This work aims to unify the neuroscientific literature relevant to the recovery process and rehabilitation practice in order to provide a synthesis of the principles that constitute an effective neurorehabilitation approach. Previous attempts to achieve this goal either focused on a subset of principles or did not link clinical application to the principles of motor learning and recovery. We identified 15 principles of motor learning based on existing literature: massed practice, spaced practice, dosage, task-specific practice, goal-oriented practice, variable practice, increasing difficulty, multisensory stimulation, rhythmic cueing, explicit feedback/knowledge of results, implicit feedback/knowledge of performance, modulate effector selection, action observation/embodied practice, motor imagery, and social interaction. We comment on trials that successfully implemented these principles and report evidence from experiments with healthy individuals as well as clinical work.
Collapse
Affiliation(s)
- Martina Maier
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Belén Rubio Ballester
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Paul F. M. J. Verschure
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institucio Catalana de Recerca I Estudis Avançats, Barcelona, Spain
| |
Collapse
|
20
|
Ghai S, Ghai I. Virtual Reality Enhances Gait in Cerebral Palsy: A Training Dose-Response Meta-Analysis. Front Neurol 2019; 10:236. [PMID: 30984095 PMCID: PMC6448032 DOI: 10.3389/fneur.2019.00236] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/22/2019] [Indexed: 01/26/2023] Open
Abstract
Virtual-reality-based training can influence gait recovery in children with cerebral palsy. A consensus concerning its influence on spatiotemporal gait parameters and effective training dosage is still warranted. This study analyzes the influence of virtual-reality training (relevant training dosage) on gait recovery in children with cerebral palsy. A search was performed by two reviewers according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines on nine databases: PEDro, EBSCO, PubMed, Cochrane, Web of Science, EMBASE, ICI, Scopus, and PROQUEST. Of 989 records, 16 studies involving a total of 274 children with cerebral palsy met our inclusion criteria. Eighty-eight percent of the studies reported significant enhancements in gait performance after training with virtual reality. Meta-analyses revealed positive effects of virtual-reality training on gait velocity (Hedge's g = 0.68), stride length (0.30), cadence (0.66), and gross motor function measure (0.44). Subgroup analysis reported a training duration of 20–30 min per session, ≤4 times per week across ≥8 weeks to allow maximum enhancements in gait velocity. This study provides preliminary evidence for the beneficial influence of virtual-reality training in gait rehabilitation for children with cerebral palsy.
Collapse
Affiliation(s)
- Shashank Ghai
- Institute for Sports Science, Leibniz University Hannover, Hannover, Germany
| | | |
Collapse
|
21
|
Effects of (music-based) rhythmic auditory cueing training on gait and posture post-stroke: A systematic review & dose-response meta-analysis. Sci Rep 2019; 9:2183. [PMID: 30778101 PMCID: PMC6379377 DOI: 10.1038/s41598-019-38723-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/09/2019] [Indexed: 01/22/2023] Open
Abstract
Gait dysfunctions are common post-stroke. Rhythmic auditory cueing has been widely used in gait rehabilitation for movement disorders. However, a consensus regarding its influence on gait and postural recovery post-stroke is still warranted. A systematic review and meta-analysis was performed to analyze the effects of auditory cueing on gait and postural stability post-stroke. Nine academic databases were searched according to PRISMA guidelines. The eligibility criteria for the studies were a) studies were randomized controlled trials or controlled clinical trials published in English, German, Hindi, Punjabi or Korean languages b) studies evaluated the effects of auditory cueing on spatiotemporal gait and/or postural stability parameters post-stroke c) studies scored ≥4 points on the PEDro scale. Out of 1,471 records, 38 studies involving 968 patients were included in this present review. The review and meta-analyses revealed beneficial effects of training with auditory cueing on gait and postural stability. A training dosage of 20–45 minutes session, for 3–5 times a week enhanced gait performance, dynamic postural stability i.e. velocity (Hedge’s g: 0.73), stride length (0.58), cadence (0.75) and timed-up and go test (−0.76). This review strongly recommends the incorporation of rhythmic auditory cueing based training in gait and postural rehabilitation, post-stroke.
Collapse
|
22
|
Schaffert N, Janzen TB, Mattes K, Thaut MH. A Review on the Relationship Between Sound and Movement in Sports and Rehabilitation. Front Psychol 2019; 10:244. [PMID: 30809175 PMCID: PMC6379478 DOI: 10.3389/fpsyg.2019.00244] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/24/2019] [Indexed: 12/19/2022] Open
Abstract
The role of auditory information on perceptual-motor processes has gained increased interest in sports and psychology research in recent years. Numerous neurobiological and behavioral studies have demonstrated the close interaction between auditory and motor areas of the brain, and the importance of auditory information for movement execution, control, and learning. In applied research, artificially produced acoustic information and real-time auditory information have been implemented in sports and rehabilitation to improve motor performance in athletes, healthy individuals, and patients affected by neurological or movement disorders. However, this research is scattered both across time and scientific disciplines. The aim of this paper is to provide an overview about the interaction between movement and sound and review the current literature regarding the effect of natural movement sounds, movement sonification, and rhythmic auditory information in sports and motor rehabilitation. The focus here is threefold: firstly, we provide an overview of empirical studies using natural movement sounds and movement sonification in sports. Secondly, we review recent clinical and applied studies using rhythmic auditory information and sonification in rehabilitation, addressing in particular studies on Parkinson's disease and stroke. Thirdly, we summarize current evidence regarding the cognitive mechanisms and neural correlates underlying the processing of auditory information during movement execution and its mental representation. The current state of knowledge here reviewed provides evidence of the feasibility and effectiveness of the application of auditory information to improve movement execution, control, and (re)learning in sports and motor rehabilitation. Findings also corroborate the critical role of auditory information in auditory-motor coupling during motor (re)learning and performance, suggesting that this area of clinical and applied research has a large potential that is yet to be fully explored.
Collapse
Affiliation(s)
- Nina Schaffert
- Department of Movement and Training Science, Institute for Human Movement Science, University of Hamburg, Hamburg, Germany
| | - Thenille Braun Janzen
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
| | - Klaus Mattes
- Department of Movement and Training Science, Institute for Human Movement Science, University of Hamburg, Hamburg, Germany
| | - Michael H. Thaut
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Ghai S, Ghai I. Role of Sonification and Rhythmic Auditory Cueing for Enhancing Gait Associated Deficits Induced by Neurotoxic Cancer Therapies: A Perspective on Auditory Neuroprosthetics. Front Neurol 2019; 10:21. [PMID: 30761065 PMCID: PMC6361827 DOI: 10.3389/fneur.2019.00021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 01/08/2019] [Indexed: 01/01/2023] Open
Abstract
Patients undergoing chemotherapy, radiotherapy, and immunotherapy experience neurotoxic changes in the central and peripheral nervous system. These neurotoxic changes adversely affect functioning in the sensory, motor, and cognitive domains. Thereby, considerably affecting autonomic activities like gait and posture. Recent evidence from a range of systematic reviews and meta-analyses have suggested the beneficial influence of music-based external auditory stimulations i.e., rhythmic auditory cueing and real-time auditory feedback (sonification) on gait and postural stability in population groups will balance disorders. This perspective explores the conjunct implications of auditory stimulations during cancer treatment to simultaneously reduce gait and posture related deficits. Underlying neurophysiological mechanisms by which auditory stimulations might influence motor performance have been discussed. Prompt recognition of this sensorimotor training strategy in future studies can have a widespread impact on patient care in all areas of oncology.
Collapse
Affiliation(s)
- Shashank Ghai
- Institute of Sports Science, Leibniz University Hannover, Hanover, Germany
| | - Ishan Ghai
- Consultation Division, Program Management Discovery Sciences, RSGBIOGEN, New Delhi, India
| |
Collapse
|
24
|
Ghai S, Schmitz G, Hwang TH, Effenberg AO. Training proprioception with sound: effects of real-time auditory feedback on intermodal learning. Ann N Y Acad Sci 2018; 1438:50-61. [PMID: 30221775 DOI: 10.1111/nyas.13967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/17/2018] [Accepted: 08/23/2018] [Indexed: 12/15/2022]
Abstract
Our study analyzed the effects of real-time auditory feedback on intermodal learning during a bilateral knee repositioning task. Thirty healthy participants were randomly allocated to control and experimental groups. Participants performed an active knee joint repositioning task for the four target angles (20°, 40°, 60°, and 80°) bilaterally, with or without additional real-time auditory feedback. Here, the frequency of auditory feedback was mapped to the knee's angle range (0-90°). Retention measurements were performed on the same four angles, without auditory feedback, after 15 min and 24 hours. A generalized knee proprioception test was performed after the 24-h retention measurement on three untrained knee angles (15°, 35°, and 55°). Statistical analysis revealed a significant enhancement of knee proprioception, shown as a lower knee repositioning error with auditory feedback. This enhancement of proprioception also persisted in tests performed between the 5th and 6th auditory-motor training blocks (without auditory feedback). Enhancement in proprioception also remained stable during retention measurements (after 15 min and 24 h). Similarly, enhancement in the generalized proprioception on untrained knee angles was evident in the experimental group. This study extends our previous findings and demonstrates the beneficial effects of real-time auditory feedback to facilitate intermodal learning by enhancing knee proprioception in a persisting and generalized manner.
Collapse
Affiliation(s)
- Shashank Ghai
- The Institute of Sports Science, Leibniz University Hannover, Hannover, Germany
| | - Gerd Schmitz
- The Institute of Sports Science, Leibniz University Hannover, Hannover, Germany
| | - Tong-Hun Hwang
- The Institute of Sports Science, Leibniz University Hannover, Hannover, Germany.,The Institute of Microelectronic Systems, Leibniz University Hannover, Hannover, Germany
| | - Alfred O Effenberg
- The Institute of Sports Science, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|