1
|
Shen L, Yang Y, Lu L, Huang J, He W, Zhao C, Guo F, Zhang C, Zhong H, Liao F. Design and synthesis of piperine-based photoaffinity probes for revealing potential targets of piperine in neurological disease. Chem Commun (Camb) 2025; 61:669-672. [PMID: 39628399 DOI: 10.1039/d4cc04330h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Piperine (PIP) has attracted extensive attention due to its diverse biological activities. In this study, we developed two photoaffinity probes PIP-1 and PIP-2, which are biologically safe and retain PIP's bioactivity, to investigate its protein targets in vivo. Using in situ labeling and cell imaging, we were able to effectively detect and visualize the drug targets of PIP with our probes. Additionally, a series of protein targets of PIP were fished using PIP-2 through proteome profiling, with further validation suggesting that TGFβ1 might be a potential target involved in PIP's effects on neurological diseases. These findings demonstrate that PIP-2 is a valuable tool for identifying the targets of PIP.
Collapse
Affiliation(s)
- Li Shen
- Department of Pharmaceutics, College of Pharmacy, Nanchang University, Nanchang 330006, Jiangxi, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Province Key Laboratory of Drug Target Discovery and Validation, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yue Yang
- Department of Pharmaceutics, College of Pharmacy, Nanchang University, Nanchang 330006, Jiangxi, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Province Key Laboratory of Drug Target Discovery and Validation, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Lijun Lu
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jili Huang
- Department of Pharmaceutics, College of Pharmacy, Nanchang University, Nanchang 330006, Jiangxi, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Province Key Laboratory of Drug Target Discovery and Validation, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Wen He
- Department of Pharmaceutics, College of Pharmacy, Nanchang University, Nanchang 330006, Jiangxi, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Province Key Laboratory of Drug Target Discovery and Validation, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Chunfang Zhao
- Department of Pharmaceutics, College of Pharmacy, Nanchang University, Nanchang 330006, Jiangxi, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Province Key Laboratory of Drug Target Discovery and Validation, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Feng Guo
- Department of Pharmaceutics, College of Pharmacy, Nanchang University, Nanchang 330006, Jiangxi, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Province Key Laboratory of Drug Target Discovery and Validation, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Chunbo Zhang
- Department of Pharmaceutics, College of Pharmacy, Nanchang University, Nanchang 330006, Jiangxi, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Province Key Laboratory of Drug Target Discovery and Validation, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Haijun Zhong
- Department of Pharmaceutics, College of Pharmacy, Nanchang University, Nanchang 330006, Jiangxi, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Province Key Laboratory of Drug Target Discovery and Validation, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Fan Liao
- Department of Pharmaceutics, College of Pharmacy, Nanchang University, Nanchang 330006, Jiangxi, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Province Key Laboratory of Drug Target Discovery and Validation, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
2
|
Hosseini A, Sheibani M, Valipour M. Exploring the Therapeutic Potential of BBB-Penetrating Phytochemicals With p38 MAPK Modulatory Activity in Addressing Oxidative Stress-Induced Neurodegenerative Disorders, With a Focus on Alzheimer's Disease. Phytother Res 2024; 38:5598-5625. [PMID: 39300812 DOI: 10.1002/ptr.8329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/17/2024] [Accepted: 08/17/2024] [Indexed: 09/22/2024]
Abstract
Oxidative stress plays an important role in the occurrence of neurodegenerative diseases. Previous studies indicate a strong connection between oxidative stress, inappropriate activation of the p38 MAPK signaling pathway, and the pathogenesis of neurodegenerative diseases. Although antioxidant therapy is a valid strategy to alleviate these problems, the most important limitation of this approach is the ineffectiveness of drug administration due to the limited permeability of the BBB. Therefore, BBB-penetrating p38 MAPK modulators with proper antioxidant capacity could be useful in preventing/reducing the complications of neurodegenerative disorders. The current manuscript aims to review the therapeutic capabilities of some recently reviewed naturally occurring p38 MAPK inhibitors in the management of neurodegenerative problems such as Alzheimer's disease. In data collection, we tried to use more recent studies published in high-quality journals indexed in databases Scopus, Web of Science, PubMed, and so on, but no specific time frame was considered due to the nature of the study. Our evaluations indicate that natural compounds tanshinones, protoberberines, pinocembrin, osthole, rhynchophylline, oxymatrine, schisandrin, piperine, paeonol, ferulic acid, 6-gingerol, obovatol, and trolox have significant potential for use as supplements/adjuvants in the reduction of neurodegenerative-related problems. Our findings emphasize the usefulness of BBB-penetrating phytochemicals with p38 MAPK modulatory activity as potential therapeutic options against neurodegenerative disorders. Of course, the proper use of these compounds depends on considering their toxicity/safety profile and pharmacokinetic characteristics as well as the clinical conditions of users.
Collapse
Affiliation(s)
- Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Hu B, Wang H, Liang H, Ma N, Wu D, Zhao R, Lv H, Xiao Z. Multiple effects of spicy flavors on neurological diseases through the intervention of TRPV1: a critical review. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 39041177 DOI: 10.1080/10408398.2024.2381689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The spicy properties of foods are contributed by various spicy flavor substances (SFs) such as capsaicin, piperine, and allicin. Beyond their distinctive sensory characteristics, SFs also influence health conditions and numerous studies have associated spicy flavors with disease treatment. In this review, we enumerate different types of SFs and describe their role in food processing, with a specific emphasis on critically examining their influence on human wellness. Particularly, detailed insights into the mechanisms through which SFs enhance physiological balance and alleviate neurological diseases are provided, and a systematic analysis of the significance of transient receptor potential vanilloid type-1 (TRPV1) in regulating metabolism and nervous system homeostasis is presented. Moreover, enhancing the accessibility and utilization of SFs can potentially amplify the physiological effects. This review aims to provide compelling evidence for the integration of food flavor and human health.
Collapse
Affiliation(s)
- Boyong Hu
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Heng Wang
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Liang
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ning Ma
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Diyi Wu
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruotong Zhao
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Haoming Lv
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zuobing Xiao
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Xiong Y, Yu Q, Zhi H, Peng H, Xie M, Li R, Li K, Ma Y, Sun P. Advances in the study of the glymphatic system and aging. CNS Neurosci Ther 2024; 30:e14803. [PMID: 38887168 PMCID: PMC11183173 DOI: 10.1111/cns.14803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/26/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
The glymphatic system is cerebrospinal fluid-brain tissue fluid exchange flow mediated by aquaporin-4 (AQP4) on the end feet of astrocytes for a system, which is capable of rapidly removing brain metabolites and thus maintaining brain homeostasis, and is known as the central immune system. Dysfunction of the glymphatic system causes accumulation of misfolded and highly phosphorylated proteins (amyloid-β and Tau proteins), which destabilizes the proteins, and the body's neuroinflammatory factors are altered causing aging of the immune system and leading to neurodegenerative diseases. Damage to the glymphatic system and aging share common manifestations, as well as unstudied biological mechanisms that are also linked, such as mitochondria, oxidative stress, chronic inflammation, and sleep. In this paper, we first summarize the structure, function, and research methods of the glymphatic system and the relationship between the glymphatic system and the peripheral immune system, and second, sort out and summarize the factors of the glymphatic system in removing metabolites and resolving aging-related diseases and factors affecting aging, to explore its related biological mechanisms, and moreover, to provide a new way of thinking for treating or intervening aging-related diseases.
Collapse
Affiliation(s)
- Ying Xiong
- School of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Qingying Yu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Haimei Zhi
- Qilu Hospital of Shandong UniversityJinanChina
| | - Huiyuan Peng
- Department of RehabilitationZhongshan Hospital of Traditional Chinese MedicineZhongshanChina
| | - Mingjun Xie
- School of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Renjun Li
- Department of PsychiatryJinan Mental Health CenterJinanChina
| | - Kejian Li
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanChina
| | - Yuexiang Ma
- School of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Peng Sun
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanChina
| |
Collapse
|
5
|
Rehman MU, Sehar N, Rasool I, Aldossari RM, Wani AB, Rashid SM, Wali AF, Ali A, Arafah A, Khan A. Glymphatic pathway: An emerging perspective in the pathophysiology of neurodegenerative diseases. Int J Geriatr Psychiatry 2024; 39:e6104. [PMID: 38877354 DOI: 10.1002/gps.6104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
The central nervous system (CNS) is widely recognized as the only organ system without lymphatic capillaries to promote the removal of interstitial metabolic by-products. Thus, the newly identified glymphatic system which provides a pseudolymphatic activity in the nervous system has been focus of latest research in neurosciences. Also, findings reported that, sleep stimulates the elimination actions of glymphatic system and is linked to normal brain homeostatis. The CNS is cleared of potentially hazardous compounds via the glymphatic system, particularly during sleep. Any age-related alterations in brain functioning and pathophysiology of various neurodegenerative illnesses indicates the disturbance of the brain's glymphatic system. In this context, β-amyloid as well as tau leaves the CNS through the glymphatic system, it's functioning and CSF discharge markedly altered in elderly brains as per many findings. Thus, glymphatic failure may have a potential mechanism which may be therapeutically targetable in several neurodegenerative and age-associated cognitive diseases. Therefore, there is an urge to focus for more research into the connection among glymphatic system and several potential brain related diseases. Here, in our current review paper, we reviewed current research on the glymphatic system's involvement in a number of prevalent neurodegenerative and neuropsychiatric diseases and, we also discussed several therapeutic approaches, diet and life style modifications which might be used to acquire a more thorough performance and purpose of the glymphatic system to decipher novel prospects for clinical applicability for the management of these diseases.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nouroz Sehar
- Centre for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Iyman Rasool
- Department of Pathology, Government Medical College (GMC-Srinagar), Srinagar, Jammu and Kashmir, India
| | - Rana M Aldossari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin AbdulAziz University, Al Kharj, Saudi Arabia
| | - Amir Bashir Wani
- Division of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Srinagar, Jammu and Kashmir, India
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Alusteng, Shuhama, Srinagar, Jammu and Kashmir, India
| | - Adil Farooq Wali
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Aarif Ali
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Alusteng, Shuhama, Srinagar, Jammu and Kashmir, India
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Andleeb Khan
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
6
|
Li X, Xie Z, Zhou Q, Tan X, Meng W, Pang Y, Huang L, Ding Z, Hu Y, Li R, Huang G, Li H. TGN-020 Alleviate Inflammation and Apoptosis After Cerebral Ischemia-Reperfusion Injury in Mice Through Glymphatic and ERK1/2 Signaling Pathway. Mol Neurobiol 2024; 61:1175-1186. [PMID: 37695472 PMCID: PMC10861636 DOI: 10.1007/s12035-023-03636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Post-stroke acute inhibition of aquaporin 4 (AQP4) is known to exacerbate inflammation and apoptosis, yet the underlying mechanisms are not fully understood. The objective of this study was to investigate the specific mechanism of inflammation and apoptosis following cerebral ischemia-reperfusion (I/R) injury using the AQP4-specific inhibitor, N-(1,3,4-thiadiazol-2-yl) pyridine-3-carboxamide dihydrochloride (TGN-020). Ischemic stroke was induced in mice using the middle cerebral artery occlusion (MCAO) model. The C57/BL6 mice were randomly divided into three groups as follows: sham operation, I/R 48 h, and TGN-020 + I/R 48 h treatment. All mice were subjected to a series of procedures. These procedures encompassed 2,3,5-triphenyltetrazolium chloride (TTC) staining, neurological scoring, fluorescence tracing, western blotting, immunofluorescence staining, and RNA sequencing (RNA-seq). The glymphatic function in the cortex surrounding cerebral infarction was determined using tracer, glial fibrillary acid protein (GFAP), AQP4 co-staining, and beta-amyloid precursor protein (APP) staining; differential genes were detected using RNA-seq. The influence of TGN-020 on the extracellular signal-regulated kinase 1/2 (ERK) 1/2 pathway was confirmed using the ERK1/2 pathway agonists Ro 67-7467. Additionally, we examined the expression of inflammation associated with microglia and astrocytes after TGN-020 and Ro 67-7467 treatment. Compared with I/R group, TGN-020 alleviated glymphatic dysfunction by inhibiting astrocyte proliferation and reducing tracer accumulation in the peri-infarct area. RNA-seq showed that the differentially expressed genes were mainly involved in the activation of astrocytes and microglia and in the ERK1/2 pathway. Western blot and immunofluorescence further verified the expression of associated inflammation. The inflammation and cell apoptosis induced by I/R are mitigated by TGN-020. This mitigation occurs through the improvement of glymphatic function and the inhibition of the ERK1/2 pathway.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Zhuoxi Xie
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Qian Zhou
- Department of Neurology, the Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Xiaoli Tan
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Weiting Meng
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Yeyu Pang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Lizhen Huang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Zhihao Ding
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Yuanhong Hu
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Ruhua Li
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Guilan Huang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Hao Li
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| |
Collapse
|
7
|
Challal S, Skiba A, Langlois M, Esguerra CV, Wolfender JL, Crawford AD, Skalicka-Woźniak K. Natural product-derived therapies for treating drug-resistant epilepsies: From ethnopharmacology to evidence-based medicine. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116740. [PMID: 37315641 DOI: 10.1016/j.jep.2023.116740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/17/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epilepsy is one of the most prevalent neurological human diseases, affecting 1% of the population in all age groups. Despite the availability of over 25 anti-seizure medications (ASMs), which are approved in most industrialized countries, approximately 30% of epilepsy patients still experience seizures that are resistant to these drugs. Since ASMs target only limited number of neurochemical mechanisms, drug-resistant epilepsy (DRE) is not only an unmet medical need, but also a formidable challenge in drug discovery. AIM In this review, we examine recently approved epilepsy drugs based on natural product (NP) such as cannabidiol (CBD) and rapamycin, as well as NP-based epilepsy drug candidates still in clinical development, such as huperzine A. We also critically evaluate the therapeutic potential of botanical drugs as polytherapy or adjunct therapy specifically for DRE. METHODS Articles related to ethnopharmacological anti-epileptic medicines and NPs in treating all forms of epilepsy were collected from PubMed and Scopus using keywords related to epilepsy, DRE, herbal medicines, and NPs. The database clinicaltrials.gov was used to find ongoing, terminated and planned clinical trials using herbal medicines or NPs in epilepsy treatment. RESULTS A comprehensive review on anti-epileptic herbal drugs and natural products from the ethnomedical literature is provided. We discuss the ethnomedical context of recently approved drugs and drug candidates derived from NPs, including CBD, rapamycin, and huperzine A. Recently published studies on natural products with preclinical efficacy in animal models of DRE are summarized. Moreover, we highlight that natural products capable of pharmacologically activating the vagus nerve (VN), such as CBD, may be therapeutically useful to treat DRE. CONCLUSIONS The review highlights that herbal drugs utilized in traditional medicine offer a valuable source of potential anti-epileptic drug candidates with novel mechanisms of action, and with clinical promise for the treatment of drug-resistant epilepsy (DRE). Moreover, recently developed NP-based anti-seizure medications (ASMs) indicate the translational potential of metabolites of plant, microbial, fungal and animal origin.
Collapse
Affiliation(s)
- Soura Challal
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Switzerland
| | - Adrianna Skiba
- Department of Natural Product Chemistry, Medical University of Lublin, Poland
| | - Mélanie Langlois
- Luxembourg Centre for Systems Biomedicine (LCSB), Belval, Luxembourg
| | - Camila V Esguerra
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Norway
| | - Jean-Luc Wolfender
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Switzerland
| | - Alexander D Crawford
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences (NMBU), Ås, Norway; Institute for Orphan Drug Discovery, Bremerhavener Innovations- und Gründerzentum (BRIG), Bremerhaven, Germany
| | | |
Collapse
|
8
|
Wu J, Cao M, Peng Y, Dong B, Jiang Y, Hu C, Zhu P, Xing W, Yu L, Xu R, Chen Z. Research progress on the treatment of epilepsy with traditional Chinese medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155022. [PMID: 37647670 DOI: 10.1016/j.phymed.2023.155022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/18/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Traditional Chinese Medicine (TCM) system is a medical system that has been expanding for thousands of years that was formed by the extensive clinical practice experience of many physicians and the accumulation of personal medication habits in China. In TCM, there is a history of long-term medication for epilepsy, the main treatment for epilepsy is TCM drugs and its prescription, supplemented by TCM modalities such as acupuncture therapy, moxibustion therapy, tuina, emotion adjustment therapy, etc. PURPOSE: With the modernization of TCM, the active ingredients and molecular mechanisms of TCM for epilepsy treatment have been gradually revealed. This review aimed to comprehensively summarize the TCM treatment of epilepsy, focusing on the current TCM drugs and some TCM formulae for the treatment of epilepsy, and to discuss the research progress of TCM for the treatment of epilepsy, and to provide a reference to develop future related studies in this field. MATERIALS AND METHODS The mechanism of action of antiepileptic drugs (AEDs) was interpreted from different perspectives by searching online databases and querying various materials identify drugs used in both modern medicine and TCM systems for the treatment of epilepsy. We collected all relevant TCM for epilepsy literature published in the last 30 years up to December 2022 from electronic databases such as PubMed, CNKI and Web of Science, and statistically analyzed the literature for the following keyword information. The search terms comprise the keywords "TCM", "phytochemistry", "pharmacological activity", "epilepsy" and "traditional application" as a combination. Scientific plant names were provided by "The Plant List" (www.theplantlist.org). RESULTS Epilepsy is a complex and serious disease of the brain and nervous system. At present, the treatment of epilepsy in modern medicine is mainly surgery and chemotherapy, but there are many serious side effects. By summarizing the treatment of epilepsy in TCM, it is found that there are various methods to treat epilepsy in TCM, mainly TCM drugs and its formulae. Many TCM drugs have antiepileptic effects. Now found that the main effective TCM drugs for the treatment of epilepsy are Curcumae Longae Rhizoma, Scorpio, Acori Tatarinowii Rhizoma, Uncariae Ramulus Cum Uncis and Ganoderma, etc. And the main compounds that play a role in the treatment of epilepsy are curcumin, gastrodin, ligustrazine, baicalin and rhynchophylline, etc. These TCM drugs have played an important role in the treatment of epilepsy in TCM clinic. However, the chemically active components of these TCM drugs are diverse and their mechanisms of action are complex, which are not fully understood and need to be further explored. CONCLUSIONS TCM treats epilepsy in a variety of ways, and with the discovery of a variety of potential bioactive substances for treatment of epilepsy. With the new progress in the research of other TCM treatment methods for epilepsy, TCM will have greater potential in the clinical application of epilepsy.
Collapse
Affiliation(s)
- Jie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Mayijie Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Ying Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Baohua Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Yunxiu Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Changjiang Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Pengjin Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Weidei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Lingying Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.
| | - Zhimin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Gu S, Li Y, Jiang Y, Huang JH, Wang F. Glymphatic Dysfunction Induced Oxidative Stress and Neuro-Inflammation in Major Depression Disorders. Antioxidants (Basel) 2022; 11:2296. [PMID: 36421482 PMCID: PMC9687220 DOI: 10.3390/antiox11112296] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 07/30/2023] Open
Abstract
Major Depression disorder (MDD) is a potentially life-threatening mental illness, however, many patients have a poor response to current treatments. Recent studies have suggested that stress- or trauma-induced oxidative stress and inflammation could be important factors involved in the development of MDD, but the mechanisms remain unclear. We showed that the glymphatic system is a recently discovered structure in the brain that may be involved in the clearance of large molecular and cell debris in extracellular space. In addition, the glymphatic system can help with the removal of reactive oxygen species (ROS) and cytokines such as IL-1β and HIF-1α. Glymphatic impairment can lead to ROS accumulation in the microenvironment, inducing cellular injury signaling and activating NLRP3 in microglia to induce inflammation and, thus, many brain diseases, including psychiatric disorders. Therefore, trauma-induced glymphatic impairment could induce oxidative stress and inflammation, and thus MDD. This paper will review recent advances with regard to stress-induced glymphatic system impairment and ROS-mediated inflammation in MDD.
Collapse
Affiliation(s)
- Simeng Gu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
- Department of Psychology, Medical School, Jiangsu University, Zhenjiang 210023, China
| | - Yumeng Li
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
- Department of Psychology, Medical School, Jiangsu University, Zhenjiang 210023, China
| | - Yao Jiang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Jason H. Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 79409, USA
- Department of Surgery, College of Medicine, Texas A & M University, Temple, TX 79409, USA
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| |
Collapse
|
10
|
Piperine Provides Neuroprotection against Kainic Acid-Induced Neurotoxicity via Maintaining NGF Signalling Pathway. Molecules 2022; 27:molecules27092638. [PMID: 35565989 PMCID: PMC9104445 DOI: 10.3390/molecules27092638] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/21/2022] Open
Abstract
The neuroprotective properties of piperine, the major alkaloid extracted from black pepper, have been under investigation, but its mechanism of action in excitotoxicity is still poorly understood. This study aimed to evaluate the protective effects of piperine with a focus on nerve growth factor (NGF) signalling in a kainic acid (KA) rat model of excitotoxicity. Rats were administered intraperitoneally (i.p.) piperine (10 or 50 mg/kg) before KA injection (15 mg/kg, i.p.). Our results show that KA exposure in rats caused seizure behaviour, intrinsic neuronal hyperactivity, glutamate elevation, hippocampal neuronal damage, and cognitive impairment. These KA-induced alterations could be restored to the normal state by piperine treatment. In addition, piperine decreased the expression of the NGF precursor proNGF and NGF-degrading protease matrix metalloproteinase 9, whereas it increased the expression of proNGF processing enzyme matrix metalloproteinase 7, NGF, and NGF-activated receptor TrkA in the hippocampus of KA-treated rats. Furthermore, KA decreased phosphorylation of the protein kinase B (Akt) and glycogen synthase kinase 3β (GSK3β) in the hippocampus, and piperine reversed these changes. Our data suggest that piperine protects hippocampal neurons against KA-induced excitotoxicity by upregulating the NGF/TrkA/Akt/GSK3β signalling pathways.
Collapse
|
11
|
Yu G, Zhang Y, Ning B. Reactive Astrocytes in Central Nervous System Injury: Subgroup and Potential Therapy. Front Cell Neurosci 2022; 15:792764. [PMID: 35002629 PMCID: PMC8733560 DOI: 10.3389/fncel.2021.792764] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Traumatic central nervous system (CNS) injury, which includes both traumatic brain injury (TBI) and spinal cord injury (SCI), is associated with irreversible loss of neurological function and high medical care costs. Currently, no effective treatment exists to improve the prognosis of patients. Astrocytes comprise the largest population of glial cells in the CNS and, with the advancements in the field of neurology, are increasingly recognized as having key functions in both the brain and the spinal cord. When stimulated by disease or injury, astrocytes become activated and undergo a series of changes, including alterations in gene expression, hypertrophy, the loss of inherent functions, and the acquisition of new ones. Studies have shown that astrocytes are highly heterogeneous with respect to their gene expression profiles, and this heterogeneity accounts for their observed context-dependent phenotypic diversity. In the inured CNS, activated astrocytes play a dual role both as regulators of neuroinflammation and in scar formation. Identifying the subpopulations of reactive astrocytes that exert beneficial or harmful effects will aid in deciphering the pathological mechanisms underlying CNS injuries and ultimately provide a theoretical basis for the development of effective strategies for the treatment of associated conditions. Following CNS injury, as the disease progresses, astrocyte phenotypes undergo continuous changes. Although current research methods do not allow a comprehensive and accurate classification of astrocyte subpopulations in complex pathological contexts, they can nonetheless aid in understanding the roles of astrocytes in disease. In this review, after a brief introduction to the pathology of CNS injury, we summarize current knowledge regarding astrocyte activation following CNS injury, including: (a) the regulatory factors involved in this process; (b) the functions of different astrocyte subgroups based on the existing classification of astrocytes; and (c) attempts at astrocyte-targeted therapy.
Collapse
Affiliation(s)
- GuiLian Yu
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Zhang
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bin Ning
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
12
|
Stasiłowicz A, Rosiak N, Tykarska E, Kozak M, Jenczyk J, Szulc P, Kobus-Cisowska J, Lewandowska K, Płazińska A, Płaziński W, Cielecka-Piontek J. Combinations of Piperine with Hydroxypropyl-β-Cyclodextrin as a Multifunctional System. Int J Mol Sci 2021; 22:4195. [PMID: 33919582 PMCID: PMC8072981 DOI: 10.3390/ijms22084195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Piperine is an alkaloid that has extensive pharmacological activity and impacts other active substances bioavailability due to inhibition of CYP450 enzymes, stimulation of amino acid transporters and P-glycoprotein inhibition. Low solubility and the associated low bioavailability of piperine limit its potential. The combination of piperine with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) causes a significant increase in its solubility and, consequently, an increase in permeability through gastrointestinal tract membranes and the blood-brain barrier. X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) were used to characterize interactions between piperine and HP-β-CD. The observed physicochemical changes should be combined with the process of piperine and CD system formation. Importantly, with an increase in solubility and permeability of piperine as a result of interaction with CD, it was proven to maintain its biological activity concerning the antioxidant potential (2,2-diphenyl-1-picryl-hydrazyl-hydrate assay), inhibition of enzymes essential for the inflammatory process and for neurodegenerative changes (hyaluronidase, acetylcholinesterase, butyrylcholinesterase).
Collapse
Affiliation(s)
- Anna Stasiłowicz
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznań, Poland; (A.S.); (N.R.)
| | - Natalia Rosiak
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznań, Poland; (A.S.); (N.R.)
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
| | - Jacek Jenczyk
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland;
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Joanna Kobus-Cisowska
- Department of Gastronomy Sciences and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland;
| | - Kornelia Lewandowska
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznan, Poland;
| | - Anita Płazińska
- Department of Biopharmacy, Faculty of Pharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland;
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznań, Poland; (A.S.); (N.R.)
| |
Collapse
|
13
|
Kumar S, Chowdhury S, Razdan A, Kumari D, Purty RS, Ram H, Kumar P, Nayak P, Shukla SD. Downregulation of Candidate Gene Expression and Neuroprotection by Piperine in Streptozotocin-Induced Hyperglycemia and Memory Impairment in Rats. Front Pharmacol 2021; 11:595471. [PMID: 33737876 PMCID: PMC7962412 DOI: 10.3389/fphar.2020.595471] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/21/2020] [Indexed: 01/27/2023] Open
Abstract
There is accumulating evidence showing that hyperglycemia conditions like diabetes possess a greater risk of impairment to the neuronal system because high glucose levels exacerbate oxidative stress, accumulation of amyloid-beta peptides, and mitochondrial dysfunction, and impair cognitive functions and cause neurodegeneration conditions like Alzheimer’s diseases. Due to the extensive focus on pharmacological intervention to prevent neuronal cells’ impairment induced by hyperglycemia, the underlying molecular mechanism that links between Diabetes and Alzheimer’s is still lacking. Given this, the present study aimed to evaluate the protective effect of piperine on streptozotocin (STZ) induced hyperglycemia and candidate gene expression. In the present study, rats were divided into four groups: control (Vehicle only), diabetic control (STZ only), piperine treated (20 mg/kg day, i.p), and sitagliptin (Positive control) treated. The memory function was assessed by Morris water maze and probe test. After treatment, biochemical parameters such as HOMA index and lipid profile were estimated in the serum, whereas histopathology was evaluated in pancreatic and brain tissue samples. Gene expression studies were done by real-time PCR technique. Present data indicated that piperine caused significant memory improvement as compared to diabetic (STZ) control. The assessment of HOMA indices in serum samples showed that piperine and sitagliptin (positive control, PC) caused significant alterations of insulin resistance, β cell function, and insulin sensitivity. Assessment of brain and pancreas histopathology shows significant improvement in tissue architecture in piperine and sitagliptin treated groups compared to diabetic control. The gene expression profile in brain tissue shows significantly reduced BACE1, PSEN1, APAF1, CASPASE3, and CATALASE genes in the piperine and sitagliptin (PC) treated groups compared to Diabetic (STZ) control. The present study demonstrated that piperine not only improves memory in diabetic rats but also reduces the expression of specific AD-related genes that can help design a novel strategy for therapeutic intervention at the molecular level.
Collapse
Affiliation(s)
- Suresh Kumar
- University School of Biotechnology, GGS Indraprastha University, New Delhi, India
| | - Suman Chowdhury
- University School of Biotechnology, GGS Indraprastha University, New Delhi, India
| | - Ajay Razdan
- University School of Biotechnology, GGS Indraprastha University, New Delhi, India
| | - Deepa Kumari
- University School of Biotechnology, GGS Indraprastha University, New Delhi, India
| | - Ram Singh Purty
- University School of Biotechnology, GGS Indraprastha University, New Delhi, India
| | - Heera Ram
- Department of Zoology, Jai Narain Vyas University, Jodhpur, India
| | - Pramod Kumar
- Department of Zoology, Jai Narain Vyas University, Jodhpur, India
| | - Prasunpriya Nayak
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, India
| | - Sunil Dutt Shukla
- Government Meera Girls College, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|