1
|
Rosinvil T, Postuma RB, Rahayel S, Bellavance A, Daneault V, Montplaisir J, Lina JM, Carrier J, Gagnon JF. Clinical symptoms and neuroanatomical substrates of daytime sleepiness in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:149. [PMID: 39122721 PMCID: PMC11316005 DOI: 10.1038/s41531-024-00734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/07/2024] [Indexed: 08/12/2024] Open
Abstract
Clinical and neuroanatomical correlates of daytime sleepiness in Parkinson's disease (PD) remain inconsistent in the literature. Two studies were conducted here. The first evaluated the interrelation between non-motor and motor symptoms, using a principal component analysis, associated with daytime sleepiness in PD. The second identified the neuroanatomical substrates associated with daytime sleepiness in PD using magnetic resonance imaging (MRI). In the first study, 77 participants with PD completed an extensive clinical, cognitive testing and a polysomnographic recording. In the second study, 29 PD participants also underwent MRI acquisition of T1-weighted images. Vertex-based cortical and subcortical surface analysis, deformation-based morphometry, and voxel-based morphometry were performed to assess the association between daytime sleepiness severity and structural brain changes in participants. In both studies, the severity of daytime sleepiness and the presence of excessive daytime sleepiness (EDS; total score >10) were measured using the Epworth Sleepiness Scale. We found that individuals with EDS had a higher score on a component including higher dosage of dopamine receptor agonists, motor symptoms severity, shorter sleep latency, and greater sleep efficiency. Moreover, increased daytime sleepiness severity was associated with a larger surface area in the right insula, contracted surfaces in the right putamen and right lateral amygdala, and a larger surface in the right posterior amygdala. Hence, daytime sleepiness in PD was associated with dopaminergic receptor agonists dosage, motor impairment, and objective sleep measures. Moreover, neuroanatomical changes in cortical and subcortical regions related to vigilance, motor, and emotional states were associated with more severe daytime sleepiness.
Collapse
Affiliation(s)
- Thaïna Rosinvil
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
- Research Center, Institut universitaire de gériatrie de Montréal, Montreal, QC, Canada
| | - Ronald B Postuma
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada
- Department of Neurology, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Shady Rahayel
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Amélie Bellavance
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Véronique Daneault
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
- Research Center, Institut universitaire de gériatrie de Montréal, Montreal, QC, Canada
| | - Jacques Montplaisir
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada
- Department of Psychiatry, Université de Montréal, Montreal, QC, Canada
| | - Jean-Marc Lina
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada
- Department of Electrical Engineering, École de Technologie Supérieure, Montreal, QC, Canada
- Centre de Recherches Mathématiques, Université de Montréal, Montreal, QC, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada.
- Department of Psychology, Université de Montréal, Montreal, QC, Canada.
- Research Center, Institut universitaire de gériatrie de Montréal, Montreal, QC, Canada.
| | - Jean-François Gagnon
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada.
- Department of Psychology, Université de Montréal, Montreal, QC, Canada.
- Research Center, Institut universitaire de gériatrie de Montréal, Montreal, QC, Canada.
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada.
| |
Collapse
|
2
|
Tan Z, Zeng Q, Hu X, Di D, Chen L, Lin Z, Cheng G. Altered dynamic functional network connectivity in drug-naïve Parkinson's disease patients with excessive daytime sleepiness. Front Aging Neurosci 2023; 15:1282962. [PMID: 38125809 PMCID: PMC10731041 DOI: 10.3389/fnagi.2023.1282962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Background Excessive daytime sleepiness (EDS) is a frequent nonmotor symptoms of Parkinson's disease (PD), which seriously affects the quality of life of PD patients and exacerbates other nonmotor symptoms. Previous studies have used static analyses of these resting-state functional magnetic resonance imaging (rs-fMRI) data were measured under the assumption that the intrinsic fluctuations during MRI scans are stationary. However, dynamic functional network connectivity (dFNC) analysis captures time-varying connectivity over short time scales and may reveal complex functional tissues in the brain. Purpose To identify dynamic functional connectivity characteristics in PD-EDS patients in order to explain the underlying neuropathological mechanisms. Methods Based on rs-fMRI data from 16 PD patients with EDS and 41 PD patients without EDS, we applied the sliding window approach, k-means clustering and independent component analysis to estimate the inherent dynamic connectivity states associated with EDS in PD patients and investigated the differences between groups. Furthermore, to assess the correlations between the altered temporal properties and the Epworth sleepiness scale (ESS) scores. Results We found four distinct functional connectivity states in PD patients. The patients in the PD-EDS group showed increased fractional time and mean dwell time in state IV, which was characterized by strong connectivity in the sensorimotor (SMN) and visual (VIS) networks, and reduced fractional time in state I, which was characterized by strong positive connectivity intranetwork of the default mode network (DMN) and VIS, while negative connectivity internetwork between the DMN and VIS. Moreover, the ESS scores were positively correlated with fraction time in state IV. Conclusion Our results indicated that the strong connectivity within and between the SMN and VIS was characteristic of EDS in PD patients, which may be a potential marker of pathophysiological features related to EDS in PD patients.
Collapse
Affiliation(s)
- Zhiyi Tan
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Qiaoling Zeng
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xuehan Hu
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Duoduo Di
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Lele Chen
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhijian Lin
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Guanxun Cheng
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Zi Y, Cai S, Tan C, Wang T, Shen Q, Liu Q, Wang M, Li J, Zhang L, Zhou F, Song C, Yuan J, Liu Y, Liu J, Liao H. Abnormalities in the Fractional Amplitude of Low-Frequency Fluctuation and Functional Connectivity in Parkinson's Disease With Excessive Daytime Sleepiness. Front Aging Neurosci 2022; 14:826175. [PMID: 35865749 PMCID: PMC9294344 DOI: 10.3389/fnagi.2022.826175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Excessive daytime sleepiness (EDS) is one of the most important non-motor symptoms of Parkinson's disease (PD), and its neuropathologic basis is still unclear. Objective This study investigated the changes of neuronal activity in PD patients with EDS (PD-EDS) in the resting state. Methods Forty-three PD patients were recruited and divided into the PD-EDS group (n = 21) and PD-NEDS group (PD patients without excessive daytime sleepiness, n = 22) according to the Epworth sleepiness scale (ESS) scores. Patients in both groups received resting-state functional magnetic resonance imaging (rs-fMRI). The differences in fractional amplitude of low-frequency fluctuation (fALFF) between the two groups, correlations between fALFF and ESS, and functional connection (FC) between the brain regions with different fALFF values and the whole brain were analyzed. Results PD-EDS patients exhibited a decreased fALFF in the Cingulum-Ant-R, but an increased fALFF in the Putamen-R and Thalamus-L when compared with PD-NEDS patients; an increased functional connectivity between these three seed regions with different fALFF values and the right medial frontal gyrus, bilateral superior temporal gyrus, left insular, and right precuneus was observed (p < 0.05), but a deceased functional connectivity between these three seed regions and the right cerebellum anterior lobe/right brainstem, right middle temporal gyrus and inferior temporal gyrus, right hippocampus/parahippocampal gyrus, right medial cingulate gyrus and bilateral middle occipital gyrus was observed (p < 0.05). The value of fALFF was negatively correlated with the ESS score in the Cingulum-Ant-R, but positively correlated with the ESS score in the Putamen-R and Thalamus-L. Conclusions EDS in PD patients may be associated with changes in brain neuron activity and functional connectivity.
Collapse
Affiliation(s)
- Yuheng Zi
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Sainan Cai
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tianyu Wang
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Shen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinru Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Junli Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Zhang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fan Zhou
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chendie Song
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaying Yuan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yujing Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
| | - Haiyan Liao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
- *Correspondence: Haiyan Liao
| |
Collapse
|
4
|
Zhang F, Yang Z, Qin K, Sweeney JA, Roberts N, Jia Z, Gong Q. Effect of jet lag on brain white matter functional connectivity. PSYCHORADIOLOGY 2021; 1:55-65. [PMID: 38665361 PMCID: PMC10917196 DOI: 10.1093/psyrad/kkaa003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 02/05/2023]
Abstract
Background A long-haul flight across more than five time zones may produce a circadian rhythm sleep disorder known as jet lag. Little is known about the effect of jet lag on white matter (WM) functional connectivity (FC). Objective The present study is to investigate changes in WM FC in subjects due to recovery from jet lag after flying across six time zones. Methods Here, resting-state functional magnetic resonance imaging was performed in 23 participants within 24 hours of flying and again 50 days later. Gray matter (GM) and WM networks were identified by k-means clustering. WM FC and functional covariance connectivity (FCC) were analyzed. Next, a sliding window method was used to establish dynamic WM FC. WM static and dynamic FC and FCC were compared between when participants had initially completed their journey and 50 days later. Emotion was assessed using the Positive and Negative Affect Schedule and the State Anxiety Inventory. Results All participants were confirmed to have jet lag symptoms by the Columbian Jet Lag Scale. The static FC strengthes of cingulate network (WM7)- sensorimotor network and ventral frontal network- visual network were lower after the long-haul flight compared with recovery. Corresponding results were obtained for the dynamic FC analysis. The analysis of FCC revealed weakened connections between the WM7 and several other brain networks, especially the precentral/postcentral network. Moreover, a negative correlation was found between emotion scores and the FC between the WM7 and sensorimotor related regions. Conclusions The results of this study provide further evidence for the existence of WM networks and show that jet lag is associated with alterations in static and dynamic WM FC and FCC, especially in sensorimotor networks. Jet lag is a complex problem that not only is related to sleep rhythm but also influences emotion.
Collapse
Affiliation(s)
- Feifei Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Zhipeng Yang
- College of Electronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
| | - Kun Qin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Neil Roberts
- School of Clinical Sciences, University of Edinburgh, EH16 4TJ, UK
| | - Zhiyun Jia
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
5
|
Donzuso G, Agosta F, Canu E, Filippi M. MRI of Motor and Nonmotor Therapy-Induced Complications in Parkinson's Disease. Mov Disord 2020; 35:724-740. [PMID: 32181946 DOI: 10.1002/mds.28025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/28/2022] Open
Abstract
Levodopa therapy remains the most effective drug for the treatment of Parkinson's disease, and it is associated with the greatest improvement in motor function as assessed by the Unified Parkinson's Disease Rating Scale. Dopamine agonists have also proven their efficacy as monotherapy in early Parkinson's disease but also as adjunct therapy. However, the chronic use of dopaminergic therapy is associated with disabling motor and nonmotor side effects and complications, among which levodopa-induced dyskinesias and impulse control behaviors are the most common. The underlying mechanisms of these disorders are not fully understood. In the last decade, classic neuroimaging methods and more sophisticated techniques, such as analysis of gray-matter structural imaging and functional magnetic resonance imaging, have given access to anatomical and functional abnormalities, respectively, in the brain. This review presents an overview of structural and functional brain changes associated with motor and nonmotor therapy-induced complications in Parkinson's disease. Magnetic resonance imaging may offer structural and/or functional neuroimaging biomarkers that could be used as predictive signs of development, maintenance, and progression of these complications. Neurophysiological tools, such as theta burst stimulation and transcranial magnetic stimulation, might help us to integrate neuroimaging findings and clinical features and could be used as therapeutic options, translating neuroimaging data into clinical practice. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Giulia Donzuso
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Department "G.F. Ingrassia," Section of Neurosciences, University of Catania, Catania, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
6
|
Gong L, Li H, Yang D, Peng Y, Liu D, Zhong M, Zhang B, Xu R, Kang J. Striatum Shape Hypertrophy in Early Stage Parkinson's Disease With Excessive Daytime Sleepiness. Front Neurosci 2020; 13:1353. [PMID: 31992965 PMCID: PMC6964599 DOI: 10.3389/fnins.2019.01353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Excessive daytime sleepiness (EDS) is one of the common and burdensome non-motor symptoms of Parkinson's disease (PD). However, the underlying neuropathology mechanism in PD patients with EDS (PD-EDS) remains unclear. The present study aims to delineate potential locations of structural alteration of subcortical regions in early stage and drug-naïve PD-EDS. METHODS The study had 252 patients with PD and 92 matched healthy controls (HC). EDS was estimated with the Epworth Sleepiness Scale, with a cutoff of 10. Ultimately, 59 patients were considered as PD-EDS. The remaining 193 were PD patients without EDS (PD-nEDS). FMRIB's Integrated Registration and Segmentation Tool (FIRST) was employed to assess the volumetric and surface alterations of subcortical nuclei in PD and PD-EDS. RESULTS Volumetric analyses found no difference in the subcortical nucleus volume between PD and HC, or PD-EDS and PD-nEDS groups. The shape analyses revealed the local atrophic changes in bilateral caudate and right putamen in patients with PD. In addition, the hypertrophic changes were located in the right putamen and left pallidum in PD-EDS than in PD-nEDS. CONCLUSION Our findings revealed the regional hypertrophy of the striatum in PD-EDS. Our results indicate that local hypertrophic striatum would be a valuable early biomarker for detecting the alteration in PD-EDS. The shape analysis contributes valuable information when investigating PD-EDS.
Collapse
Affiliation(s)
- Liang Gong
- Department of Neurology, Chengdu Second People’s Hospital, Chengdu, China
| | - Huaisu Li
- Department of Neurology, Chengdu Second People’s Hospital, Chengdu, China
| | - Dan Yang
- Department of Neurology, Chengdu Second People’s Hospital, Chengdu, China
| | - Yinwei Peng
- Department of Neurology, Chengdu Second People’s Hospital, Chengdu, China
| | - Duan Liu
- Department of Neurology, Chengdu Second People’s Hospital, Chengdu, China
| | - Ming Zhong
- Department of Neurology, Chengdu Second People’s Hospital, Chengdu, China
| | - Bei Zhang
- Department of Neurology, Chengdu Second People’s Hospital, Chengdu, China
| | - Ronghua Xu
- Department of Neurology, Chengdu Second People’s Hospital, Chengdu, China
| | - Jian Kang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Ooi LQR, Wen MC, Ng SYE, Chia NSY, Chew IHM, Lee W, Xu Z, Hartono S, Tan EK, Chan LL, Tan LCS. Increased Activation of Default Mode Network in Early Parkinson's With Excessive Daytime Sleepiness. Front Neurosci 2019; 13:1334. [PMID: 31920501 PMCID: PMC6920242 DOI: 10.3389/fnins.2019.01334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/27/2019] [Indexed: 11/13/2022] Open
Abstract
Background and Objectives The underlying neuropathology of excessive daytime sleepiness (EDS) remains elusive in Parkinson's disease (PD). We aim to investigate neural network changes that underlie EDS in PD. Methods Early PD patients comprising eighty-one patients without EDS (EDS-) and seventeen patients with EDS (EDS+) received a resting state functional MRI scan and the Epworth Sleepiness Scale (ESS). Connectivities within the default mode network (DMN), motor and basal ganglia networks were compared between the EDS+ and EDS- groups. Correlations between network connectivity and the severity of EDS were investigated through linear regression. Results EDS+ patients displayed a trend of increased network connectivity of the posterior DMN (pDMN). A significant positive correlation was found between connectivity of the ventromedial prefrontal cortex in the pDMN and ESS. Conclusion EDS+ patients are likely to display increased activation in the DMN, suggesting neural compensation in early PD or impaired attentiveness due to mechanisms such as mind-wandering.
Collapse
Affiliation(s)
| | - Ming-Ching Wen
- National Neuroscience Institute, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | | | | | | | - Weiling Lee
- Singapore General Hospital, Singapore, Singapore
| | - Zheyu Xu
- National Neuroscience Institute, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | | | - Eng King Tan
- National Neuroscience Institute, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Ling Ling Chan
- Duke-NUS Medical School, Singapore, Singapore.,Singapore General Hospital, Singapore, Singapore
| | - Louis Chew-Seng Tan
- National Neuroscience Institute, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|