1
|
Zeng Z, Huang P, Lin Z, Pan Y, Wan X, Zhang C, Sun B, Li D. Rescue subthalamic stimulation after unsatisfactory outcome of pallidal stimulation in Parkinson's disease: a case series and review. Front Aging Neurosci 2024; 15:1323541. [PMID: 38264547 PMCID: PMC10803461 DOI: 10.3389/fnagi.2023.1323541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Background Subthalamic nucleus (STN) and globus pallidus interna (GPi) are two main structures primarily targeted by deep brain stimulation (DBS) to treat advanced Parkinson's disease (PD). A subset of cases with unsatisfactory outcomes may benefit from rescue DBS surgery targeting another structure, while these patients' characteristics have not been well described and this phenomenon has not been well reviewed. Methods This monocentric retrospective study included patients with PD, who underwent rescue STN DBS following an unsatisfactory outcome of the initial bilateral GPi DBS in a retrospective manner. A short review of the current literature was conducted to report the clinical outcome of rescue DBS surgeries. Results Eight patients were identified, and six of them were included in this study. The rescue STN DBS was performed 19.8 months after the initial GPi DBS. After 8.8 months from the rescue STN DBS, patients showed a significant off-medication improvement by 29.2% in motor symptoms compared to initial GPi DBS. Non-motor symptoms and the health-related quality of life were also significantly improved. Conclusion Our findings suggest that the rescue STN DBS may improve off-medication motor and non-motor symptoms and quality of life in patients with failure of initial GPi DBS. The short review of the current literature showed that the target switching from GPi to STN was mainly due to poor initial outcomes and was performed by target substitution, whereas the switching from STN to GPi was mainly due to a gradual waning of benefits, long-term axial symptoms, dyskinesia, and dystonia and was performed by target addition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Dharnipragada R, Denduluri LS, Naik A, Bertogliat M, Awad M, Ikramuddin S, Park MC. Frequency settings of subthalamic nucleus DBS for Parkinson's disease: A systematic review and network meta-analysis. Parkinsonism Relat Disord 2023; 116:105809. [PMID: 37604755 DOI: 10.1016/j.parkreldis.2023.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 08/13/2023] [Indexed: 08/23/2023]
Abstract
INTRODUCTION Deep Brain Stimulation (DBS) is an effective treatment for the motor symptoms of Parkinson's Disease. The targeted physiological structure for lead location is commonly the subthalamic nucleus (STN). The efficacy of DBS for improving motor symptoms is assessed via the Unified Parkinson's Disease Rating III Scale (UPDRS-III). In this study, we sought to compare the efficacy of frequency settings utilized for STN-DBS. METHODS Following PRISMA Guidelines, a search on PUBMED and MEDLINE was performed to include full-length randomized controlled trials evaluating STN-DBS. The frequency stimulation parameters and Unified Parkinson's Disease Rating Scale (UPDRS-III) outcomes were extracted in the search. High-frequency stimulation (HFS) was defined as ≥100 Hz and low-frequency stimulation (LFS) was defined as <100 Hz. A frequentist network meta-analysis was performed with odds ratios (OR) and pooling performed using the Mantel-Haenszel method. Statistics are presented as OR [95% CI]. RESULTS 15 studies consisting of 298 patients were included for analysis. Bilateral HFS -0.68 [-0.89; -0.46] was associated with better UPDRS-III scores compared to bilateral LFS. On the other hand, bilateral LFS with medications (MEDS) was favored over HFS with MEDS (-0.28 [-0.63; 0.07]). Bilateral LFS and MEDS, HFS and MEDS, stimulation (STIM) OFF MEDS ON, HFS, LFS, STIM OFF MEDS OFF UPDRS outcomes were ranked from best to worst outcomes. DISCUSSION The outcomes of this study suggest that bilateral HFS has better utility for those with no response to medication, while LFS has additive benefits to medication by improving unique symptoms via different neurophysiological mechanisms.
Collapse
Affiliation(s)
- Rajiv Dharnipragada
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA.
| | - Lalitha S Denduluri
- College of Liberal Arts, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Anant Naik
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, IL, 61801, USA
| | - Mario Bertogliat
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Matthew Awad
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Salman Ikramuddin
- Department of Neurology, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Michael C Park
- Department of Neurology, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA; Department of Neurosurgery, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| |
Collapse
|
3
|
Dharnipragada R, Denduluri LS, Naik A, Bertogliat M, Awad M, Ikramuddin S, Park MC. WITHDRAWN: Laterality and frequency settings of subthalamic nucleus DBS for Parkinson's disease: A systematic review and network meta-analysis. Parkinsonism Relat Disord 2023:105455. [PMID: 37321937 DOI: 10.1016/j.parkreldis.2023.105455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Rajiv Dharnipragada
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA.
| | - Lalitha S Denduluri
- College of Liberal Arts, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Anant Naik
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, IL, 61801, USA
| | - Mario Bertogliat
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Matthew Awad
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Salman Ikramuddin
- Department of Neurology, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Michael C Park
- Department of Neurology, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA; Department of Neurosurgery, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| |
Collapse
|
4
|
Sakai T, Nagai S, Takao K, Tsuchiyama H, Ikeda K. Effect of intramuscular lidocaine injection with physical therapy on camptocormia in patients with Parkinson's disease who had previously had deep brain stimulation. J Phys Ther Sci 2023; 35:66-69. [PMID: 36628138 PMCID: PMC9822820 DOI: 10.1589/jpts.35.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/19/2022] [Indexed: 01/01/2023] Open
Abstract
[Purpose] We aimed to evaluate the effects of an intervention consisting of intramuscular lidocaine injection in combination with physical therapy on the standing posture, balance ability, and walking ability in patients with Parkinson's disease who had camptocormia after deep brain stimulation. [Participants and Methods] The participants were nine patients with Parkinson's disease who had previously undergone deep brain stimulation. The intervention comprised a lidocaine injection into the abdominal external oblique muscles for five days in combination with physical therapy, including body weight-supported treadmill training for two weeks. Before and after the intervention, the total and upper camptocormia angles were used to assess the standing posture; the Berg balance scale was used to assess the balancing ability; and maximum walking speed and stride length were used to assess the walking ability. [Results] The total and upper camptocormia angles, and Berg balance scale improved significantly more after the intervention than before. Before and after the intervention, there was no significant difference in maximum walking speed, but the stride length was significantly greater after the intervention than before. [Conclusion] The intervention was effective in alleviating camptocormia and improving the balance and walking abilities of patients with Parkinson's disease with camptocormia after deep brain stimulation.
Collapse
Affiliation(s)
- Toshitaka Sakai
- Department of Rehabilitation, Kanazawa Neurosurgical
Hospital: 262-2 Go-machi, Nonoichi-shi, Ishikawa 921-8841, Japan,Corresponding author. Toshitaka Sakai (E-mail: )
| | - Shota Nagai
- Kinjo University Graduate School of Comprehensive
Rehabilitation, Japan
| | - Kazutaka Takao
- Department of Rehabilitation, Kanazawa Neurosurgical
Hospital: 262-2 Go-machi, Nonoichi-shi, Ishikawa 921-8841, Japan
| | - Hiroyuki Tsuchiyama
- Department of Rehabilitation, Kanazawa Neurosurgical
Hospital: 262-2 Go-machi, Nonoichi-shi, Ishikawa 921-8841, Japan
| | - Kiyonobu Ikeda
- Department of Neurosurgery, Kanazawa Neurosurgical
Hospital, Japan
| |
Collapse
|
5
|
Serva SN, Bernstein J, Thompson JA, Kern DS, Ojemann SG. An update on advanced therapies for Parkinson's disease: From gene therapy to neuromodulation. Front Surg 2022; 9:863921. [PMID: 36211256 PMCID: PMC9537763 DOI: 10.3389/fsurg.2022.863921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Advanced Parkinson's disease (PD) is characterized by increasingly debilitating impaired movements that include motor fluctuations and dyskinesias. At this stage of the disease, pharmacological management can result in unsatisfactory clinical benefits and increase the occurrence of adverse effects, leading to the consideration of advanced therapies. The scope of this review is to provide an overview of currently available therapies for advanced PD, specifically levodopa–carbidopa intestinal gel, continuous subcutaneous apomorphine infusion, radiofrequency ablation, stereotactic radiosurgery, MRI-guided focused ultrasound, and deep brain stimulation. Therapies in clinical trials are also discussed, including novel formulations of subcutaneous carbidopa/levodopa, gene-implantation therapies, and cell-based therapies. This review focuses on the clinical outcomes and adverse effects of the various therapies and also considers patient-specific characteristics that may influence treatment choice. This review can equip providers with updated information on advanced therapies in PD to better counsel patients on the available options.
Collapse
Affiliation(s)
- Stephanie N. Serva
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jacob Bernstein
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - John A. Thompson
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Drew S. Kern
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Correspondence: Steven G. Ojemann Drew S. Kern
| | - Steven G. Ojemann
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Correspondence: Steven G. Ojemann Drew S. Kern
| |
Collapse
|
6
|
Kokkonen A, Honkanen EA, Corp DT, Joutsa J. Neurobiological effects of deep brain stimulation: A systematic review of molecular brain imaging studies. Neuroimage 2022; 260:119473. [PMID: 35842094 DOI: 10.1016/j.neuroimage.2022.119473] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/28/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022] Open
Abstract
Deep brain stimulation (DBS) is an established treatment for several brain disorders, including Parkinson's disease, essential tremor, dystonia and epilepsy, and an emerging therapeutic tool in many other neurological and psychiatric disorders. The therapeutic efficacy of DBS is dependent on the stimulation target, but its mechanisms of action are still relatively poorly understood. Investigating these mechanisms is challenging, partly because the stimulation devices and electrodes have limited the use of functional MRI in these patients. Molecular brain imaging techniques, such as positron emission tomography (PET) and single photon emission tomography (SPET), offer a unique opportunity to characterize the whole brain effects of DBS. Here, we investigated the direct effects of DBS by systematically reviewing studies performing an `on' vs `off' contrast during PET or SPET imaging. We identified 62 studies (56 PET and 6 SPET studies; 531 subjects). Approximately half of the studies focused on cerebral blood flow or glucose metabolism in patients Parkinson's disease undergoing subthalamic DBS (25 studies, n = 289), therefore Activation Likelihood Estimation analysis was performed on these studies. Across disorders and stimulation targets, DBS was associated with a robust local increase in ligand uptake at the stimulation site and target-specific remote network effects. Subthalamic nucleus stimulation in Parkinson's disease showed a specific pattern of changes in the motor circuit, including increased ligand uptake in the basal ganglia, and decreased ligand uptake in the primary motor cortex, supplementary motor area and cerebellum. However, there was only a handful of studies investigating other brain disorder and stimulation site combinations (1-3 studies each), or specific neurotransmitter systems, preventing definitive conclusions of the detailed molecular effects of the stimulation in these cases.
Collapse
Affiliation(s)
- Aleksi Kokkonen
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Center, Neurocenter, Turku University Hospital, Turku, Finland.
| | - Emma A Honkanen
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Center, Neurocenter, Turku University Hospital, Turku, Finland
| | - Daniel T Corp
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States of America
| | - Juho Joutsa
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Center, Neurocenter, Turku University Hospital, Turku, Finland; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States of America.
| |
Collapse
|
7
|
Lo C, Arora S, Lawton M, Barber T, Quinnell T, Dennis GJ, Ben-Shlomo Y, Hu MTM. A composite clinical motor score as a comprehensive and sensitive outcome measure for Parkinson's disease. J Neurol Neurosurg Psychiatry 2022; 93:617-624. [PMID: 35387867 PMCID: PMC9148987 DOI: 10.1136/jnnp-2021-327880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/04/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND An unmet need remains for sensitive outcome measures in neuroprotective trials. The study aims to determine whether a composite clinical motor score, combining the Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III motor examination score, Purdue Pegboard Test, and Timed Up and Go, provides greater sensitivity in detecting motor change in early disease than the MDS-UPDRS III alone. METHODS The Oxford Discovery longitudinal cohort study involves individuals with isolated rapid eye movement sleep behaviour disorder (iRBD) (n=272, confirmed polysomnographically, median follow-up: 1.6 years), idiopathic Parkinson's disease (PD) (n=909, median follow-up: 3.5 years, baseline: <3.5 years disease duration) and controls (n=316, age-matched and sex-matched, without a first-degree family history of PD). Motor and non-motor assessments were performed at each in-person visit. RESULTS Compared with the MDS-UPDRS III, the composite clinical motor score demonstrated a wider score distribution in iRBD and controls, lower coefficient of variation (37% vs 67%), and higher correlation coefficients with self-reported measures of motor severity (0.65 vs 0.61) and overall health status (-0.40 vs -0.33). Greater score range in mild to moderate PD, higher magnitude of longitudinal change in iRBD and longitudinal score linearity suggest better sensitivity in detecting subtle motor change. The composite clinical motor score was more accurate than the MDS-UPDRS III in predicting clinical outcomes, requiring 64% fewer participants with PD and 51% fewer participants with iRBD in sample size estimations for a hypothetical 18-month placebo-controlled clinical trial. CONCLUSION The composite clinical motor score may offer greater consistency and sensitivity in detecting change than the MDS-UPDRS III.
Collapse
Affiliation(s)
- Christine Lo
- Department of Clinical Neurosciences, University of Oxford Nuffield, Oxford, UK
- Department of Clinical Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Siddharth Arora
- University of Oxford Somerville College, Oxford, UK
- University of Oxford Said Business School, Oxford, UK
| | - Michael Lawton
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Thomas Barber
- Department of Clinical Neurosciences, University of Oxford Nuffield, Oxford, UK
| | | | - Gary J Dennis
- Department of Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Yoav Ben-Shlomo
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Michele Tao-Ming Hu
- Division of Neurology, Nuffield Department of Clinical Neurosciences, Oxford, UK
| |
Collapse
|
8
|
Zhang X, Zhang H, Lin Z, Barbosa DAN, Lai Y, Halpern CH, Voon V, Li D, Zhang C, Sun B. Effects of Bilateral Subthalamic Nucleus Stimulation on Depressive Symptoms and Cerebral Glucose Metabolism in Parkinson's Disease: A 18F-Fluorodeoxyglucose Positron Emission Tomography/Computerized Tomography Study. Front Neurosci 2022; 16:843667. [PMID: 35720690 PMCID: PMC9200334 DOI: 10.3389/fnins.2022.843667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/10/2022] [Indexed: 02/02/2023] Open
Abstract
Subthalamic nucleus (STN) deep brain stimulation (DBS) can improve motor symptoms in Parkinson's disease (PD), as well as potentially improving otherwise intractable comorbid depressive symptoms. To address the latter issue, we evaluated the severity of depressive symptoms along with the severity of motor symptoms in 18 PD patients (mean age, 58.4 ± 5.4 years; 9 males, 9 females; mean PD duration, 9.4 ± 4.4 years) with treatment-resistant depression (TRD) before and after approximately 1 year of STN-DBS treatment. Moreover, to gain more insight into the brain mechanism mediating the therapeutic action of STN-DBS, we utilized 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to assess cerebral regional glucose metabolism in the patients at baseline and 1-year follow-up. Additionally, the baseline PET data from patients were compared with PET data from an age- and sex-matched control group of 16 healthy volunteers. Among them, 12 PD patients underwent post-operative follow-up PET scans. Results showed that the severity of both motor and depressive symptoms in patients with PD-TRD was reduced significantly at 1-year follow-up. Also, patients used significantly less antiparkinsonian medications and antidepressants at 1-year follow-up, as well as experiencing improved daily functioning and a better quality of life. Moreover, relative to the PET data from healthy controls, PD-TRD patients displayed widespread abnormalities in cerebral regional glucose metabolism before STN-DBS treatment, which were partially recovered at 1-year follow-up. Additionally, significant correlations were observed between the patients' improvements in depressive symptoms following STN-DBS and post-operative changes in glucose metabolism in brain regions implicated in emotion regulation. These results support the view that STN-DBS provides a promising treatment option for managing both motor and depressive symptoms in patients who suffer from PD with TRD. However, the results should be interpreted with caution due to the observational nature of the study, small sample size, and relatively short follow-up.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huiwei Zhang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhengyu Lin
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Daniel A. N. Barbosa
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Yijie Lai
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Casey H. Halpern
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Valerie Voon
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Dianyou Li
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Chencheng Zhang,
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Bomin Sun,
| |
Collapse
|
9
|
Jiang L, Chen W, Guo Q, Yang C, Gu J, Xian W, Liu Y, Zheng Y, Ye J, Xu S, Hu Y, Wu L, Chen J, Qian H, Fu X, Liu J, Chen L. Eight-year follow-up outcome of subthalamic deep brain stimulation for Parkinson's disease: Maintenance of therapeutic efficacy with a relatively low levodopa dosage and stimulation intensity. CNS Neurosci Ther 2021; 27:1366-1373. [PMID: 34350691 PMCID: PMC8504521 DOI: 10.1111/cns.13713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022] Open
Abstract
AIMS This follow-up study aimed to examine the 8-year efficacy and safety of subthalamic nucleus (STN) deep brain stimulation (DBS) for patients with Parkinson's disease (PD) in southern China. METHODS The follow-up data of 10 patients with PD undergoing STN-DBS were analyzed. Motor symptoms were assessed before and 1, 3, 5, and 8 years after the surgery with stimulation-on in both off-medication (off-med) and on-medication (on-med) status using the Unified Parkinson's disease Rating Scale Part III. The quality of life was assessed using the 39-item Parkinson's Disease Questionnaire. The sleep, cognition, and emotion were evaluated using a series of nonmotor scales. Levodopa equivalent daily dose (LEDD) and stimulation parameters were recorded at each follow-up. RESULTS The motor symptoms were improved by 50.9%, 37.7%, 36.7%, and 37.3% in 1, 3, 5, and 8 years, respectively, in the off-med / stimulation-on status compared with the baseline. The quality of life improved by 39.7% and 56.1% in 1 and 3 years, respectively, but declined to the preoperative level thereafter. The sleep, cognition, and emotion were mostly unchanged. LEDD reduced from 708.1 ± 172.5 mg to 330 ± 207.8 mg in 8 years. The stimulation parameters, including amplitude, pulse width, and frequency, were 2.77 ± 0.49 V, 71.3 ± 12.8 μs, and 121.5 ± 21 Hz, respectively, in 8 years. CONCLUSION Long-term therapeutic efficacy of STN-DBS could be achieved even with relatively low stimulation intensity and medication dosage for PD patients in southern China. Motor improvement and medication reduction were maintained through the 8-year follow-up, but improvement in quality of life lasted for only 3 years. No definite changes was found in nonmotor symptoms after STN-DBS.
Collapse
Affiliation(s)
- Lulu Jiang
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wanru Chen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiyu Guo
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chao Yang
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Gu
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenbiao Xian
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanmei Liu
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yifan Zheng
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Ye
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaohua Xu
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Hu
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Wu
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Chen
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Qian
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoli Fu
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinlong Liu
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ling Chen
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
He W, Li H, Lai Y, Wu Y, Wu Y, Ramirez-Zamora A, Yi W, Zhang C. Weight Change After Subthalamic Nucleus Deep Brain Stimulation in Patients With Isolated Dystonia. Front Neurol 2021; 12:632913. [PMID: 33716933 PMCID: PMC7944092 DOI: 10.3389/fneur.2021.632913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose: Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an effective treatment method for advanced Parkinson's disease (PD) and isolated dystonia and provides marked improvement of major motor symptoms. In addition, non-motor effects have been reported including weight gain (WG) in patients with PD after STN-DBS. However, it is still unclear whether patients with isolated dystonia also experience WG. Methods: Data from 47 patients with isolated dystonia who underwent bilateral STN-DBS surgery between October 2012 and June 2019 were retrospectively collected. The severity of dystonia was assessed via the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). Changes in the body mass index (BMI) and BFMDRS score were analyzed using paired Student's t-tests. Regression analysis was performed to identify factors that affected the BMI after surgery. Results: Postoperative WG was observed in 78.7% of patients. The percentage of overweight and obese patients increased from 25.5% (before STN-DBS) to 48.9% (at the last follow-up). The mean BMI and mean percentage change in BMI increased by 1.32 ± 1.83 kg/m2 (P < 0.001) and 6.28 ± 8.34%, respectively. BMI increased more in female than in male patients. At the last follow-up, BFMDRS movement and disability scores improved by 69.76 ± 33.23% and 65.66 ± 31.41%, respectively (both P < 0.001). The final regression model analysis revealed that sex and preoperative BMI alone were independently associated with BMI change (P < 0.05). Conclusions: STN-DBS is associated with postoperative WG with patients with isolated dystonia. WG is more prominent in female patients and is associated with preoperative weight but not with the efficacy of STN-DBS on motor symptoms.
Collapse
Affiliation(s)
- Weibin He
- Department of Neurosurgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Hongxia Li
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijie Lai
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunhao Wu
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Adolfo Ramirez-Zamora
- Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Wei Yi
- Department of Neurosurgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Chencheng Zhang
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Lin Z, Zhang X, Wang L, Zhang Y, Zhou H, Sun Q, Sun B, Huang P, Li D. Revisiting the L-Dopa Response as a Predictor of Motor Outcomes After Deep Brain Stimulation in Parkinson's Disease. Front Hum Neurosci 2021; 15:604433. [PMID: 33613209 PMCID: PMC7889513 DOI: 10.3389/fnhum.2021.604433] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/14/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate the correlation between preoperative response to the L-dopa challenge test and efficacy of deep brain stimulation (DBS) on motor function in Parkinson's disease (PD). Methods: We retrospectively reviewed the data of 38 patients with idiopathic PD who underwent DBS surgery with a median follow-up duration of 7 months. Twenty underwent bilateral globus pallidus interna (GPi) DBS, and 18 underwent bilateral subthalamic nucleus (STN) DBS. The Movement Disorder Society Unified Parkinson Disease Rating Scale-Motor Part (MDS UPDRS-III) was assessed before surgery and at the last follow-up in different medication and stimulation conditions, respectively. Results: Pearson's correlation analysis revealed a positive correlation between preoperative L-dopa challenge responsiveness and GPi-DBS responsiveness on the total score (R 2 = 0.283, p = 0.016) but not on the non-tremor total score (R 2 = 0.158, p = 0.083) of MDS UPDRS-III. Such correlation remained significant (R 2' = 0.332, p = 0.010) after controlling for age at the time of surgery as confounding factor by partial correlation analysis. The preoperative L-dopa challenge responsiveness was significantly correlated with the tremor-controlling outcome of GPi-DBS (R 2 = 0.390, p = 0.003). In contrast, we found a positive correlation between preoperative L-dopa challenge responsiveness and STN-DBS responsiveness on the non-tremor total score (R 2 = 0.290, p = 0.021), but not on the total score (R 2 = 0.130, p = 0.141) of MDS UPDRS-III. The partial correlation analysis further demonstrated that the predictive value of preoperative L-dopa challenge responsiveness on the non-tremor motor outcome of STN-DBS was eliminated (R 2' = 0.120, p = 0.174) after controlling for age at the time of surgery as confounding factor. Interpretation: The short-term predictive value of preoperative response to the L-dopa challenge test for the motor outcome of GPi-DBS in PD was systematically described. Our findings suggest: (1) a solid therapeutic effect of GPi-DBS in treating L-dopa-responsive tremors; (2) a negative effect of age at the time of surgery on motor outcomes of STN-DBS, (3) a possible preference of STN- to GPi-DBS in L-dopa-resistant tremor control, and (4) a possible preference of GPi- to STN-DBS in elderly PD patients who have a satisfactory dopamine response.
Collapse
Affiliation(s)
- Zhengyu Lin
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxiao Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linbin Wang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Huang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Cavallieri F, Fraix V, Bove F, Mulas D, Tondelli M, Castrioto A, Krack P, Meoni S, Schmitt E, Lhommée E, Bichon A, Pélissier P, Chevrier E, Kistner A, Seigneuret E, Chabardès S, Moro E. Predictors of Long-Term Outcome of Subthalamic Stimulation in Parkinson Disease. Ann Neurol 2021; 89:587-597. [PMID: 33349939 DOI: 10.1002/ana.25994] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 12/02/2020] [Accepted: 12/13/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study was undertaken to identify preoperative predictive factors of long-term motor outcome in a large cohort of consecutive Parkinson disease (PD) patients with bilateral subthalamic nucleus deep brain stimulation (STN-DBS). METHODS All consecutive PD patients who underwent bilateral STN-DBS at the Grenoble University Hospital (France) from 1993 to 2015 were evaluated before surgery, at 1 year (short-term), and in the long term after surgery. All available demographic variables, neuroimaging data, and clinical characteristics were collected. Preoperative predictors of long-term motor outcome were investigated by performing survival and univariate/multivariate Cox regression analyses. Loss of motor benefit from stimulation in the long term was defined as a reduction of less than 25% in the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III scores compared to the baseline off-medication scores. As a secondary objective, potential predictors of short-term motor outcome after STN-DBS were assessed by performing univariate and multivariate linear regression analyses. RESULTS In the long-term analyses (mean follow-up = 8.4 ± 6.26 years, median = 10 years, range = 1-17 years), 138 patients were included. Preoperative higher frontal score and off-medication MDS-UPDRS part III scores predicted a better long-term motor response to stimulation, whereas the presence of vascular changes on neuroimaging predicted a worse motor outcome. In 357 patients with available 1-year follow-up, preoperative levodopa response, tremor dominant phenotype, baseline frontal score, and off-medication MDS-UPDRS part III scores predicted the short-term motor outcome. INTERPRETATION Frontal lobe dysfunction, disease severity in the off-medication condition, and the presence of vascular changes on neuroimaging represent the main preoperative clinical predictors of long-term motor STN-DBS effects. ANN NEUROL 2021;89:587-597.
Collapse
Affiliation(s)
- Francesco Cavallieri
- Movement Disorders Unit, University Hospital Center, Grenoble Alpes University, Grenoble, France.,Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Valérie Fraix
- Movement Disorders Unit, University Hospital Center, Grenoble Alpes University, Grenoble, France.,Grenoble Institute of Neurosciences, UGA INSERM U1216, Grenoble, France
| | - Francesco Bove
- Movement Disorders Unit, University Hospital Center, Grenoble Alpes University, Grenoble, France.,Institute of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Delia Mulas
- Movement Disorders Unit, University Hospital Center, Grenoble Alpes University, Grenoble, France.,Institute of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy.,Neurology Unit, Mater Olbia Hospital, Olbia, Italy
| | - Manuela Tondelli
- Neurology Unit, University Hospital Policlinico, Department of Biomedical, Metabolic, and Neural Science, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Castrioto
- Movement Disorders Unit, University Hospital Center, Grenoble Alpes University, Grenoble, France.,Grenoble Institute of Neurosciences, UGA INSERM U1216, Grenoble, France
| | - Paul Krack
- Department of Neurology, Center for Parkinson's Disease and Movement Disorders, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sara Meoni
- Movement Disorders Unit, University Hospital Center, Grenoble Alpes University, Grenoble, France.,Grenoble Institute of Neurosciences, UGA INSERM U1216, Grenoble, France
| | - Emmanuelle Schmitt
- Movement Disorders Unit, University Hospital Center, Grenoble Alpes University, Grenoble, France
| | - Eugénie Lhommée
- Movement Disorders Unit, University Hospital Center, Grenoble Alpes University, Grenoble, France
| | - Amélie Bichon
- Movement Disorders Unit, University Hospital Center, Grenoble Alpes University, Grenoble, France
| | - Pierre Pélissier
- Movement Disorders Unit, University Hospital Center, Grenoble Alpes University, Grenoble, France
| | - Eric Chevrier
- Movement Disorders Unit, University Hospital Center, Grenoble Alpes University, Grenoble, France
| | - Andrea Kistner
- Movement Disorders Unit, University Hospital Center, Grenoble Alpes University, Grenoble, France.,Grenoble Institute of Neurosciences, UGA INSERM U1216, Grenoble, France
| | - Eric Seigneuret
- Grenoble Institute of Neurosciences, UGA INSERM U1216, Grenoble, France.,Division of Neurosurgery, Grenoble Alpes University Hospital Center, Grenoble, France
| | - Stephan Chabardès
- Grenoble Institute of Neurosciences, UGA INSERM U1216, Grenoble, France.,Division of Neurosurgery, Grenoble Alpes University Hospital Center, Grenoble, France
| | - Elena Moro
- Movement Disorders Unit, University Hospital Center, Grenoble Alpes University, Grenoble, France.,Grenoble Institute of Neurosciences, UGA INSERM U1216, Grenoble, France
| |
Collapse
|
13
|
Development and Initial Validation of the Chinese Version of the Florida Surgical Questionnaire for Parkinson's Disease. PARKINSONS DISEASE 2020; 2020:8811435. [PMID: 33381295 PMCID: PMC7749765 DOI: 10.1155/2020/8811435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022]
Abstract
Background Deep brain stimulation (DBS) for Parkinson's disease (PD) has evolved as a well-established treatment in neurosurgery, and identifying appropriate surgical candidates could contribute to better DBS outcomes. The Florida Surgical Questionnaire for Parkinson Disease (FLASQ-PD) is a reasonable screening tool for assessing DBS candidacy in PD patients; however, a Chinese version of FLASQ-PD is needed for functional neurosurgery units in China. In this study, we translated the FLASQ-PD to Chinese and assessed its reliability and validity for Chinese PD patients. Methods The FLASQ-PD was translated before the study formally started. A single-center retrospective analysis of FLASQ-PD was performed at the Ruijin Hospital, affiliated with Shanghai Jiaotong University School of Medicine, between July and December 2019. The Unified Parkinson Disease Rating Scale III (UPDRS-III) was also used to assess PD patients on and off medication. All patients were evaluated for surgical candidacy by specialists. Results Overall, 115 PD patients, 25 with parkinsonism and six with multiple system atrophy were consecutively included. Internal consistency of the Chinese FLASQ-PD was roughly adequate (Cronbach's alpha = 0.664). There were significant differences in mean total scores of the Chinese FLASQ-PD between the diagnostic (Kruskal-Wallis H value = 37.450, p ≤ 0.001) and surgery-candidacy groups (H = 48.352, p ≤ 0.001). Drug improvements in UPDRS-III scores were mildly correlated with the Chinese FLASQ-PD scores in the surgery-ready group (Pearson correlation = 0.399, p=0.001). Conclusions The Chinese FLASQ-PD, which is a simple and efficient screening tool for clinicians, was developed and initially validated in this retrospective single-center study.
Collapse
|