1
|
Pho C, Yu FF, Palka JM, Brown ES. The relationship between alcohol consumption and amygdala volume in a community-based sample. Brain Imaging Behav 2024; 18:884-891. [PMID: 38568283 DOI: 10.1007/s11682-024-00879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 08/31/2024]
Abstract
Most prior studies have reported decreased amygdala volume in those with a history of alcohol use disorder. Decreased amygdala volume associated with alcohol use disorder may be related to an increased risk of addiction and relapse. However, the relationship between amygdala volume and a broad range of alcohol consumption is largely unexplored. The present cross-sectional analysis investigates the relationship between amygdala volume and self-reported alcohol consumption in participants of the Dallas Heart Study, a community-based study of Dallas County, Texas residents. Brain imaging and survey data from participants (n = 2023) were obtained, and multiple linear regressions were performed with the average amygdala volume as the dependent variable and drinking status, drinking risk, drinks per week, and binge drinking as independent variables. Drinking risk was categorized such that low-risk constituted ≤ 14 drinks per week in men and ≤ 7 drinks per week in women, while > 14 drinks per week in men and > 7 drinks per week in women constituted high-risk. Age, sex, intracranial volume, body mass index, education, and Quick Inventory of Depressive Symptomatology-Self Report score were included in all models as covariates. No statistically significant (p ≤ .05) associations were observed between self-reported alcohol consumption and amygdala volume. The present study suggests non-significant relationships between self-reported alcohol consumption and amygdala volume when controlling for relevant demographic factors in a large, community-based sample.
Collapse
Affiliation(s)
- Christine Pho
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849, Dallas, Texas, 75390, United States
| | - Fang F Yu
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Jayme M Palka
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849, Dallas, Texas, 75390, United States
| | - E Sherwood Brown
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849, Dallas, Texas, 75390, United States.
- The Altshuler Center for Education and Research at Metrocare Services, 1345 River Bend Dr, Suite 200, Dallas, Texas, 75247, United States.
| |
Collapse
|
2
|
Mudyanselage AW, Wijamunige BC, Kocoń A, Turner R, McLean D, Morentin B, Callado LF, Carter WG. Alcohol Triggers the Accumulation of Oxidatively Damaged Proteins in Neuronal Cells and Tissues. Antioxidants (Basel) 2024; 13:580. [PMID: 38790685 PMCID: PMC11117938 DOI: 10.3390/antiox13050580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Alcohol is toxic to neurons and can trigger alcohol-related brain damage, neuronal loss, and cognitive decline. Neuronal cells may be vulnerable to alcohol toxicity and damage from oxidative stress after differentiation. To consider this further, the toxicity of alcohol to undifferentiated SH-SY5Y cells was compared with that of cells that had been acutely differentiated. Cells were exposed to alcohol over a concentration range of 0-200 mM for up to 24 h and alcohol effects on cell viability were evaluated via MTT and LDH assays. Effects on mitochondrial morphology were examined via transmission electron microscopy, and mitochondrial functionality was examined using measurements of ATP and the production of reactive oxygen species (ROS). Alcohol reduced cell viability and depleted ATP levels in a concentration- and exposure duration-dependent manner, with undifferentiated cells more vulnerable to toxicity. Alcohol exposure resulted in neurite retraction, altered mitochondrial morphology, and increased the levels of ROS in proportion to alcohol concentration; these peaked after 3 and 6 h exposures and were significantly higher in differentiated cells. Protein carbonyl content (PCC) lagged behind ROS production and peaked after 12 and 24 h, increasing in proportion to alcohol concentration, with higher levels in differentiated cells. Carbonylated proteins were characterised by their denatured molecular weights and overlapped with those from adult post-mortem brain tissue, with levels of PCC higher in alcoholic subjects than matched controls. Hence, alcohol can potentially trigger cell and tissue damage from oxidative stress and the accumulation of oxidatively damaged proteins.
Collapse
Affiliation(s)
- Anusha W. Mudyanselage
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.); (R.T.)
- Department of Export Agriculture, Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Buddhika C. Wijamunige
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.); (R.T.)
- Department of Export Agriculture, Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Artur Kocoń
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.); (R.T.)
| | - Ricky Turner
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.); (R.T.)
| | - Denise McLean
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Benito Morentin
- Section of Forensic Pathology, Basque Institute of Legal Medicine, E-48001 Bilbao, Spain;
| | - Luis F. Callado
- Department of Pharmacology, University of the Basque Country-UPV/EHU, E-48940 Leioa, Spain;
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Wayne G. Carter
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.); (R.T.)
| |
Collapse
|
3
|
Sushma, Mishra S, Kanchan S, Divakar A, Jha G, Sharma D, Kapoor R, Kumar Rath S. Alcohol induces ER stress and apoptosis by inducing oxidative stress and disruption of calcium homeostasis in glial cells. Food Chem Toxicol 2023; 182:114192. [PMID: 37980976 DOI: 10.1016/j.fct.2023.114192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
Alcohol has teratogenic effects that can cause developmental abnormalities and alter anatomical and functional characteristics of the developed brain and other organs. Glial cells play a crucial role in alcohol metabolism and protect neurons from toxic effects of alcohol. However, chronic alcohol exposure can lead to uncontrollable levels of reactive oxygen species, resulting in the death of glial cells and exposing neuronal cells to the toxic effects of alcohol. The exact molecular mechanism of alcohol-induced glial cell death has not been fully explored. This study reported that different concentrations of alcohol induce different expressions of ER stress markers in glial cells, focusing on the role of endoplasmic reticulum (ER) stress. Alcohol-induced concentration-dependent toxicity in both cells also induced oxidative stress, leading to mitochondrial damage. The expression of p53 and apoptotic proteins was significantly up-regulated after alcohol exposure, while Bcl2 (anti-apoptotic) was down-regulated. The signalling pathway for ER stress was activated and up-regulated marker proteins in a concentration-dependent manner. Cells pre-treated with BAPTA-AM and NAC showed significant resistance against alcohol assault compared to other cells. These in vitro findings will prove valuable for defining the mechanism by which alcohol modulates oxidative stress, mitochondrial and ER damage leading to glial cell death.
Collapse
Affiliation(s)
- Sushma
- Genotoxicity Laboratory, Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | - Sakshi Mishra
- Genotoxicity Laboratory, Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | - Sonam Kanchan
- Genotoxicity Laboratory, Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | - Aman Divakar
- Genotoxicity Laboratory, Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | - Gaurav Jha
- Genotoxicity Laboratory, Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | - Divyansh Sharma
- Genotoxicity Laboratory, Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | - Radhika Kapoor
- Genotoxicity Laboratory, Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | - Srikanta Kumar Rath
- Genotoxicity Laboratory, Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226001, India.
| |
Collapse
|
4
|
Jones SA, Morales AM, Harman G, Dominguez-Savage KA, Gilbert S, Baker FC, de Zambotti M, Goldston DB, Nooner KB, Clark DB, Luna B, Thompson WK, Brown SA, Tapert SF, Nagel BJ. Associations between alcohol use and sex-specific maturation of subcortical gray matter morphometry from adolescence to adulthood: Replication across two longitudinal samples. Dev Cogn Neurosci 2023; 63:101294. [PMID: 37683327 PMCID: PMC10497992 DOI: 10.1016/j.dcn.2023.101294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Subcortical brain morphometry matures across adolescence and young adulthood, a time when many youth engage in escalating levels of alcohol use. Initial cross-sectional studies have shown alcohol use is associated with altered subcortical morphometry. However, longitudinal evidence of sex-specific neuromaturation and associations with alcohol use remains limited. This project used generalized additive mixed models to examine sex-specific development of subcortical volumes and associations with recent alcohol use, using 7 longitudinal waves (n = 804, 51% female, ages 12-21 at baseline) from the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA). A second, independent, longitudinal dataset, with up to four waves of data (n = 467, 43% female, ages 10-18 at baseline), was used to assess replicability. Significant, replicable non-linear normative volumetric changes with age were evident in the caudate, putamen, thalamus, pallidum, amygdala and hippocampus. Significant, replicable negative associations between subcortical volume and alcohol use were found in the hippocampus in all youth, and the caudate and thalamus in female but not male youth, with significant interactions present in the caudate, thalamus and putamen. Findings suggest a structural vulnerability to alcohol use, or a predisposition to drink alcohol based on brain structure, with female youth potentially showing heightened risk, compared to male youth.
Collapse
Affiliation(s)
- Scott A Jones
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Angelica M Morales
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Gareth Harman
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA; Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | | | - Sydney Gilbert
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Fiona C Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | | | - David B Goldston
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Kate B Nooner
- Department of Psychology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Duncan B Clark
- Departments of Psychiatry, Psychology and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Departments of Psychiatry, Psychology and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wesley K Thompson
- Population Neuroscience and Genetics Lab, University of California, San Diego, CA, USA
| | - Sandra A Brown
- Department of Psychology and Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Susan F Tapert
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Bonnie J Nagel
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
5
|
Chen X, Cook R, Filbey FM, Nguyen H, McColl R, Jeon-Slaughter H. Sex Difference in Cigarette-Smoking Status and Its Association with Brain Volumes Using Large-Scale Community-Representative Data. Brain Sci 2023; 13:1164. [PMID: 37626520 PMCID: PMC10452722 DOI: 10.3390/brainsci13081164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Cigarette smoking is believed to accelerate age-related neurodegeneration. Despite significant sex differences in both smoking behaviors and brain structures, the active literature is equivocal in parsing out a sex difference in smoking-associated brain structural changes. OBJECTIVE The current study examined subcortical and lateral ventricle gray matter (GM) volume differences among smokers, active, past, and never-smokers, stratified by sex. METHODS The current study data included 1959 Dallas Heart Study (DHS) participants with valid brain imaging data. Stratified by gender, multiple-group comparisons of three cigarette-smoking groups were conducted to test whether there is any cigarette-smoking group differences in GM volumes of the selected regions of interest (ROIs). RESULTS The largest subcortical GM volumetric loss and enlargement of the lateral ventricle were observed among past smokers for both females and males. However, these observed group differences in GM volumetric changes were statistically significant only among males after adjusting for age and intracranial volumes. CONCLUSIONS The study findings suggest a sex difference in lifetime-smoking-associated GM volumetric changes, even after controlling for aging and intracranial volumes.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Statistics and Data Science, Southern Methodist University, Dallas, TX 75205, USA; (X.C.); (H.N.)
| | - Riley Cook
- VA North Texas Health Care Service, Dallas, TX 75216, USA;
| | - Francesca M. Filbey
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA;
| | - Hang Nguyen
- Department of Statistics and Data Science, Southern Methodist University, Dallas, TX 75205, USA; (X.C.); (H.N.)
| | - Roderick McColl
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Haekyung Jeon-Slaughter
- VA North Texas Health Care Service, Dallas, TX 75216, USA;
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
6
|
Denier N, Soravia LM, Moggi F, Stein M, Grieder M, Federspiel A, Kupper Z, Wiest R, Bracht T. Associations of thalamocortical networks with reduced mindfulness in alcohol use disorder. Front Psychiatry 2023; 14:1123204. [PMID: 37484679 PMCID: PMC10358776 DOI: 10.3389/fpsyt.2023.1123204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Background Increased mindfulness is associated with reduced alcohol consumption in patients with alcohol use disorder (AUD) after residential treatment. However, the underlying neurobiological mechanism of mindfulness in AUD is unclear. Therefore, we investigate the structural and functional alterations of the thalamocortical system with a focus on the mediodorsal thalamic nucleus (MD-TN), the default mode and the salience network (DMN/SN) which has previously been associated with mindfulness in healthy subjects. We hypothesized lower mindfulness and reduced structural and functional connectivity (FC) of the thalamocortical system, particularly in the DMN/SN in AUD. We assumed that identified neurobiological alterations in AUD are associated with impairments of mindfulness. Methods Forty-five abstinent patients with AUD during residential treatment and 20 healthy controls (HC) were recruited. Structural and resting-state functional MRI-scans were acquired. We analysed levels of mindfulness, thalamic volumes and network centrality degree of the MD-TN using multivariate statistics. Using seed-based whole brain analyses we investigated functional connectivity (FC) of the MD-TN. We performed exploratory correlational analyses of structural and functional DMN/SN measurements with levels of mindfulness. Results In AUD we found significantly lower levels of mindfulness, lower bilateral thalamic and left MD-TN volumes, reduced FC between MD-TN and anterior cingulum/insula and lower network centrality degree of the left MD-TN as compared to HC. In AUD, lower mindfulness was associated with various reductions of structural and functional aspects of the MD-TN. Conclusion Our results suggest that structural and functional alterations of a network including the MD-TN and the DMN/SN underlies disturbed mindfulness in AUD.
Collapse
Affiliation(s)
- Niklaus Denier
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Leila M. Soravia
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Clinic Suedhang, Kirchlindach, Switzerland
| | - Franz Moggi
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Maria Stein
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Bern, Bern, Switzerland
| | - Matthias Grieder
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Zeno Kupper
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Tobias Bracht
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
7
|
Guo G, Kong Y, Zhu Q, Wu Z, Zhang S, Sun W, Cheng Y, Fang M. Cerebral mechanism of Tuina analgesia in management of knee osteoarthritis using multimodal MRI: study protocol for a randomised controlled trial. Trials 2022; 23:694. [PMID: 35986403 PMCID: PMC9389761 DOI: 10.1186/s13063-022-06633-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background The chronic pain of patients with knee osteoarthritis (KOA) seriously affects their quality of life and leads to heavy social and economic burden. As a nondrug therapy in Traditional Chinese Medicine (TCM), Tuina is generally recognised as safe and effective for reducing the chronic pain of KOA. However, the underlying central mechanisms of Tuina for improving the pain of KOA are not fully understood. Methods/design This study will be a randomised controlled trial with a parallel-group design. A total of 60 eligible participants will be assigned to the Tuina group or healthcare education group (Education group) at 1:1 ratio using stratified randomisation with gender and age as factors. The interventions of both groups will last for 30 min per session and be conducted twice each week for 12 weeks. This study will primarily focus on pain evaluation assessed by detecting the changes in brain grey matter (GM) structure, white matter (WM) structure, and the cerebral functional connectivity (FC) elicited by Tuina treatment, e.g., thalamus, hippocampus, anterior cingulate gyrus, S1, insula, and periaqueductal grey subregions (PAG). The two groups of patients will be evaluated by clinical assessments and multimodal magnetic resonance imaging (MRI) to observe the alterations in the GM, WM, and FC of participants at the baseline and the end of 6 and 12 weeks’ treatment and still be evaluated by clinical assessments but not MRI for 48 weeks of follow-up. The visual analogue scale of current pain is the primary outcome. The Short-Form McGill Pain Questionnaire, Western Ontario and McMaster Universities Osteoarthritis Index, 36-Item Short Form Health Survey, Hamilton Depression Scale, and Hamilton Anxiety Scale will be used to evaluate the pain intensity, pain feeling, pain emotion, clinical symptoms, and quality of life, respectively. MRI assessments, clinical data evaluators, data managers, and statisticians will be blinded to the group allocation in the outcome evaluation procedure and data analysis to reduce the risk of bias. The repeated measures analysis of variance (2 groups × 6 time points ANOVA) will be used to analyse numerical variables of the clinical and neuroimaging data obtained in the study. P<0.05 will be the statistical significance level. Discussion The results of this randomised controlled trial with clinical assessments and multimodal MRI will help reveal the influence of Tuina treatment on the potential morphological changes in cortical and subcortical brain structures, the white matter integrity, and the functional activities and connectivity of brain regions of patients with KOA, which may provide scientific evidence for the clinical application of Tuina in the management of KOA. Trial registration Chinese Clinical Trial Registry ChiCTR2000037966. Registered on Sep. 8, 2020. Dissemination The results will be published in peer-reviewed journals and disseminated through the study’s website, and conferences.
Collapse
|
8
|
Logtenberg E, Overbeek MF, Pasman JA, Abdellaoui A, Luijten M, van Holst RJ, Vink JM, Denys D, Medland SE, Verweij KJH, Treur JL. Investigating the causal nature of the relationship of subcortical brain volume with smoking and alcohol use. Br J Psychiatry 2022; 221:377-385. [PMID: 35049464 DOI: 10.1192/bjp.2021.81] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Structural variation in subcortical brain regions has been linked to substance use, including the most commonly used substances nicotine and alcohol. Pre-existing differences in subcortical brain volume may affect smoking and alcohol use, but there is also evidence that smoking and alcohol use can lead to structural changes. AIMS We assess the causal nature of the complex relationship of subcortical brain volume with smoking and alcohol use, using bi-directional Mendelian randomisation. METHOD Mendelian randomisation uses genetic variants predictive of a certain 'exposure' as instrumental variables to test causal effects on an 'outcome'. Because of random assortment at meiosis, genetic variants should not be associated with confounders, allowing less biased causal inference. We used summary-level data of genome-wide association studies of subcortical brain volumes (nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen and thalamus; n = 50 290) and smoking and alcohol use (smoking initiation, n = 848 460; cigarettes per day, n = 216 590; smoking cessation, n = 378 249; alcoholic drinks per week, n = 630 154; alcohol dependence, n = 46 568). The main analysis, inverse-variance weighted regression, was verified by a wide range of sensitivity methods. RESULTS There was strong evidence that liability to alcohol dependence decreased amygdala and hippocampal volume, and smoking more cigarettes per day decreased hippocampal volume. From subcortical brain volumes to substance use, there was no or weak evidence for causal effects. CONCLUSIONS Our findings suggest that heavy alcohol use and smoking can causally reduce subcortical brain volume. This adds to accumulating evidence that alcohol and smoking affect the brain, and likely mental health, warranting more recognition in public health efforts.
Collapse
Affiliation(s)
- Emma Logtenberg
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Martin F Overbeek
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Joëlle A Pasman
- Behavioural Science Institute, Radboud University Nijmegen, The Netherlands
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Maartje Luijten
- Behavioural Science Institute, Radboud University Nijmegen, The Netherlands
| | - Ruth J van Holst
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Jacqueline M Vink
- Behavioural Science Institute, Radboud University Nijmegen, The Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Sarah E Medland
- Psychiatric Genetics Group, QIMR Berghofer Medical Research Institute, Australia
| | - Karin J H Verweij
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Jorien L Treur
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, The Netherlands
| |
Collapse
|
9
|
Martínez-Maldonado A, Verdejo-Román J, Sion A, Rubio G, Pérez-García M, Jurado-Barba R. Effect of chronic alcohol consumption on brain structure in males with alcohol use disorder without a familiar history of alcoholism. J Psychiatr Res 2022; 149:210-216. [PMID: 35287051 DOI: 10.1016/j.jpsychires.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022]
Abstract
Structural brain damages caused by chronic alcohol consumption have been extensively reported. However, the neuroimaging findings in people with alcohol use disorder (AUD) are relatively inconsistent. This inconsistency may be due to the influence of different variables that are not always considered, such as the presence of a family history of alcoholism (FHA). The main aim of this research is to study the gray (GM) and white matter (WM) volumes in male participants with AUD without FHA compared to healthy control males (HC) without FHA. For this study, we included 19 participants with AUD without FHA and 18 HC males without FHA. T1-weighted images were acquired with a General Electric Signa Exite 1.5 T scanner. GM and WM tissues were calculated using Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra (DARTEL). All analyses were controlled for age and total brain volume. The statistical threshold was calculated with AlphaSim and further adjusted to account for the non-isotropic smoothness of structural images, according to Hayasaka et al. (2004). The obtained main results showed that, relative to the HC group, the participants with AUD without FHA had significantly lower GM in several brain structures, reflecting relatively purely the effects of chronic alcohol intake on brain volume. GM structure integrity is relevant for the efficient functioning of low and high-order cognitive processes used in everyday life, and its damage seems to be related to the severity/intensity/chronicity of the AUD. As such, it becomes relevant to assess and follow brain structural changes through the dependence course.
Collapse
Affiliation(s)
- Andrés Martínez-Maldonado
- Biomedical Research Institute Hospital 12 de Octubre, Madrid, Spain; Psychology Department, Faculty of Education & Health, Camilo José Cela University, Madrid, Spain.
| | - Juan Verdejo-Román
- The Brain, Mind and Behavior Research Center at the University of Granada, Granada, Spain; School of Psychology, Department of Personality, Assessment and Psychological Treatment, The University of Granada, Granada, Spain
| | - Ana Sion
- Biomedical Research Institute Hospital 12 de Octubre, Madrid, Spain
| | - Gabriel Rubio
- Biomedical Research Institute Hospital 12 de Octubre, Madrid, Spain; Faculty of Medicine, The Complutense University of Madrid, Madrid, Spain; Addictive Diseases Network, C' arlos III Health Institute, Madrid, Spain
| | - Miguel Pérez-García
- The Brain, Mind and Behavior Research Center at the University of Granada, Granada, Spain; School of Psychology, Department of Personality, Assessment and Psychological Treatment, The University of Granada, Granada, Spain
| | - Rosa Jurado-Barba
- Biomedical Research Institute Hospital 12 de Octubre, Madrid, Spain; Psychology Department, Faculty of Education & Health, Camilo José Cela University, Madrid, Spain
| |
Collapse
|
10
|
Gu W, He R, Su H, Ren Z, Zhang L, Yuan H, Zhang M, Ma S. Changes in the Shape and Volume of Subcortical Structures in Patients With End-Stage Renal Disease. Front Hum Neurosci 2022; 15:778807. [PMID: 34975435 PMCID: PMC8716492 DOI: 10.3389/fnhum.2021.778807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/15/2021] [Indexed: 01/22/2023] Open
Abstract
Introduction: End-stage renal disease (ESRD) typically causes changes in brain structure, and patients with ESRD often experience cognitive and sleep disorders. We aimed to assess the changes in the subcortical structure of patients with ESRD and how they are associated with cognitive and sleep disorders. Methods: We involved 36 adult patients for maintenance hemodialysis and 35 age- and gender-matched control individuals. All participants underwent neuropsychological examination and 3T magnetic resonance imaging (MRI) to acquire T1 anatomical images. The laboratory blood tests were performed in all patients with ESRD close to the time of the MR examination. We used volumetric and vertex-wise shape analysis approaches to investigate the volumes of 14 subcortical structural (e.g., bilateral accumbens, amygdala, hippocampus, caudate, globus pallidus, putamen, and thalamus) abnormalities in the two groups. Analyses of partial correlations and shape correlations were performed in order to identify the associations between subcortical structure, cognition, and sleep quality in patients with ESRD. Results: The volumetric analysis showed that compared with the healthy control group, patients with ESRD had less bilateral thalamus (left: p < 0.001; right: p < 0.001), bilateral accumbens (left: p < 0.001; right: p = 0.001), and right amygdala (p = 0.002) volumes. In the vertex-wise shape analysis, patients with ESRD had abnormal regional surface atrophy in the bilateral thalamus, right accumbens, left putamen, and bilateral caudate. Moreover, the Montreal Cognitive Assessment (MoCA) score was associated with volume reduction in the bilateral thalamus (left: Spearman ρ = 0.427, p = 0.009; right: ρ = 0.319, p = 0.018), and the Pittsburgh Sleep Quality Index (PSQI) score was associated with volume reduction in the bilateral accumbens (left: ρ = −0.546, p = 0.001; right: ρ = −0.544, p = 0.001). In vertex-wise shape correlation analysis, there was a positive significant correlation between regional shape deformations on the bilateral thalamus and MoCA score in patients with ESRD. Conclusion: Our study suggested that patients with ESRD have subcortical structural atrophy, which is related to impaired cognitive performance and sleep disturbances. These findings may help to further understand the underlying neural mechanisms of brain changes in patients with ESRD.
Collapse
Affiliation(s)
- Wen Gu
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ronghua He
- Department of Radiology, Baoji Center Hospital, Baoji, China
| | - Hang Su
- Department of Radiology, Baoji Center Hospital, Baoji, China
| | - Zhuanqin Ren
- Department of Radiology, Baoji Center Hospital, Baoji, China
| | - Lei Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Radiology, Baoji High-Tech Hospital, Baoji, China
| | - Huijie Yuan
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shaohui Ma
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
Lu CQ, Gosden GP, Okromelidze L, Jain A, Gupta V, Grewal SS, Lin C, Tatum WO, Messina SA, Quiñones-Hinojosa A, Ju S, Middlebrooks EH. Brain structural differences in temporal lobe and frontal lobe epilepsy patients: A voxel-based morphometry and vertex-based surface analysis. Neuroradiol J 2021; 35:193-202. [PMID: 34313179 DOI: 10.1177/19714009211034839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Exploration of the effect of chronic recurrent seizures in focal epilepsy on brain volumes has produced many conflicting reports. To determine differences in brain structure in temporal lobe epilepsy (TLE) and extratemporal epilepsy (using frontal lobe epilepsy (FLE) a surrogate) further, we performed a retrospective analysis of a large cohort of patients with seizure-onset zone proven by intracranial monitoring. METHODS A total of 120 TLE patients, 86 FLE patients, and 54 healthy controls were enrolled in this study. An analysis of variance of voxel-based morphometry (VBM) was used to seek morphometric brain differences among TLE patients, FLE patients, and healthy controls. Additionally, a vertex-based surface analysis was utilized to analyze the hippocampus and thalamus. Significant side-specific differences in hippocampal gray matter volume were present between the left TLE (LTLE), right TLE RTLE (RTLE), and control groups (p<0.05, family-wise error (FWE) corrected). RESULTS Vertex analyses revealed significant volume reduction in inferior parts of the left hippocampus in the LTLE group and lateral parts of the right hippocampus in the RTLE group compared to controls (p<0.05, FWE corrected). Significant differences were also detected between the LTLE and control group in the bilateral medial and inferior thalamus (p<0.05, FWE corrected). FLE patients did not exhibit focal atrophy of gray matter across the brain. CONCLUSION Our results highlight the variation in morphometric lateralized changes in the brain between different epilepsy onset zones, providing critical insight into the natural history of people with drug-resistant focal epilepsies.
Collapse
Affiliation(s)
- Chun-Qiang Lu
- Department of Radiology, 6915Mayo Clinic, Mayo Clinic, USA.,Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, P.R. China
| | - Grant P Gosden
- Department of Radiology, 6915Mayo Clinic, Mayo Clinic, USA
| | | | - Ayushi Jain
- Department of Radiology, 6915Mayo Clinic, Mayo Clinic, USA
| | - Vivek Gupta
- Department of Radiology, 6915Mayo Clinic, Mayo Clinic, USA
| | | | - Chen Lin
- Department of Radiology, 6915Mayo Clinic, Mayo Clinic, USA
| | | | | | | | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, P.R. China
| | - Erik H Middlebrooks
- Department of Radiology, 6915Mayo Clinic, Mayo Clinic, USA.,Department of Neurosurgery, Mayo Clinic, USA
| |
Collapse
|
12
|
Tomasi D, Wiers CE, Manza P, Shokri-Kojori E, Michele-Vera Y, Zhang R, Kroll D, Feldman D, McPherson K, Biesecker C, Schwandt M, Diazgranados N, Koob GF, Wang GJ, Volkow ND. Accelerated Aging of the Amygdala in Alcohol Use Disorders: Relevance to the Dark Side of Addiction. Cereb Cortex 2021; 31:3254-3265. [PMID: 33629726 DOI: 10.1093/cercor/bhab006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Here we assessed changes in subcortical volumes in alcohol use disorder (AUD). A simple morphometry-based classifier (MC) was developed to identify subcortical volumes that distinguished 32 healthy controls (HCs) from 33 AUD patients, who were scanned twice, during early and later withdrawal, to assess the effect of abstinence on MC-features (Discovery cohort). We validated the novel classifier in an independent Validation cohort (19 AUD patients and 20 HCs). MC-accuracy reached 80% (Discovery) and 72% (Validation). MC features included the hippocampus, amygdala, cerebellum, putamen, corpus callosum, and brain stem, which were smaller and showed stronger age-related decreases in AUD than HCs, and the ventricles and cerebrospinal fluid, which were larger in AUD and older participants. The volume of the amygdala showed a positive association with anxiety and negative urgency in AUD. Repeated imaging during the third week of detoxification revealed slightly larger subcortical volumes in AUD patients, consistent with partial recovery during abstinence. The steeper age-associated volumetric reductions in stress- and reward-related subcortical regions in AUD are consistent with accelerated aging, whereas the amygdalar associations with negative urgency and anxiety in AUD patients support its involvement in the "dark side of addiction".
Collapse
Affiliation(s)
- Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | | | - Yonga Michele-Vera
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Rui Zhang
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Danielle Kroll
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Dana Feldman
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | | | | | - Melanie Schwandt
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Nancy Diazgranados
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - George F Koob
- National Institute on Drug Abuse, Bethesda, MD 21224, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Li L, Yu H, Liu Y, Meng YJ, Li XJ, Zhang C, Liang S, Li ML, Guo W, QiangWang, Deng W, Ma X, Coid J, Li T. Lower regional grey matter in alcohol use disorders: evidence from a voxel-based meta-analysis. BMC Psychiatry 2021; 21:247. [PMID: 33975595 PMCID: PMC8111920 DOI: 10.1186/s12888-021-03244-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/28/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Previous research using whole-brain neuroimaging techniques has revealed structural differences of grey matter (GM) in alcohol use disorder (AUD) patients. However, some of the findings diverge from other neuroimaging studies and require further replication. The quantity of relevant research has, thus far, been limited and the association between GM and abstinence duration of AUD patients has not yet been systematically reviewed. METHODS The present research conducted a meta-analysis of voxel-based GM studies in AUD patients published before Jan 2021. The study utilised a whole brain-based d-mapping approach to explore GM changes in AUD patients, and further analysed the relationship between GM deficits, abstinence duration and individual differences. RESULTS The current research included 23 studies with a sample size of 846 AUD patients and 878 controls. The d-mapping approach identified lower GM in brain regions including the right cingulate gyrus, right insula and left middle frontal gyrus in AUD patients compared to controls. Meta-regression analyses found increasing GM atrophy in the right insula associated with the longer mean abstinence duration of the samples in the studies in our analysis. GM atrophy was also found positively correlated with the mean age of the samples in the right insula, and positively correlated with male ratio in the left middle frontal gyrus. CONCLUSIONS GM atrophy was found in the cingulate gyrus and insula in AUD patients. These findings align with published meta-analyses, suggesting they are potential deficits for AUD patients. Abstinence duration, age and gender also affect GM atrophy in AUD patients. This research provides some evidence of the underlying neuroanatomical nature of AUD.
Collapse
Affiliation(s)
- Lei Li
- grid.412901.f0000 0004 1770 1022Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.13291.380000 0001 0807 1581Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.412901.f0000 0004 1770 1022Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Hua Yu
- grid.412901.f0000 0004 1770 1022Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.13291.380000 0001 0807 1581Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.412901.f0000 0004 1770 1022Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yihao Liu
- grid.8391.30000 0004 1936 8024Department of Psychology, College of Life and Environmental Science, University of Exeter, Exeter, UK
| | - Ya-jing Meng
- grid.412901.f0000 0004 1770 1022Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.13291.380000 0001 0807 1581Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.412901.f0000 0004 1770 1022Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao-jing Li
- grid.412901.f0000 0004 1770 1022Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.13291.380000 0001 0807 1581Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.412901.f0000 0004 1770 1022Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chengcheng Zhang
- grid.412901.f0000 0004 1770 1022Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.13291.380000 0001 0807 1581Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.412901.f0000 0004 1770 1022Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Sugai Liang
- grid.412901.f0000 0004 1770 1022Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.13291.380000 0001 0807 1581Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.412901.f0000 0004 1770 1022Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ming-li Li
- grid.412901.f0000 0004 1770 1022Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.13291.380000 0001 0807 1581Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.412901.f0000 0004 1770 1022Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Wanjun Guo
- grid.412901.f0000 0004 1770 1022Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.13291.380000 0001 0807 1581Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.412901.f0000 0004 1770 1022Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - QiangWang
- grid.412901.f0000 0004 1770 1022Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.13291.380000 0001 0807 1581Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.412901.f0000 0004 1770 1022Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Deng
- grid.412901.f0000 0004 1770 1022Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.13291.380000 0001 0807 1581Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.412901.f0000 0004 1770 1022Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaohong Ma
- grid.412901.f0000 0004 1770 1022Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.13291.380000 0001 0807 1581Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.412901.f0000 0004 1770 1022Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jeremy Coid
- grid.412901.f0000 0004 1770 1022Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.13291.380000 0001 0807 1581Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.412901.f0000 0004 1770 1022Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China. .,Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China. .,Brain Research Center, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Bracht T, Soravia L, Moggi F, Stein M, Grieder M, Federspiel A, Tschümperlin R, Batschelet HM, Wiest R, Denier N. The role of the orbitofrontal cortex and the nucleus accumbens for craving in alcohol use disorder. Transl Psychiatry 2021; 11:267. [PMID: 33947835 PMCID: PMC8097061 DOI: 10.1038/s41398-021-01384-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023] Open
Abstract
This study aimed to investigate structural and functional alterations of the reward system and the neurobiology of craving in alcohol use disorder (AUD). We hypothesized reduced volume of the nucleus accumbens (NAcc), reduced structural connectivity of the segment of the supero-lateral medial forebrain bundle connecting the orbitofrontal cortex (OFC) with the NAcc (OFC-NAcc), and reduced resting-state OFC-NAcc functional connectivity (FC). Furthermore, we hypothesized that craving is related to an increase of OFC-NAcc FC. Thirty-nine recently abstinent patients with AUD and 18 healthy controls (HC) underwent structural (T1w-MP2RAGE, diffusion-weighted imaging (DWI)) and functional (resting-state fMRI) MRI-scans. Gray matter volume of the NAcc, white matter microstructure (fractional anisotropy (FA)) and macrostructure (tract length) of the OFC-NAcc connection and OFC-NAcc FC were compared between AUD and HC using a mixed model MANCOVA controlling for age and gender. Craving was assessed using the thoughts subscale of the obsessive-compulsive drinking scale (OCDS) scale and was correlated with OFC-NAcc FC. There was a significant main effect of group. Results were driven by a volume reduction of bilateral NAcc, reduced FA in the left hemisphere, and reduced tract length of bilateral OFC-NAcc connections in AUD patients. OFC-NAcc FC did not differ between groups. Craving was associated with increased bilateral OFC-NAcc FC. In conclusion, reduced volume of the NAcc and reduced FA and tract length of the OFC-NAcc network suggest structural alterations of the reward network in AUD. Increased OFC-NAcc FC is associated with craving in AUD, and may contribute to situational alcohol-seeking behavior in AUD.
Collapse
Affiliation(s)
- Tobias Bracht
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Leila Soravia
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Clinic Suedhang, Kirchlindach, Switzerland
| | - Franz Moggi
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Maria Stein
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Bern, Bern, Switzerland
| | - Matthias Grieder
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Raphaela Tschümperlin
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Hallie M Batschelet
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Niklaus Denier
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Song Z, Chen J, Wen Z, Zhang L. Abnormal functional connectivity and effective connectivity between the default mode network and attention networks in patients with alcohol-use disorder. Acta Radiol 2021; 62:251-259. [PMID: 32423229 DOI: 10.1177/0284185120923270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Patients with alcohol-use disorder (AUD) demonstrate dysfunctional cerebral network connectivity. However, limited studies have investigated attention systems in AUD. PURPOSE To assess functional (FC) and effective connectivity (EC) in the dorsal (DAN) and ventral attention networks (VAN) and default mode network (DMN) in patients with AUD using resting-state functional magnetic resonance imaging (rs-fMRI). MATERIAL AND METHODS MRI and rs-fMRI data were obtained from 28 men with AUD and 30 age-matched healthy controls. Independent component analysis was used to identify and extract network data, for comparison between the two groups. Effective connectivity was evaluated using Granger causality analysis (GCA) by selecting significantly different brain areas as regions of interest (ROI). Signed-path coefficients between ROIs were computed in bivariate mode. RESULTS In patients with AUD, FC decreased in the left superior parietal gurus (SPG) and left interparietal sulcus (IPS, in DAN); FC decreased in the right superior frontal gyrus (SPG) and right middle frontal gyrus (MFG, in DMN). GCA values indicated that the DMN exerts a positive causal effect on the DAN (P = 0.007/0.027), which consequently exerts a negative causal effect on the DMN (P = 0.032). Signed-path coefficients from the right MFG to the left IPS correlated negatively with MAST scores (P = 0.015). CONCLUSION We found novel inter-network connectivity dysfunction in patients with AUD, which indicates abnormal causal relations between resting-state DAN and DMN. Thus, patients with AUD may have abnormal top-down attention modulation and cognition.
Collapse
Affiliation(s)
- Zhiyan Song
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Jun Chen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Zhi Wen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Lei Zhang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| |
Collapse
|
16
|
Wang F, Li J, Li L, Gao Y, Wang F, Zhang Y, Fan Y, Wu C. Protective effect of apple polyphenols on chronic ethanol exposure-induced neural injury in rats. Chem Biol Interact 2020; 326:109113. [PMID: 32360496 DOI: 10.1016/j.cbi.2020.109113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/04/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Apple polyphenols (AP) have attracted much attention due to their various bioactivities. In this study, the protective effect of AP against chronic ethanol exposure-induced neural injury as well as the possible mechanisms were investigated. Body weight, daily average food intake and daily average fluid intake were measured and daily average ethanol consumption was calculated. The influences of AP on motor behavior and memory were detected by locomotor activity test, rotarod test, beam walking test, and Y maze test and novel object recognition test, respectively. The changes of blood ethanol concentration and the oxidative stress were also measured. AP improved chronic ethanol exposure-induced the inhibition of body weight and the decrease of daily average food intake, but did not influence the daily average fluid intake and the daily average ethanol intake, indicating that the improve effect of AP did not result from the decrease of ethanol intake. Motor activity and motor coordination were not influenced after chronic ethanol exposure though the blood ethanol concentration was higher than that in control group. AP improved significantly chronic ethanol-induced the memory impairment and the hippocampal CA1 neurons damage. Further studies found that AP decreased the contents of NO and MDA and increased the levels of T-AOC and GSH in the hippocampus of rats. These results suggest that AP exerts a protective effect against chronic ethanol-induced memory impairment through improving the oxidative stress in the hippocampus.
Collapse
Affiliation(s)
- Fang Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China; Research and Technology Development Center for Plant Polyphenols, Shenyang, 110016, China
| | - Jinghong Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lingxi Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China; Research and Technology Development Center for Plant Polyphenols, Shenyang, 110016, China
| | - Ying Gao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Fei Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yanxia Fan
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chunfu Wu
- Research and Technology Development Center for Plant Polyphenols, Shenyang, 110016, China; School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
17
|
Choi MR, Han JS, Chai YG, Jin YB, Lee SR, Kim DJ. Gene expression profiling in the hippocampus of adolescent rats after chronic alcohol administration. Basic Clin Pharmacol Toxicol 2019; 126:389-398. [PMID: 31628824 DOI: 10.1111/bcpt.13342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/15/2019] [Indexed: 11/29/2022]
Abstract
In South Korea, the average age of onset of alcohol drinking is 13.3 years and half of adolescents drink alcohol more than once a month; 8.45% of the Korean adolescent population become future high-risk alcohol drinkers. Chronic alcohol abuse causes physical and psychiatric health problems such as alcohol addiction, liver disease, stroke and cognitive impairments. This study aimed to investigate the effect of alcohol on gene expression and their function in the hippocampus of adolescent rats. After chronic alcohol administration in male (control, n = 6; alcohol, n = 6) Sprague-Dawley rats for 6 weeks, we analysed up- or down-regulated genes using RNA-sequencing technology. We found 83 genes more than 1.5-fold up- or down-regulated in the alcohol-treated group. Among them, genes (Dnai1, Cfap206 and Dnah1) associated with cilium movement were up-regulated in the alcohol-treated group. Mlf1, related to cell cycle arrest, was also up-regulated in the alcohol-treated group. On the other hand, genes (Smad3 and Plk5) involved in negative regulation of cell proliferation were down-regulated in the hippocampus by chronic alcohol administration. In addition, expression levels of genes associated with oxidative stress (Krt8 and Car3) and migration (Vim) were changed by chronic alcohol administration. These results pave a path for a better understanding of the neuromolecular mechanisms mediated by chronic alcohol exposure in the hippocampus of adolescents and negative pathology due to chronic alcohol abuse.
Collapse
Affiliation(s)
- Mi Ran Choi
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Jasmin Sanghyun Han
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Young Gyu Chai
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Korea
| | - Yeung-Bae Jin
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Dai-Jin Kim
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|