1
|
Furley K, Hunter MF, Fahey M, Williams K. Diagnostic findings and yield of investigations for children with developmental regression. Am J Med Genet A 2024; 194:e63607. [PMID: 38536866 DOI: 10.1002/ajmg.a.63607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 07/05/2024]
Abstract
Childhood conditions that feature developmental regression are poorly understood. Phenotype-genotype characterization and diagnostic yield data are needed to inform clinical decision-making. The aim of this study was to report the conditions featuring developmental regression and assess diagnostic yields of investigations. A retrospective chart review of children presenting with developmental regression to a tertiary pediatric genetic clinic between 2018 and 2021 was performed. Of 99 children, 30% (n = 30) had intellectual disability (ID), 21% (n = 21) were autistic, 39% (n = 39) were autistic with ID, and 9% (n = 9) did not have ID or autism. Thirty-two percent (n = 32) of children received a new diagnosis, including eight molecular findings not previously reported to feature developmental regression. Of the children investigated, exome sequencing (ES) provided the highest diagnostic yield (51.1%, n = 24/47), highest (63.6%, n = 14/22) for children with ID, 50% for autistic children with ID (n = 6/12) and children without autism or ID (n = 3/6), and 14.3% (n = 1/7) for autistic children without ID. We highlight the conditions that feature developmental regression and report on novel phenotypic expansions. The high diagnostic yield of ES, regardless of autism or ID diagnosis, indicates the presence of developmental regression as an opportunity to identify the cause, including for genetic differences not previously reported to include regression.
Collapse
Affiliation(s)
- Kirsten Furley
- Department of Paediatrics, Monash University, Melbourne, Australia
- Monash Children's Hospital, Melbourne, Australia
| | - Matthew F Hunter
- Department of Paediatrics, Monash University, Melbourne, Australia
- Monash Genetics, Monash Health, Melbourne, Australia
| | - Michael Fahey
- Department of Paediatrics, Monash University, Melbourne, Australia
- Monash Children's Hospital, Melbourne, Australia
- Neurology, Monash Health, Melbourne, Australia
| | - Katrina Williams
- Department of Paediatrics, Monash University, Melbourne, Australia
- Monash Children's Hospital, Melbourne, Australia
| |
Collapse
|
2
|
Lee HHC, Latzer IT, Bertoldi M, Gao G, Pearl PL, Sahin M, Rotenberg A. Gene replacement therapies for inherited disorders of neurotransmission: Current progress in succinic semialdehyde dehydrogenase deficiency. J Inherit Metab Dis 2024; 47:476-493. [PMID: 38581234 PMCID: PMC11096052 DOI: 10.1002/jimd.12735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
Neurodevelopment is a highly organized and complex process involving lasting and often irreversible changes in the central nervous system. Inherited disorders of neurotransmission (IDNT) are a group of genetic disorders where neurotransmission is primarily affected, resulting in abnormal brain development from early life, manifest as neurodevelopmental disorders and other chronic conditions. In principle, IDNT (particularly those of monogenic causes) are amenable to gene replacement therapy via precise genetic correction. However, practical challenges for gene replacement therapy remain major hurdles for its translation from bench to bedside. We discuss key considerations for the development of gene replacement therapies for IDNT. As an example, we describe our ongoing work on gene replacement therapy for succinic semialdehyde dehydrogenase deficiency, a GABA catabolic disorder.
Collapse
Affiliation(s)
- Henry HC Lee
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Itay Tokatly Latzer
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Tel-Aviv University Faculty of Medicine, Tel-Aviv, Israel
| | - Mariarita Bertoldi
- Dept. of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Guangping Gao
- The Horae Gene Therapy Center, UMass Medical School, MA 01605, USA
| | - Phillip L Pearl
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
3
|
Müller AR, den Hollander B, van de Ven PM, Roes KCB, Geertjens L, Bruining H, van Karnebeek CDM, Jansen FE, de Wit MCY, Ten Hoopen LW, Rietman AB, Dierckx B, Wijburg FA, Boot E, Brands MMG, van Eeghen AM. Cannabidiol (Epidyolex®) for severe behavioral manifestations in patients with tuberous sclerosis complex, mucopolysaccharidosis type III and fragile X syndrome: protocol for a series of randomized, placebo-controlled N-of-1 trials. BMC Psychiatry 2024; 24:23. [PMID: 38177999 PMCID: PMC10768432 DOI: 10.1186/s12888-023-05422-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Many rare genetic neurodevelopmental disorders (RGNDs) are characterized by intellectual disability (ID), severe cognitive and behavioral impairments, potentially diagnosed as a comorbid autism spectrum disorder or attention-deficit hyperactivity disorder. Quality of life is often impaired due to irritability, aggression and self-injurious behavior, generally refractory to standard therapies. There are indications from previous (case) studies and patient reporting that cannabidiol (CBD) may be an effective treatment for severe behavioral manifestations in RGNDs. However, clear evidence is lacking and interventional research is challenging due to the rarity as well as the heterogeneity within and between disease groups and interindividual differences in treatment response. Our objective is to examine the effectiveness of CBD on severe behavioral manifestations in three RGNDs, including Tuberous Sclerosis Complex (TSC), mucopolysaccharidosis type III (MPS III), and Fragile X syndrome (FXS), using an innovative trial design. METHODS We aim to conduct placebo-controlled, double-blind, block-randomized, multiple crossover N-of-1 studies with oral CBD (twice daily) in 30 patients (aged ≥ 6 years) with confirmed TSC, MPS III or FXS and severe behavioral manifestations. The treatment is oral CBD up to a maximum of 25 mg/kg/day, twice daily. The primary outcome measure is the subscale irritability of the Aberrant Behavior Checklist. Secondary outcome measures include (personalized) patient-reported outcome measures with regard to behavioral and psychiatric outcomes, disease-specific outcome measures, parental stress, seizure frequency, and adverse effects of CBD. Questionnaires will be completed and study medication will be taken at the participants' natural setting. Individual treatment effects will be determined based on summary statistics. A mixed model analysis will be applied for analyzing the effectiveness of the intervention per disorder and across disorders combining data from the individual N-of-1 trials. DISCUSSION These N-of-1 trials address an unmet medical need and will provide information on the effectiveness of CBD for severe behavioral manifestations in RGNDs, potentially generating generalizable knowledge at an individual-, disorder- and RGND population level. TRIAL REGISTRATION EudraCT: 2021-003250-23, registered 25 August 2022, https://www.clinicaltrialsregister.eu/ctr-search/trial/2021-003250-23/NL .
Collapse
Affiliation(s)
- A R Müller
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- 's Heeren Loo Care Group, Amersfoort, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - B den Hollander
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- United for Metabolic Diseases, Amsterdam, The Netherlands
| | - P M van de Ven
- Department of Data Science and Biostatistics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - K C B Roes
- Department of Health Evidence, Biostatistics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L Geertjens
- Child and Adolescent Psychiatry and Psychosocial Care, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam UMC, Amsterdam Neuroscience, Amsterdam Reproduction and Development, N=You Neurodevelopmental Precision Center, Amsterdam, The Netherlands
| | - H Bruining
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- Child and Adolescent Psychiatry and Psychosocial Care, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam UMC, Amsterdam Neuroscience, Amsterdam Reproduction and Development, N=You Neurodevelopmental Precision Center, Amsterdam, The Netherlands
- Levvel, Center for Child and Adolescent Psychiatry, Amsterdam, The Netherlands
| | - C D M van Karnebeek
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- United for Metabolic Diseases, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - F E Jansen
- Department of Pediatric Neurology, Brain, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M C Y de Wit
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - L W Ten Hoopen
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A B Rietman
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - B Dierckx
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - F A Wijburg
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - E Boot
- 's Heeren Loo Care Group, Amersfoort, The Netherlands
- The Dalglish Family 22Q Clinic, Toronto, ON, Canada
- Department of Psychiatry & Neuropsychology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - M M G Brands
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- United for Metabolic Diseases, Amsterdam, The Netherlands
| | - A M van Eeghen
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.
- 's Heeren Loo Care Group, Amersfoort, The Netherlands.
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Elvidge KL, Christodoulou J, Farrar MA, Tilden D, Maack M, Valeri M, Ellis M, Smith NJC. The collective burden of childhood dementia: a scoping review. Brain 2023; 146:4446-4455. [PMID: 37471493 PMCID: PMC10629766 DOI: 10.1093/brain/awad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 07/22/2023] Open
Abstract
Childhood dementia is a devastating and under-recognized group of disorders with a high level of unmet need. Typically monogenic in origin, this collective of individual neurodegenerative conditions are defined by a progressive impairment of neurocognitive function, presenting in childhood and adolescence. This scoping review aims to clarify definitions and conceptual boundaries of childhood dementia and quantify the collective disease burden. A literature review identified conditions that met the case definition. An expert clinical working group reviewed and ratified inclusion. Epidemiological data were extracted from published literature and collective burden modelled. One hundred and seventy genetic childhood dementia disorders were identified. Of these, 25 were analysed separately as treatable conditions. Collectively, currently untreatable childhood dementia was estimated to have an incidence of 34.5 per 100 000 (1 in 2900 births), median life expectancy of 9 years and prevalence of 5.3 per 100 000 persons. The estimated number of premature deaths per year is similar to childhood cancer (0-14 years) and approximately 70% of those deaths will be prior to adulthood. An additional 49.8 per 100 000 births are attributable to treatable conditions that would cause childhood dementia if not diagnosed early and stringently treated. A relational database of the childhood dementia disorders has been created and will be continually updated as new disorders are identified (https://knowledgebase.childhooddementia.org/). We present the first comprehensive overview of monogenic childhood dementia conditions and their collective epidemiology. Unifying these conditions, with consistent language and definitions, reinforces motivation to advance therapeutic development and health service supports for this significantly disadvantaged group of children and their families.
Collapse
Affiliation(s)
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michelle A Farrar
- Department of Neurology, Sydney Children's Hospital Network, Randwick, NSW 2031, Australia
- Discipline of Paediatrics, School of Clinical Medicine, UNSW Medicine and Health, Sydney, NSW 2052, Australia
| | | | - Megan Maack
- Childhood Dementia Initiative, Brookvale, NSW 2100, Australia
| | | | - Magda Ellis
- THEMA Consulting Pty Ltd, Pyrmont, NSW 2009, Australia
| | - Nicholas J C Smith
- Discipline of Paediatrics, University of Adelaide, Women's and Children's Hospital, North Adelaide, South Australia 5006, Australia
- Department of Neurology and Clinical Neurophysiology, Women’s and Children’s Health Network, North Adelaide, South Australia 5006, Australia
| |
Collapse
|
5
|
Nevin SM, McGill BC, Kelada L, Hilton G, Maack M, Elvidge KL, Farrar MA, Baynam G, Katz NT, Donovan L, Grattan S, Signorelli C, Bhattacharya K, Nunn K, Wakefield CE. The psychosocial impact of childhood dementia on children and their parents: a systematic review. Orphanet J Rare Dis 2023; 18:277. [PMID: 37679855 PMCID: PMC10486052 DOI: 10.1186/s13023-023-02859-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/20/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Childhood dementias are a group of rare and ultra-rare paediatric conditions clinically characterised by enduring global decline in central nervous system function, associated with a progressive loss of developmentally acquired skills, quality of life and shortened life expectancy. Traditional research, service development and advocacy efforts have been fragmented due to a focus on individual disorders, or groups classified by specific mechanisms or molecular pathogenesis. There are significant knowledge and clinician skill gaps regarding the shared psychosocial impacts of childhood dementia conditions. This systematic review integrates the existing international evidence of the collective psychosocial experiences of parents of children living with dementia. METHODS We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We systematically searched four databases to identify original, peer-reviewed research reporting on the psychosocial impacts of childhood dementia, from the parent perspective. We synthesised the data into three thematic categories: parents' healthcare experiences, psychosocial impacts, and information and support needs. RESULTS Nineteen articles met review criteria, representing 1856 parents. Parents highlighted extensive difficulties connecting with an engaged clinical team and navigating their child's rare, life-limiting, and progressive condition. Psychosocial challenges were manifold and encompassed physical, economic, social, emotional and psychological implications. Access to coordinated healthcare and community-based psychosocial supports was associated with improved parent coping, psychological resilience and reduced psychological isolation. Analysis identified a critical need to prioritize access to integrated family-centred psychosocial supports throughout distinct stages of their child's condition trajectory. CONCLUSION This review will encourage and guide the development of evidence-based and integrated psychosocial resources to optimise quality of life outcomes for of children with dementia and their families.
Collapse
Affiliation(s)
- Suzanne M Nevin
- School of Clinical Medicine, UNSW Medicine and Health, Discipline of Paediatrics and Child Health, Sydney, Australia.
- Behavioral Sciences Unit, Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia.
| | - Brittany C McGill
- School of Clinical Medicine, UNSW Medicine and Health, Discipline of Paediatrics and Child Health, Sydney, Australia
- Behavioral Sciences Unit, Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia
| | - Lauren Kelada
- School of Clinical Medicine, UNSW Medicine and Health, Discipline of Paediatrics and Child Health, Sydney, Australia
- Behavioral Sciences Unit, Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia
| | - Gail Hilton
- Childhood Dementia Initiative, Sydney, NSW, Australia
| | - Megan Maack
- Childhood Dementia Initiative, Sydney, NSW, Australia
| | | | - Michelle A Farrar
- School of Clinical Medicine, UNSW Medicine and Health, Discipline of Paediatrics and Child Health, Sydney, Australia
- Department of Neurology, Sydney Children's Hospital, Randwick, Australia
| | - Gareth Baynam
- Faculty of Health and Medical Sciences, Division of Paediatrics, University of Western Australia, Western Australia, Australia
- Rare Care Centre, Perth Children's Hospital, Perth, WA, Australia
- Telethon Kids Institute, Perth, WA, Australia
| | - Naomi T Katz
- Victorian Paediatric Palliative Care Program, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Leigh Donovan
- School of Clinical Medicine, UNSW Medicine and Health, Discipline of Paediatrics and Child Health, Sydney, Australia
- Behavioral Sciences Unit, Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia
| | - Sarah Grattan
- School of Clinical Medicine, UNSW Medicine and Health, Discipline of Paediatrics and Child Health, Sydney, Australia
| | - Christina Signorelli
- School of Clinical Medicine, UNSW Medicine and Health, Discipline of Paediatrics and Child Health, Sydney, Australia
- Behavioral Sciences Unit, Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia
| | - Kaustuv Bhattacharya
- Genetic Metabolic Disorders Service, Sydney Children's Hospitals' Network, Randwick and Westmead, Australia
- Faculty of Medicine and Health, Discipline of Genomics, Sydney University, Westmead, Australia
| | - Kenneth Nunn
- Department of Psychological Medicine, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Claire E Wakefield
- School of Clinical Medicine, UNSW Medicine and Health, Discipline of Paediatrics and Child Health, Sydney, Australia
- Behavioral Sciences Unit, Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia
| |
Collapse
|
6
|
Post MA, de Wit I, Zijlstra FSM, Engelke UFH, van Rooij A, Christodoulou J, Tan TY, Le Fevre A, Jin D, Yaplito-Lee J, Lee BH, Low KJ, Mallick AA, Õunap K, Pitt J, Reardon W, Vals MA, Wortmann SB, Wessels HJCT, Bärenfänger M, van Karnebeek CDM, Lefeber DJ. MOGS-CDG: Quantitative analysis of the diagnostic Glc 3 Man tetrasaccharide and clinical spectrum of six new cases. J Inherit Metab Dis 2023; 46:313-325. [PMID: 36651519 DOI: 10.1002/jimd.12588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Congenital disorders of glycosylation (CDG) are a clinically and biochemically heterogeneous subgroup of inherited metabolic disorders. Most CDG with abnormal N-glycosylation can be detected by transferrin screening, however, MOGS-CDG escapes this routine screening. Combined with the clinical heterogeneity of reported cases, diagnosing MOGS-CDG can be challenging. Here, we clinically characterize ten MOGS-CDG cases including six previously unreported individuals, showing a phenotype characterized by dysmorphic features, global developmental delay, muscular hypotonia, and seizures in all patients and in a minority vision problems and hypogammaglobulinemia. Glycomics confirmed accumulation of a Glc3 Man7 GlcNAc2 glycan in plasma. For quantification of the diagnostic Glcα1-3Glcα1-3Glcα1-2Man tetrasaccharide in urine, we developed and validated a liquid chromatography-mass spectrometry method of 2-aminobenzoic acid (2AA) labeled urinary glycans. As an internal standard, isotopically labeled 13 C6 -2AA Glc3 Man was used, while labeling efficiency was controlled by use of 12 C6 -2AA and 13 C6 -2AA labeled laminaritetraose. Recovery, linearity, intra- and interassay coefficients of variability of these labeled compounds were determined. Furthermore, Glc3 Man was specifically identified by retention time matching against authentic MOGS-CDG urine and compared with Pompe urine. Glc3 Man was increased in all six analyzed cases, ranging from 34.1 to 618.0 μmol/mmol creatinine (reference <5 μmol). In short, MOGS-CDG has a broad manifestation of symptoms but can be diagnosed with the use of a quantitative method for analysis of urinary Glc3 Man excretion.
Collapse
Affiliation(s)
- Merel A Post
- Department of Neurology, Donders institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Isis de Wit
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
- On behalf of United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Fokje S M Zijlstra
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Udo F H Engelke
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arno van Rooij
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John Christodoulou
- Genomic Medicine Research Theme, Murdoch Children's Research Institute and Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Tiong Yang Tan
- Genomic Medicine Research Theme, Murdoch Children's Research Institute and Department of Pediatrics, University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Anna Le Fevre
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Danqun Jin
- Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, China
| | - Joy Yaplito-Lee
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Metabolic Medicine, The Royal Children's Hospital Melbourne, Parkville, Australia
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Karen J Low
- School of Clinical Sciences, University of Bristol, Bristol, UK
- Clinical Genetics, St. Michael's Hospital, University Hospitals NHS Trust, Bristol, UK
| | - Andrew A Mallick
- Department of Pediatric Neurology, Bristol Royal Hospital for Children, Bristol, UK
| | - Katrin Õunap
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - James Pitt
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - William Reardon
- Clinical Genetics, Children's Health Ireland (CHI), Crumlin, Ireland
| | - Mari-Anne Vals
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Children's Clinic, Tartu University Hospital, Tartu, Estonia
| | - Saskia B Wortmann
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
- University Children's Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Hans J C T Wessels
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Melissa Bärenfänger
- Department of Neurology, Donders institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Division of Bioanalytical Chemistry, VU Amsterdam, Amsterdam, The Netherlands
| | - Clara D M van Karnebeek
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
- On behalf of United for Metabolic Diseases, Amsterdam, The Netherlands
- Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- On behalf of United for Metabolic Diseases, Amsterdam, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Djafar JV, Johnson AM, Elvidge KL, Farrar MA. Childhood Dementia: A Collective Clinical Approach to Advance Therapeutic Development and Care. Pediatr Neurol 2023; 139:76-85. [PMID: 36571866 DOI: 10.1016/j.pediatrneurol.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
Childhood dementias are a group of over 100 rare and ultra-rare pediatric conditions that are clinically characterized by chronic global neurocognitive decline. This decline is associated with a progressive loss of skills and shortened life expectancy. With an estimated incidence of one in 2800 births and less than 5% of the conditions having disease-modifying therapies, the impact is profound for patients and their families. Traditional research, care, and advocacy efforts have focused on individual disorders, or groups classified by molecular pathogenesis, and this has established robust foundations for further progress and collaboration. This review describes the shared and disease-specific clinical changes contributing to childhood dementia and considers these as potential indicators of underlying pathophysiologic processes. Like adult neurodegenerative syndromes, the heterogeneous phenotypes extend beyond cognitive decline and may involve changes in eating, motor function, pain, sleep, and behavior, mediated by physiological changes in neural networks. Importantly, these physiological phenotypes are associated with significant carer stress, anxiety, and challenges in care. These phenotypes are also pertinent for the development of therapeutics and optimization of best practice management. A collective approach to childhood dementia is anticipated to identify relevant biomarkers of prognosis or therapeutic efficacy, streamline the path from preclinical studies to clinical trials, increase opportunities for the development of multiple therapeutics, and refine clinical care.
Collapse
Affiliation(s)
- Jason V Djafar
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia; Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | - Alexandra M Johnson
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia; Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | | | - Michelle A Farrar
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia; Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Mele S, Martelli F, Lin J, Kanca O, Christodoulou J, Bellen HJ, Piper MDW, Johnson TK. Drosophila as a diet discovery tool for treating amino acid disorders. Trends Endocrinol Metab 2023; 34:85-105. [PMID: 36567227 DOI: 10.1016/j.tem.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Amino acid disorders (AADs) are a large group of rare inherited conditions that collectively impact one in 6500 live births, often resulting in rapid neurological decline and death during infancy. For several AADs, including phenylketonuria, dietary modification prevents physiological deterioration and ameliorates symptoms. Despite this remarkable potential for treatment success, dietary therapy for most AADs remains largely unexplored. Although animal models have provided novel insights into AAD mechanisms, few have been used for therapeutic diet discovery. Here, we find that of all the animal models, Drosophila is particularly well suited for nutrigenomic disease modelling, having amino acid pathways conserved with humans, exceptional genetic tractability, and the unique availability of a synthetic customisable diet.
Collapse
Affiliation(s)
- Sarah Mele
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Felipe Martelli
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Jiayi Lin
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Duncan Neurological Research Institute of Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - John Christodoulou
- Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Duncan Neurological Research Institute of Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
9
|
2022 Overview of Metabolic Epilepsies. Genes (Basel) 2022; 13:genes13030508. [PMID: 35328062 PMCID: PMC8952328 DOI: 10.3390/genes13030508] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/04/2022] Open
Abstract
Understanding the genetic architecture of metabolic epilepsies is of paramount importance, both to current clinical practice and for the identification of further research directions. The main goals of our study were to identify the scope of metabolic epilepsies and to investigate their clinical presentation, diagnostic approaches and treatments. The International Classification of Inherited Metabolic Disorders and IEMbase were used as a basis for the identification and classification of metabolic epilepsies. Six hundred metabolic epilepsies have been identified, accounting for as much as 37% of all currently described inherited metabolic diseases (IMD). Epilepsy is a particularly common symptom in disorders of energy metabolism, congenital disorders of glycosylation, neurotransmitter disorders, disorders of the synaptic vesicle cycle and some other IMDs. Seizures in metabolic epilepsies may present variably, and most of these disorders are complex and multisystem. Abnormalities in routine laboratory tests and/or metabolic testing may be identified in 70% of all metabolic epilepsies, but in many cases they are non-specific. In total, 111 metabolic epilepsies (18% of all) have specific treatments that may significantly change health outcomes if diagnosed in time. Although metabolic epilepsies comprise an important and significant group of disorders, their real scope and frequency may have been underestimated.
Collapse
|
10
|
Tumienė B, del Toro Riera M, Grikiniene J, Samaitiene-Aleknienė R, Praninskienė R, Monavari AA, Sykut-Cegielska J. Multidisciplinary Care of Patients with Inherited Metabolic Diseases and Epilepsy: Current Perspectives. J Multidiscip Healthc 2022; 15:553-566. [PMID: 35387391 PMCID: PMC8977775 DOI: 10.2147/jmdh.s251863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/17/2022] [Indexed: 11/25/2022] Open
Abstract
More than 650 inherited metabolic diseases may present with epilepsy or seizures. These diseases are often multisystem, life-long and induce complex needs of patients and families. Multidisciplinary care involves all stages of disease management: diagnostics, specific or symptomatic, acute and chronic treatments, and integrated care that takes into account not only medical, but also manifold psychosocial, educational, vocational and other needs of patients and their caregivers. Care coordination is indispensable to ensure smooth transitions of care across life and disease stages, including management of emergencies, transition from pediatric to adult services and palliative care. Care pathways are highly diverse and have to find the right balance between highly specialized and locally provided services. While multidisciplinary teams consist of many professionals, a named supervising physician in a highly specialized healthcare setting and a care coordinator are highly important. As the greatest burden of care always falls onto the shoulders of patients and/or families, patient empowerment should be a part of every care pathway and include provision of required information, involvement into common decision-making, patient’s and family’s education, support for self-management, liaison with peer support groups and emotional/ psychological support. Due to the rarity and complexity of these diseases, sufficient expertise may not be available in a national healthcare system and cross-border services (virtual or physical) in the recently developed European Reference Networks should be ensured through the proper organization of referral systems in each EU and EEA country. Finally, digital technologies are particularly important in the provision of services for patients with rare diseases and can significantly increase the availability of highly specialized services and expertise.
Collapse
Affiliation(s)
- Birutė Tumienė
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros klinikos, Vilnius, Lithuania
- Correspondence: Birutė Tumienė, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariskiu str. 2, Vilnius, LT-06681, Lithuania, Tel +370 614 45026, Email
| | - Mireia del Toro Riera
- Pediatric Neurology Department, Unit of Hereditary Metabolic Disorders, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Jurgita Grikiniene
- Clinic of Children’s Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Rūta Samaitiene-Aleknienė
- Clinic of Children’s Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Rūta Praninskienė
- Clinic of Children’s Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ahmad Ardeshir Monavari
- National Centre for Inherited Metabolic Disorders, Children’s Health Ireland at Temple Street Dublin, Dublin, Ireland
- University College Dublin, Dublin, Ireland
| | - Jolanta Sykut-Cegielska
- Department of Inborn Errors of Metabolism and Paediatrics, the Institute of Mother and Child, Warsaw, Poland
| |
Collapse
|
11
|
Personalized medicine for rare neurogenetic disorders: can we make it happen? Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006200. [PMID: 35332073 PMCID: PMC8958924 DOI: 10.1101/mcs.a006200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rare neurogenetic disorders are collectively common, affecting 3% of the population, and often manifest with complex multiorgan comorbidity. With advances in genetic, -omics, and computational analysis, more children can be diagnosed and at an earlier age. Innovations in translational research facilitate the identification of treatment targets and development of disease-modifying drugs such as gene therapy, nutraceuticals, and drug repurposing. This increasingly allows targeted therapy to prevent the often devastating manifestations of rare neurogenetic disorders. In this perspective, successes in diagnosis, prevention, and treatment are discussed with a focus on inherited disorders of metabolism. Barriers for the identification, development, and implementation of rare disease-specific therapies are discussed. New methodologies, care networks, and collaborative frameworks are proposed to optimize the potential of personalized genomic medicine to decrease morbidity and improve lives of these vulnerable patients.
Collapse
|
12
|
Modi BP, Khan HN, van der Lee R, Wasim M, Haaxma CA, Richmond PA, Drögemöller B, Shah S, Salomons G, van der Kloet FM, Vaz FM, van der Crabben SN, Ross CJ, Wasserman WW, van Karnebeek CD, Awan FR. Adult GAMT deficiency: A literature review and report of two siblings. Mol Genet Metab Rep 2021; 27:100761. [PMID: 33996490 PMCID: PMC8093930 DOI: 10.1016/j.ymgmr.2021.100761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 11/02/2022] Open
Abstract
Guanidinoacetate methyltransferase (GAMT) deficiency is a creatine deficiency disorder and an inborn error of metabolism presenting with progressive intellectual and neurological deterioration. As most cases are identified and treated in early childhood, adult phenotypes that can help in understanding the natural history of the disorder are rare. We describe two adult cases of GAMT deficiency from a consanguineous family in Pakistan that presented with a history of global developmental delay, cognitive impairments, excessive drooling, behavioral abnormalities, contractures and apparent bone deformities initially presumed to be the reason for abnormal gait. Exome sequencing identified a homozygous nonsense variant in GAMT: NM_000156.5:c.134G>A (p.Trp45*). We also performed a literature review and compiled the genetic and clinical characteristics of all adult cases of GAMT deficiency reported to date. When compared to the adult cases previously reported, the musculoskeletal phenotype and the rapidly progressive nature of neurological and motor decline seen in our patients is striking. This study presents an opportunity to gain insights into the adult presentation of GAMT deficiency and highlights the need for in-depth evaluation and reporting of clinical features to expand our understanding of the phenotypic spectrum.
Collapse
Affiliation(s)
- Bhavi P. Modi
- Centre for Molecular Medicine and Therapeutics, Dept. of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Correspondence to: B. P. Modi, University of British Columbia, BC Children's Hospital Research Institute, 938 W 28 Ave, Vancouver, BC V5Z 4H4, Canada.
| | - Haq Nawaz Khan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Robin van der Lee
- Centre for Molecular Medicine and Therapeutics, Dept. of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Muhammad Wasim
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Charlotte A. Haaxma
- Department of Pediatric Neurology, Amalia Children's Hospital, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Phillip A. Richmond
- Centre for Molecular Medicine and Therapeutics, Dept. of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Britt Drögemöller
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Suleman Shah
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Gajja Salomons
- Laboratory for Genetic Metabolic Diseases, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Frans M. van der Kloet
- Laboratory for Genetic Metabolic Diseases, Amsterdam University Medical Centres, Amsterdam, the Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, the Netherlands
| | - Fred M. Vaz
- Laboratory for Genetic Metabolic Diseases, Amsterdam University Medical Centres, Amsterdam, the Netherlands
- Dept. of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, the Netherlands
| | | | - Colin J. Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wyeth W. Wasserman
- Centre for Molecular Medicine and Therapeutics, Dept. of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Clara D.M. van Karnebeek
- Centre for Molecular Medicine and Therapeutics, Dept. of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centres, Amsterdam, Netherlands
- Department of Pediatric Metabolic Diseases, Amalia Children's Hospital, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
- United for Metabolic Diseases, the Netherlands
| | - Fazli Rabbi Awan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Correspondence to: F. R. Awan, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan.
| |
Collapse
|
13
|
Hoytema van Konijnenburg EMM, Wortmann SB, Koelewijn MJ, Tseng LA, Houben R, Stöckler-Ipsiroglu S, Ferreira CR, van Karnebeek CDM. Treatable inherited metabolic disorders causing intellectual disability: 2021 review and digital app. Orphanet J Rare Dis 2021; 16:170. [PMID: 33845862 PMCID: PMC8042729 DOI: 10.1186/s13023-021-01727-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The Treatable ID App was created in 2012 as digital tool to improve early recognition and intervention for treatable inherited metabolic disorders (IMDs) presenting with global developmental delay and intellectual disability (collectively 'treatable IDs'). Our aim is to update the 2012 review on treatable IDs and App to capture the advances made in the identification of new IMDs along with increased pathophysiological insights catalyzing therapeutic development and implementation. METHODS Two independent reviewers queried PubMed, OMIM and Orphanet databases to reassess all previously included disorders and therapies and to identify all reports on Treatable IDs published between 2012 and 2021. These were included if listed in the International Classification of IMDs (ICIMD) and presenting with ID as a major feature, and if published evidence for a therapeutic intervention improving ID primary and/or secondary outcomes is available. Data on clinical symptoms, diagnostic testing, treatment strategies, effects on outcomes, and evidence levels were extracted and evaluated by the reviewers and external experts. The generated knowledge was translated into a diagnostic algorithm and updated version of the App with novel features. RESULTS Our review identified 116 treatable IDs (139 genes), of which 44 newly identified, belonging to 17 ICIMD categories. The most frequent therapeutic interventions were nutritional, pharmacological and vitamin and trace element supplementation. Evidence level varied from 1 to 3 (trials, cohort studies, case-control studies) for 19% and 4-5 (case-report, expert opinion) for 81% of treatments. Reported effects included improvement of clinical deterioration in 62%, neurological manifestations in 47% and development in 37%. CONCLUSION The number of treatable IDs identified by our literature review increased by more than one-third in eight years. Although there has been much attention to gene-based and enzyme replacement therapy, the majority of effective treatments are nutritional, which are relatively affordable, widely available and (often) surprisingly effective. We present a diagnostic algorithm (adjustable to local resources and expertise) and the updated App to facilitate a swift and accurate workup, prioritizing treatable IDs. Our digital tool is freely available as Native and Web App (www.treatable-id.org) with several novel features. Our Treatable ID endeavor contributes to the Treatabolome and International Rare Diseases Research Consortium goals, enabling clinicians to deliver rapid evidence-based interventions to our rare disease patients.
Collapse
Affiliation(s)
| | - Saskia B Wortmann
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- University Children's Hospital, Paracelsus Medical University, Salzburg, Austria
- On Behalf of United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Marina J Koelewijn
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura A Tseng
- Department of Pediatrics, Amsterdam UMC, Amsterdam, The Netherlands
- On Behalf of United for Metabolic Diseases, Amsterdam, The Netherlands
| | | | - Sylvia Stöckler-Ipsiroglu
- Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, Vancouver, BC, V6H 3V4, Canada
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clara D M van Karnebeek
- Department of Pediatrics, Amsterdam UMC, Amsterdam, The Netherlands.
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
- On Behalf of United for Metabolic Diseases, Amsterdam, The Netherlands.
- Department of Pediatrics - Metabolic Diseases, Amalia Children's Hospital, Geert Grooteplein 10, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Conijn T, Haverman L, Wijburg FA, De Roos C. Reducing posttraumatic stress in parents of patients with a rare inherited metabolic disorder using eye movement desensitization and reprocessing therapy: a case study. Orphanet J Rare Dis 2021; 16:126. [PMID: 33691734 PMCID: PMC7948366 DOI: 10.1186/s13023-021-01768-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/01/2021] [Indexed: 12/31/2022] Open
Abstract
Parents of children with severe inborn errors of metabolism frequently face stressful events related to the disease of their child and are consequently at high risk for developing parental posttraumatic stress disorder (PTSD). Assessment and subsequent treatment of PTSD in these parents is however not common in clinical practice. PTSD can be effectively treated by Eye Movement Desensitization and Reprocessing (EMDR), however no studies have been conducted yet regarding the effect of EMDR for parental PTSD. EMDR is generally offered in multiple weekly sessions which may preclude participation of parents as they are generally overburdened by the ongoing and often intensive care for their child. Therefore, we offered time-limited EMDR with a maximum of four sessions over two subsequent days to two parents of mucopolysaccharidosis type III (MPS III) patients to explore its potential effects. Both qualitative and quantitative outcomes were used to evaluate treatment effects. Both parents felt more resilient and competent to face future difficulties related to the disease of their child, and no adverse effects were reported. Quantitative outcomes showed a clinically significant decrease in post traumatic stress symptoms and comorbid psychological distress from pre- to post treatment, and these beneficial effects were maintained at follow-up. In conclusion, time-limited EMDR may be a highly relevant treatment for traumatized parents of children with MPS III, and probably also for parents of children with other rare progressive disorders. Further research is needed to validate the efficacy of EMDR in this specific population.
Collapse
Affiliation(s)
- Thirsa Conijn
- Pediatric Metabolic Diseases, Emma Children's Hospital and Amsterdam Lysosome Centre "Sphinx", Amsterdam UMC, University of Amsterdam, H8-264, Meibergdreef 9, Amsterdam, The Netherlands.,Psychosocial Department, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lotte Haverman
- Psychosocial Department, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Frits A Wijburg
- Pediatric Metabolic Diseases, Emma Children's Hospital and Amsterdam Lysosome Centre "Sphinx", Amsterdam UMC, University of Amsterdam, H8-264, Meibergdreef 9, Amsterdam, The Netherlands.
| | - Carlijn De Roos
- Department of Child and Adolescent Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
van Karnebeek CDM. The progressive intellectual and neurological deterioration study: a game changer. Dev Med Child Neurol 2021; 63:243. [PMID: 33336358 PMCID: PMC7898509 DOI: 10.1111/dmcn.14780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This commentary is on the original article by Verity et al. on pages 287–294 of this issue.
Collapse
Affiliation(s)
- Clara DM van Karnebeek
- Department of Paediatrics & Metabolic DiseasesRadboud Centre for Mitochondrial MedicineAmalia Children's Hospital, Radboud University Medical CentreNijmegenthe Netherlands
| |
Collapse
|