1
|
Hancock LM, Rao SM, Galioto R. Neuropsychological Manifestations of Multiple Sclerosis. Neurol Clin 2024; 42:835-847. [PMID: 39343478 DOI: 10.1016/j.ncl.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
This review article summarizes the literature on the cognitive impairment seen amongst people with multiple sclerosis (MS) and how that impairment can impact not only their lives but also how their care needs to be managed. Recommendations regarding screening and monitoring of cognitive issues are reviewed, as well as how common comorbidities can further impact cognition. The current literature with respect to treatment options is also summarized. Finally, the article reviews the literature on some special populations living with MS.
Collapse
Affiliation(s)
- Laura M Hancock
- Center for General Neurology, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, S31, Cleveland, OH 44195, USA.
| | - Stephen M Rao
- Schey Center for Cognitive Neuroimaging, Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, U10, Cleveland, OH 44195, USA
| | - Rachel Galioto
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, U10, Cleveland, OH 44195, USA
| |
Collapse
|
2
|
Coelewij L, Adriani M, Dönnes P, Waddington KE, Ciurtin C, Havrdova EK, Farrell R, Nytrova P, Pineda-Torra I, Jury EC. Patients with multiple sclerosis who develop immunogenicity to interferon-beta have distinct transcriptomic and proteomic signatures prior to treatment which are associated with disease severity. Clin Immunol 2024; 267:110339. [PMID: 39137826 DOI: 10.1016/j.clim.2024.110339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Anti-drug antibodies (ADA) reduce the efficacy of immunotherapies in multiple sclerosis (MS) and are associated with increased disease progression risk. Blood biomarkers predicting immunogenicity to biopharmaceuticals represent an unmet clinical need. Patients with relapsing remitting (RR)MS were recruited before (baseline), three, and 12 (M12) months after commencing interferon-beta treatment. Neutralising ADA-status was determined at M12, and patients were stratified at baseline according to their M12 ADA-status (ADA-positive/ADA-negative). Patients stratified as ADA-positive were characterised by an early dampened response to interferon-beta (prior to serum ADA detection) and distinct proinflammatory transcriptomic/proteomic peripheral blood signatures enriched for 'immune response activation' including phosphoinositide 3-kinase-γ and NFκB-signalling pathways both at baseline and throughout the treatment course, compared to ADA-negative patients. These immunogenicity-associated proinflammatory signatures significantly overlapped with signatures of MS disease severity. Thus, whole blood molecular profiling is a promising tool for prediction of ADA-development in RRMS and could provide insight into mechanisms of immunogenicity.
Collapse
Affiliation(s)
- Leda Coelewij
- Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| | - Marsilio Adriani
- Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| | - Pierre Dönnes
- Division of Medicine, University College London, London WC1E 6JF, United Kingdom; SciCross AB, Skövde, Sweden
| | - Kirsty E Waddington
- Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| | - Coziana Ciurtin
- Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| | - Eva Kubala Havrdova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, General University Hospital and First Faculty of Medicine, Charles University in Prague, 120 00, Czech Republic
| | - Rachel Farrell
- Department of Neuroinflammation, University College London, Institute of Neurology and National Hospital of Neurology and Neurosurgery, London WC1N 3BG, United Kingdom
| | - Petra Nytrova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, General University Hospital and First Faculty of Medicine, Charles University in Prague, 120 00, Czech Republic
| | - Inés Pineda-Torra
- Division of Medicine, University College London, London WC1E 6JF, United Kingdom; Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Parque Científico y Tecnológico Cartuja 93 Avda. Américo Vespucio, 24 41092 Sevilla, Spain
| | - Elizabeth C Jury
- Division of Medicine, University College London, London WC1E 6JF, United Kingdom.
| |
Collapse
|
3
|
Tunç A, Danisan G, Taydas O, Kara AB, Öncel S, Özdemir M. Differential Analysis of Venous Sinus Diameters: Unveiling Vascular Alterations in Patients with Multiple Sclerosis. Diagnostics (Basel) 2024; 14:1760. [PMID: 39202247 PMCID: PMC11353770 DOI: 10.3390/diagnostics14161760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Alterations in the cerebral venous system have been increasingly recognized as a significant component of the pathophysiology of multiple sclerosis (MS). This study aimed to explore the relationship between venous sinus diameter and MS to understand potential vascular alterations in MS patients compared with controls. We sought to determine whether these alterations were correlated with disease characteristics such as duration, lesion type, and disability score. METHODS This study included 79 MS patients diagnosed according to the 2017 McDonald criteria and 67 healthy individuals. Magnetic resonance imaging (MRI) scans via a 1.5 Tesla system provided measurements of the superior sagittal sinus, right and left transverse sinus, sinus rectus, and venous structures. Statistical analysis was conducted via SPSS, employing independent sample t tests, ANOVA, chi-square tests, and Pearson correlation analysis, with the significance level set at p < 0.05. RESULTS This study revealed significant differences in venous sinus diameter between MS patients and controls, with MS patients exhibiting larger diameters. Specifically, patients with brainstem and spinal lesions had larger diameters in certain sinus regions. No significant correlations were found between venous sinus diameter and demographic factors, expanded disability status scale scores, or lesion counts. However, a significant increase in perivenular lesions was noted in patients with longer disease durations. CONCLUSIONS The findings indicate notable vascular alterations in MS patients, particularly in venous sinus diameters, suggesting a potential vascular component in MS pathology. The lack of correlation with conventional clinical and MRI metrics highlights the complexity of MS pathology. These insights underscore the need for further research, particularly longitudinal studies, to elucidate the role of venous changes in MS progression and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Abdulkadir Tunç
- Department of Neurology, Faculty of Medicine, Sakarya University, 54100 Sakarya, Turkey
| | - Gurkan Danisan
- Department of Radiology, Faculty of Medicine, Sakarya University, 54100 Sakarya, Turkey; (G.D.); (O.T.); (M.Ö.)
| | - Onur Taydas
- Department of Radiology, Faculty of Medicine, Sakarya University, 54100 Sakarya, Turkey; (G.D.); (O.T.); (M.Ö.)
| | - Ahmet Burak Kara
- Department of Radiology, Faculty of Medicine, Sakarya University, 54100 Sakarya, Turkey; (G.D.); (O.T.); (M.Ö.)
| | - Samet Öncel
- Department of Neurology, Sakarya University Training and Research Hospital, 54100 Sakarya, Turkey;
| | - Mustafa Özdemir
- Department of Radiology, Faculty of Medicine, Sakarya University, 54100 Sakarya, Turkey; (G.D.); (O.T.); (M.Ö.)
| |
Collapse
|
4
|
Hegen H, Berek K, Deisenhammer F, Berger T, Enzinger C, Guger M, Kraus J, Walde J, Di Pauli F. Sex impacts treatment decisions in multiple sclerosis. J Neurol 2024; 271:3256-3267. [PMID: 38441611 PMCID: PMC11136719 DOI: 10.1007/s00415-024-12270-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Individual disease-modifying treatment (DMT) decisions might differ between female and male people with MS (pwMS). OBJECTIVE To identify sex-related differences in DMT strategies over the past decades in a real-world setting. METHODS In this cohort study, data from the Austrian Multiple Sclerosis Treatment Registry (AMSTR), a nationwide prospectively collected registry mandatory for reimbursement, were retrospectively analyzed. Of 4840 pwMS, those with relapsing-remitting MS, aged at least 18 years, who started DMT and had at least two clinical visits, were identified. At baseline, demographics, Expanded Disability Status Scale (EDSS) score, annualized relapse rate (ARR) in the prior 12 months and MRI lesion load were assessed. At follow-up, ARR, EDSS scores, and DMT were determined. RESULTS A total of 4224 pwMS were included into the study and had a median of 10 (IQR 5-18) clinical visits over an observation period of 3.5 (IQR 1.5-6.1) years. Multivariable Cox regression analysis revealed that the probability of DMT escalation due to relapse activity was lower in female than male pwMS (HR 4.1 vs. 8.3 per ARR). Probability of discontinuing moderate-effective DMT was higher in female pwMS when they were younger (HR 1.03 per year), and lower in male pwMS at higher age (HR 0.92). Similarly, female pwMS were more likely to stop highly effective DMT than male pwMS (HR 1.7). Among others, the most frequent reason for DMT discontinuation was family planning in female pwMS. All sex-related effects were independent of disease activity, such as MRI lesion load, baseline ARR or EDSS. CONCLUSIONS Real-world treatment decisions are influenced by sex-related aspects. Awareness of these associations should prevent unwarranted differences in MS care.
Collapse
Affiliation(s)
- Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Florian Deisenhammer
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | | | - Michael Guger
- Department of Neurology, Pyhrn-Eisenwurzen Hospital Steyr, Steyr, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Jörg Kraus
- Department of Laboratory Medicine, Paracelsus Medical University and Salzburger Landeskliniken, Salzburg, Austria
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Janette Walde
- Department of Statistics, Faculty of Economics and Statistics, University of Innsbruck, Innsbruck, Austria
| | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.
| |
Collapse
|
5
|
Jones RR, Turkoz I, Ait-Tihyaty M, DiBernardo A, Houtchens MK, Havrdová EK. Efficacy and Safety of Ponesimod Compared with Teriflunomide in Female Patients with Relapsing Multiple Sclerosis: Findings from the Pivotal OPTIMUM Study. J Womens Health (Larchmt) 2024; 33:480-490. [PMID: 38301149 DOI: 10.1089/jwh.2023.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Background: Multiple sclerosis (MS) is threefold more prevalent in women than men. However, sex-specific efficacy analysis for MS disease-modifying therapies is not typically performed. Methods: Post hoc analyses of data from female patients enrolled in the phase 3, double-blind OPTIMUM study of relapsing MS were carried out. Eligible adults were randomized to ponesimod 20 mg or teriflunomide 14 mg once daily for up to 108 weeks. The primary endpoint was annualized relapse rate (ARR); secondary endpoints included change in symptom domain of Fatigue Symptom and Impact Questionnaire-Relapsing Multiple Sclerosis (FSIQ-RMS) at week 108, number of combined unique active lesions (CUALs) per year on magnetic resonance imaging, and time to 12- and 24-week confirmed disability accumulation (CDA). Results: A total of 735 female patients (581 of childbearing potential) were randomized to ponesimod (n = 363, 49.4%) or teriflunomide (n = 372, 50.6%). Relative risk reduction in the ARR for ponesimod versus teriflunomide was 33.1% (mean, 0.192 vs. 0.286, respectively; p < 0.002). Mean difference in FSIQ-RMS for ponesimod versus teriflunomide was -4.34 (0.12 vs. 4.46; p = 0.002); rate ratio in CUALs per year, 0.601 (1.45 vs. 2.41; p < 0.0001), and hazard ratio for time to 12- and 24-week CDA risk estimates, 0.83 (10.7% vs. 12.9%; p = 0.38) and 0.91 (8.8% vs. 9.7%; p = 0.69), respectively. Incidence of treatment-emergent adverse events was similar between treatment groups (89.0% and 90.1%). Conclusions: Analyses demonstrate the efficacy and safety of ponesimod, versus active comparator, for women with relapsing MS, supporting data-informed decision-making for women with MS. Clinical Trial Registration Number: NCT02425644.
Collapse
Affiliation(s)
- Robyn R Jones
- Office of Chief Medical Officer, Johnson & Johnson, New Brunswick, New Jersey, USA
| | - Ibrahim Turkoz
- Department of Statistics and Decision Sciences, Janssen Research & Development, LLC, Titusville, New Jersey, USA
| | - Maria Ait-Tihyaty
- Global Medical Affairs, Janssen Research & Development, LLC, Titusville, New Jersey, USA
| | - Allitia DiBernardo
- Global Medical Affairs, Janssen Research & Development, LLC, Titusville, New Jersey, USA
| | - Maria K Houtchens
- Department of Neurology, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Eva Kubala Havrdová
- Department of Neurology, First Medical Faculty, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Motyl J, Friedova L, Ganapathy Subramanian R, Vaneckova M, Fuchs TA, Krasensky J, Blahova Dusankova J, Kubala Havrdova E, Horakova D, Uher T. Brain MRI disease burden and sex differences in cognitive performance of patients with multiple sclerosis. Acta Neurol Belg 2024; 124:109-118. [PMID: 37552396 DOI: 10.1007/s13760-023-02350-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Although there is evidence that shows worse cognitive functioning in male patients with multiple sclerosis (MS), the role of brain pathology in this context is under-investigated. OBJECTIVE To investigate sex differences in cognitive performance of MS patients, in the context of brain pathology and disease burden. METHODS Brain MRI, neurological examination, neuropsychological assessment (Brief International Cognitive Assessment in MS-BICAMS, and Paced Auditory Verbal Learning Test-PASAT), and patient-reported outcome questionnaires were performed/administered in 1052 MS patients. RESULTS Females had higher raw scores in the Symbol Digit Modalities Test (SDMT) (57.0 vs. 54.0; p < 0.001) and Categorical Verbal Learning Test (CVLT) (63.0 vs. 57.0; p < 0.001), but paradoxically, females evaluated their cognitive performance by MS Neuropsychological Questionnaire as being worse (16.6 vs 14.5, p = 0.004). Females had a trend for a weaker negative correlation between T2 lesion volume and SDMT ([Formula: see text] = - 0.37 in females vs. - 0.46 in men; interaction p = 0.038). On the other hand, women had a trend for a stronger correlation between Brain Parenchymal Fraction (BPF) and a visual memory test (Spearman's [Formula: see text] = 0.31 vs. 0.21; interaction p = 0.016). All these trends were not significant after correction for false discovery rate. CONCLUSIONS Although, females consider their cognition as worse, males had at a group level slightly worse verbal memory and information processing speed. However, the sex differences in cognitive performance were smaller than the variability of scores within the same sex group. Brain MRI measures did not explain the sex differences in cognitive performance among MS patients.
Collapse
Affiliation(s)
- Jiri Motyl
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Multiple Sclerosis Center, Charles University and General University Hospital, Katerinska 30, 120 00, Prague, Czech Republic
| | - Lucie Friedova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Multiple Sclerosis Center, Charles University and General University Hospital, Katerinska 30, 120 00, Prague, Czech Republic
| | - Ranjani Ganapathy Subramanian
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Manuela Vaneckova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tom A Fuchs
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jan Krasensky
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jana Blahova Dusankova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Multiple Sclerosis Center, Charles University and General University Hospital, Katerinska 30, 120 00, Prague, Czech Republic
| | - Eva Kubala Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Multiple Sclerosis Center, Charles University and General University Hospital, Katerinska 30, 120 00, Prague, Czech Republic
| | - Dana Horakova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Multiple Sclerosis Center, Charles University and General University Hospital, Katerinska 30, 120 00, Prague, Czech Republic
| | - Tomas Uher
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Multiple Sclerosis Center, Charles University and General University Hospital, Katerinska 30, 120 00, Prague, Czech Republic.
- Department of Physiotherapy, Faculty of Health Care, University of Presov, Prešov, Slovak Republic.
| |
Collapse
|
7
|
Siddiqui A, Yang JH, Hua LH, Graves JS. Clinical and Treatment Considerations for the Pediatric and Aging Patients with Multiple Sclerosis. Neurol Clin 2024; 42:255-274. [PMID: 37980118 DOI: 10.1016/j.ncl.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Chronologic aging is associated with multiple pathologic and immunologic changes that impact the clinical course of multiple sclerosis (MS). Clinical phenotypes evolve across the lifespan, from a highly inflammatory course in the very young to a predominantly neurodegenerative phenotype in older patients. Thus, unique clinical considerations arise for the diagnosis and management of the two age extremes of pediatric and geriatric MS populations. This review covers epidemiology, diagnosis, and treatment strategies for these populations with nuanced discussions on therapeutic approaches to effectively care for patients living with MS at critical transition points during their lifespan.
Collapse
Affiliation(s)
- Areeba Siddiqui
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Avenue, Las Vegas, NV 89106, USA
| | - Jennifer H Yang
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, Mail Code 0662, La Jolla, CA 92093, USA; Division of Pediatric Neurology, Rady Children's Hospital, 3020 Children's Way MC 5009, San Diego, CA 92123, USA
| | - Le H Hua
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Avenue, Las Vegas, NV 89106, USA.
| | - Jennifer S Graves
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, Mail Code 0662, La Jolla, CA 92093, USA; Division of Pediatric Neurology, Rady Children's Hospital, 3020 Children's Way MC 5009, San Diego, CA 92123, USA
| |
Collapse
|
8
|
Hayes CE, Astier AL, Lincoln MR. Vitamin D mechanisms of protection in multiple sclerosis. FELDMAN AND PIKE'S VITAMIN D 2024:1129-1166. [DOI: 10.1016/b978-0-323-91338-6.00051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Gunzler DD, De Nadai AS, Miller D, Ontaneda D, Briggs FB. Long-term trajectories of ambulatory impairment in multiple sclerosis. Mult Scler 2023; 29:1282-1295. [PMID: 37503861 PMCID: PMC10528275 DOI: 10.1177/13524585231187521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
BACKGROUND Ambulatory impairment is a common and complex manifestation of multiple sclerosis (MS), and longitudinal patterns are not well understood. OBJECTIVE To characterize longitudinal walking speed trajectories in a general MS patient population and in those with early disease (⩽ 5 years from onset), identify subgroups with similar patterns, and examine associations with individual attributes. METHODS Using a retrospective cohort study design, latent class growth analysis was applied to longitudinal timed 25-foot walk (T25-FW) data from 7683 MS patients, to determine T25-FW trajectories. Associations were evaluated between trajectory assignment and individual attributes. Analyses were repeated for 2591 patients with early disease. RESULTS In the general patient population, six trajectories were discerned, ranging from very minimal to very high impairment at baseline, with variability in impairment accrual. The clusters with moderate to very high walking impairment were associated with being female, older and Black American, longer symptom duration, progressive course, and depressive symptoms. In the early disease subset, eight trajectories were discerned that included two subgroups that rapidly accrued impairment. CONCLUSION We identified novel subgroups of MS patients will distinct long-term T25-FW trajectories. These results underscore that socially disadvantaged and economically marginalized MS patients are the most vulnerable for severe ambulatory impairment.
Collapse
Affiliation(s)
- Douglas D. Gunzler
- Department of Population and Quantitative Health Sciences,
Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Center for Health Care Research and Policy, School of
Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Deborah Miller
- The Mellen Center for Multiple Sclerosis and Research,
Department of Neurology, Neurological Institute, Cleveland Clinic Foundation,
Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case
Western Reserve University, Cleveland, OH, USA
| | - Daniel Ontaneda
- The Mellen Center for Multiple Sclerosis and Research,
Department of Neurology, Neurological Institute, Cleveland Clinic Foundation,
Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case
Western Reserve University, Cleveland, OH, USA
| | - Farren B.S. Briggs
- Department of Population and Quantitative Health Sciences,
Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
10
|
Ismail MA, Elsayed NM. Diffusion-Weighted Images and Contrast-Enhanced MRI in the Diagnosis of Different Stages of Multiple Sclerosis of the Central Nervous System. Cureus 2023; 15:e41650. [PMID: 37575819 PMCID: PMC10420334 DOI: 10.7759/cureus.41650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Multiple sclerosis (MS) is one of the most prevalent disorders of the central nervous system (CNS), and it can be observed in the field of radiological cross-sectional magnetic resonance imaging (MRI). The prevalence of MS in Saudi Arabia has increased as compared to the past few years. MRI is the gold standard non-invasive modality of choice in MS diagnosis according to the National Multiple Sclerosis Society (NMSS), New York City. This study aimed to highlight the significance of using diffusion-weighted images (DWIs) and the use of contrast media in the MS protocol, as well as the importance of identifying the suitable time of imaging after contrast enhancement to detect active lesions. Methods A retrospective cross-sectional study was conducted of 100 MS patients with an age range of 17 to 56 years. The data set included 41 active cases and 59 inactive cases. All patients had an MRI standard protocol of both the brain and spine in addition to DWI sequence and contrast agent (CA) injection, with images taken in early and delayed time. Results Of the patients, 71% were female and 29% were male. Active MS disease was more significant at younger ages than at older ages. Active lesions were significantly enhanced in delayed contrast images and showed high signal intensity in both the DWI and apparent diffusion coefficient (ADC) map, while inactive lesions showed no enhancement after contrast injection and showed an iso-signal intensity in both the DWI and ADC map. Conclusion The use of CA has developed over the years in the diagnosis of MS patients. In this study, the relationship between active lesions, DWI, and delayed contrast enhancement is very strong. In future research, we recommend adding a DWI sequence for the suspected active MS spine lesions in addition to delayed enhancement time in active MS after contrast injection to increase MRI sensitivity toward active MS lesions of the brain and spinal cord as well.
Collapse
Affiliation(s)
- Mashael A Ismail
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdullah Medical Complex, Ministry of Health, Jeddah, SAU
| | - Naglaa M Elsayed
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, SAU
- Diagnostic Radiology, Faculty of Medicine, Cairo University, Cairo, EGY
| |
Collapse
|
11
|
Reyes-Mata MP, Mireles-Ramírez MA, Griñán-Ferré C, Pallàs M, Pavón L, Guerrero-García JDJ, Ortuño-Sahagún D. Global DNA Methylation and Hydroxymethylation Levels in PBMCs Are Altered in RRMS Patients Treated with IFN-β and GA-A Preliminary Study. Int J Mol Sci 2023; 24:ijms24109074. [PMID: 37240421 DOI: 10.3390/ijms24109074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/15/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic disease affecting the central nervous system (CNS) due to an autoimmune attack on axonal myelin sheaths. Epigenetics is an open research topic on MS, which has been investigated in search of biomarkers and treatment targets for this heterogeneous disease. In this study, we quantified global levels of epigenetic marks using an ELISA-like approach in Peripheral Blood Mononuclear Cells (PBMCs) from 52 patients with MS, treated with Interferon beta (IFN-β) and Glatiramer Acetate (GA) or untreated, and 30 healthy controls. We performed media comparisons and correlation analyses of these epigenetic markers with clinical variables in subgroups of patients and controls. We observed that DNA methylation (5-mC) decreased in treated patients compared with untreated and healthy controls. Moreover, 5-mC and hydroxymethylation (5-hmC) correlated with clinical variables. In contrast, histone H3 and H4 acetylation did not correlate with the disease variables considered. Globally quantified epigenetic DNA marks 5-mC and 5-hmC correlate with disease and were altered with treatment. However, to date, no biomarker has been identified that can predict the potential response to therapy before treatment initiation.
Collapse
Affiliation(s)
- María Paulina Reyes-Mata
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Mario Alberto Mireles-Ramírez
- Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), IMSS, Guadalajara 44340, Mexico
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28220 Madrid, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28220 Madrid, Spain
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - José de Jesús Guerrero-García
- Banco de Sangre Central, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), IMSS, Guadalajara 44340, Mexico
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
12
|
Tedone N, Preziosa P, Meani A, Pagani E, Vizzino C, Filippi M, Rocca MA. Regional white matter and gray matter damage and cognitive performances in multiple sclerosis according to sex. Mol Psychiatry 2023; 28:1783-1792. [PMID: 36806391 DOI: 10.1038/s41380-023-01996-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
In this study, we investigated whether regional distribution of white matter (WM) lesions, normal-appearing [NA] WM microstructural abnormalities and gray matter (GM) atrophy may differently contribute to cognitive performance in multiple sclerosis (MS) patients according to sex. Using the same scanner, brain 3.0T MRI was acquired for 287 MS patients (females = 173; mean age = 42.1 [standard deviation, SD = 12.7] years; relapsing-remitting = 196, progressive = 91; median Expanded Disability Status Scale = 2.5 [interquartile range, IQR = 1.5-5.0]; median disease duration = 12.1 [IQR = 6.3-19.0] years; treatment: none = 70, first-line = 130, second-line = 87) and 172 healthy controls (HC) (females = 92; mean age = 39.3 [SD = 14.8] years). MS patients underwent also Rao's neuropsychological battery. Using voxel-wise analyses, we investigated in patients sex-related differences in the association of cognitive performances with WM lesions, NAWM fractional anisotropy (FA) and GM volumes (p < 0.01, family-wise error [FWE]). Sixty-six female (38%) and 48 male (42%) MS patients were cognitively impaired, with no significant between-group difference (p = 0.704). However, verbal memory performance was worse in males (p = 0.001), whereas verbal fluency performance was worse in females (p = 0.004). In both sexes, a higher T2-hyperintense lesion prevalence in cognitively-relevant WM tracts was significantly associated with worse cognitive performance (p ≤ 0.006), with stronger associations in females than males in global cognition (p ≤ 0.004). Compared to sex-matched HC, male and female MS patients had widespread lower NAWM FA and GM volume (p < 0.01). In both sexes, worse cognitive performance was associated with widespread reduced NAWM FA (p < 0.01), with stronger associations in females than males in global cognition and verbal memory (p ≤ 0.009). Worse cognitive performance was significantly associated with clusters of cortical GM atrophy in males (p ≤ 0.007) and mainly with deep GM atrophy in females (p ≤ 0.006). In this study, only limited differences in cognitive performances were found between male and female MS patients. A disconnection syndrome due to focal WM lesions and diffuse NAWM microstructural abnormalities seems to be more relevant in female MS patients to explain cognitive impairment.
Collapse
Affiliation(s)
- Nicolò Tedone
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carmen Vizzino
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
13
|
Frahm N, Fneish F, Ellenberger D, Haas J, Loebermann M, Parciak T, Peters M, Pöhlau D, Rodgers J, Röper AL, Schilling S, Stahmann A, Temmes H, Zettl UK, Middleton RM. SARS-CoV-2 vaccination in patients with multiple sclerosis in Germany and the United Kingdom: Gender-specific results from a longitudinal observational study. Lancet Reg Health Eur 2022; 22:100502. [PMID: 36090519 PMCID: PMC9438509 DOI: 10.1016/j.lanepe.2022.100502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Niklas Frahm
- German MS-Registry, MS Forschungs- und Projektentwicklungs-gGmbH (MS Research and Project Development gGmbH [MSFP]) Krausenstr. 50, 30171 Hannover, Germany
- Department of Neurology, Neuroimmunological Section, University Medical Center of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany
- Corresponding author at: MS Research and Project Development gGmbH, Krausenstr. 50, 30171 Hannover, Germany.
| | - Firas Fneish
- German MS-Registry, MS Forschungs- und Projektentwicklungs-gGmbH (MS Research and Project Development gGmbH [MSFP]) Krausenstr. 50, 30171 Hannover, Germany
| | - David Ellenberger
- German MS-Registry, MS Forschungs- und Projektentwicklungs-gGmbH (MS Research and Project Development gGmbH [MSFP]) Krausenstr. 50, 30171 Hannover, Germany
| | - Judith Haas
- Deutsche Multiple Sklerose Gesellschaft, Bundesverband e.V. (German MS Society Federal Association [DMSG]), Krausenstr. 50, 30171 Hannover, Germany
| | - Micha Loebermann
- Department of Tropical Medicine, Infectious Diseases and Nephrology, University Medical Center of Rostock, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Tina Parciak
- Biomedical Research Institute & Data Science Institute, Hasselt University, Diepenbeek 3590, Belgium
| | - Melanie Peters
- Gesellschaft für Versorgungsforschung mbH (Society for Health Care Research [GfV]), Krausenstr. 50, 30171 Hannover, Germany
| | - Dieter Pöhlau
- Deutsche Multiple Sklerose Gesellschaft, Bundesverband e.V. (German MS Society Federal Association [DMSG]), Krausenstr. 50, 30171 Hannover, Germany
| | - Jeff Rodgers
- UK MS Register, Swansea University Medical School, Data Science Building, Swansea SA2 8PP, United Kingdom
| | - Anna-Lena Röper
- German MS-Registry, MS Forschungs- und Projektentwicklungs-gGmbH (MS Research and Project Development gGmbH [MSFP]) Krausenstr. 50, 30171 Hannover, Germany
- Deutsche Multiple Sklerose Gesellschaft, Bundesverband e.V. (German MS Society Federal Association [DMSG]), Krausenstr. 50, 30171 Hannover, Germany
| | - Sarah Schilling
- German MS-Registry, MS Forschungs- und Projektentwicklungs-gGmbH (MS Research and Project Development gGmbH [MSFP]) Krausenstr. 50, 30171 Hannover, Germany
| | - Alexander Stahmann
- German MS-Registry, MS Forschungs- und Projektentwicklungs-gGmbH (MS Research and Project Development gGmbH [MSFP]) Krausenstr. 50, 30171 Hannover, Germany
| | - Herbert Temmes
- Deutsche Multiple Sklerose Gesellschaft, Bundesverband e.V. (German MS Society Federal Association [DMSG]), Krausenstr. 50, 30171 Hannover, Germany
| | - Uwe K. Zettl
- Department of Neurology, Neuroimmunological Section, University Medical Center of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Rodden M. Middleton
- UK MS Register, Swansea University Medical School, Data Science Building, Swansea SA2 8PP, United Kingdom
| |
Collapse
|
14
|
Pike SC, Welsh N, Linzey M, Gilli F. Theiler’s virus-induced demyelinating disease as an infectious model of progressive multiple sclerosis. Front Mol Neurosci 2022; 15:1019799. [PMID: 36311024 PMCID: PMC9606571 DOI: 10.3389/fnmol.2022.1019799] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease of unknown etiology. However, several studies suggest that infectious agents, e.g., Human Herpes Viruses (HHV), may be involved in triggering the disease. Molecular mimicry, bystander effect, and epitope spreading are three mechanisms that can initiate immunoreactivity leading to CNS autoimmunity in MS. Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelinating disease (TMEV-IDD) is a pre-clinical model of MS in which intracerebral inoculation of TMEV results in a CNS autoimmune disease that causes demyelination, neuroaxonal damage, and progressive clinical disability. Given the spectra of different murine models used to study MS, this review highlights why TMEV-IDD represents a valuable tool for testing the viral hypotheses of MS. We initially describe how the main mechanisms of CNS autoimmunity have been identified across both MS and TMEV-IDD etiology. Next, we discuss how adaptive, innate, and CNS resident immune cells contribute to TMEV-IDD immunopathology and how this relates to MS. Lastly, we highlight the sexual dimorphism observed in TMEV-IDD and MS and how this may be tied to sexually dimorphic responses to viral infections. In summary, TMEV-IDD is an underutilized murine model that recapitulates many unique aspects of MS; as we learn more about the nature of viral infections in MS, TMEV-IDD will be critical in testing the future therapeutics that aim to intervene with disease onset and progression.
Collapse
Affiliation(s)
- Steven C. Pike
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Nora Welsh
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Michael Linzey
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Francesca Gilli
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
- *Correspondence: Francesca Gilli,
| |
Collapse
|
15
|
Nytrova P, Dolezal O. Sex bias in multiple sclerosis and neuromyelitis optica spectrum disorders: How it influences clinical course, MRI parameters and prognosis. Front Immunol 2022; 13:933415. [PMID: 36016923 PMCID: PMC9396644 DOI: 10.3389/fimmu.2022.933415] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
This review is a condensed summary of representative articles addressing the sex/gender bias in multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD). The strong effects of sex on the incidence and possibly also the activity and progression of these disorders should be implemented in the evaluation of any phase of clinical research and also in treatment choice consideration in clinical practice and evaluation of MRI parameters. Some relationships between clinical variables and gender still remain elusive but with further understanding of sex/gender-related differences, we should be able to provide appropriate patient-centered care and research.
Collapse
Affiliation(s)
- Petra Nytrova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czechia
- *Correspondence: Petra Nytrova,
| | - Ondrej Dolezal
- Department of Neurology, Dumfries and Galloway Royal Infirmary, NHS Scotland, Dumfries, United Kingdom
| |
Collapse
|
16
|
Faraji J, Bettenson D, Babatunde S, Gangur-Powell T, Yong VW, Metz GA. Thermoregulatory dynamics reveal sex-specific inflammatory responses to experimental autoimmune encephalomyelitis in mice: Implications for multiple sclerosis-induced fatigue in females. Brain Behav Immun Health 2022; 23:100477. [PMID: 35677535 PMCID: PMC9167694 DOI: 10.1016/j.bbih.2022.100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
The course of multiple sclerosis (MS) is characterized by striking sex differences in symptoms such as fatigue and impaired thermal regulation, which are associated with aggravated systemic pro-inflammatory processes. The purpose of this study was to replicate these symptoms in experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice in the quest to advance the preclinical study of non-motor symptoms of MS. Male and female C57BL/6 mice exposed to a mild form of EAE were evaluated for the progression of clinical, behavioural, thermal, and inflammatory processes. We show higher susceptibility in females to EAE than males based on greater clinical score and cumulative disease index (CDI), fatigue-like and anxiety-like behaviours. Accordingly, infrared (IR) thermography indicated higher cutaneous temperatures in females from post-induction days 12-23. Females also responded to EAE with greater splenic and adrenal gland weights than males as well as sex-specific changes in pro- and anti-inflammatory cytokines. These findings provide the first evidence of a sex-specific thermal response to immune-mediated demyelination, thus proposing a non-invasive assessment approach of the psychophysiological dynamics in EAE mice. The results are discussed in relation to the thermoregulatory correlates of fatigue and how endogenously elevated body temperature without direct heat exposure may be linked to psychomotor inhibition in patients with MS.
Collapse
Affiliation(s)
- Jamshid Faraji
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Dennis Bettenson
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Stella Babatunde
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Tabitha Gangur-Powell
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Voon Wee Yong
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Gerlinde A.S. Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
17
|
Castellazzi M, Ferri C, Tecilla G, Huss A, Crociani P, Desina G, Barbella G, Piola A, Permunian S, Senel M, Leone M, Tumani H, Pugliatti M. The Sexual Dimorphism in Cerebrospinal Fluid Protein Content Does Not Affect Intrathecal IgG Synthesis in Multiple Sclerosis. J Pers Med 2022; 12:jpm12060977. [PMID: 35743761 PMCID: PMC9224729 DOI: 10.3390/jpm12060977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) that mainly affects young adults and females more than males. The detection of intrathecal IgG synthesis (IIS) on cerebrospinal fluid (CSF) analysis supports the diagnosis of MS. A sexual dimorphism has recently been described in CSF protein content. (2) Methods: Clinical and laboratory data from 340 MS patients (F = 231, M = 99) and 89 people with clinically isolated syndrome (CIS) (F = 57, M = 32) were retrospectively analyzed to assess the presence of variables affected by sex and age. (3) Results: In MS, the albumin quotient (QAlb), reflecting the blood–CSF barrier (BCSFB) function, was higher in males (5.6 vs. 4.34) and correlated to age with a constant difference between sexes (F = 41.71). In CIS patients, QAlb increased with age only in males (r = 0.3567). Age was positively correlated to disease duration and severity in MS (r = 0.3502, r = 0.2986, respectively). No differences emerged for quantitative and qualitative IIS determinations. (4) Discussion: Although the main difference between males and females concerns the function of BCSFB assessed by QAlb, this sexual dimorphism does not affect the determination of the IIS evaluated both by quantitative and qualitative methods.
Collapse
Affiliation(s)
- Massimiliano Castellazzi
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (C.F.); (G.T.); (G.B.); (A.P.); (S.P.); (M.P.)
- University Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-236388
| | - Caterina Ferri
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (C.F.); (G.T.); (G.B.); (A.P.); (S.P.); (M.P.)
| | - Ginevra Tecilla
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (C.F.); (G.T.); (G.B.); (A.P.); (S.P.); (M.P.)
| | - André Huss
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (A.H.); (M.S.); (H.T.)
| | - Paola Crociani
- Neurology Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (P.C.); (G.D.); (M.L.)
| | - Gaetano Desina
- Neurology Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (P.C.); (G.D.); (M.L.)
| | - Gianvito Barbella
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (C.F.); (G.T.); (G.B.); (A.P.); (S.P.); (M.P.)
| | - Alice Piola
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (C.F.); (G.T.); (G.B.); (A.P.); (S.P.); (M.P.)
| | - Samantha Permunian
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (C.F.); (G.T.); (G.B.); (A.P.); (S.P.); (M.P.)
| | - Makbule Senel
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (A.H.); (M.S.); (H.T.)
| | - Maurizio Leone
- Neurology Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (P.C.); (G.D.); (M.L.)
| | - Hayrettin Tumani
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (A.H.); (M.S.); (H.T.)
| | - Maura Pugliatti
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (C.F.); (G.T.); (G.B.); (A.P.); (S.P.); (M.P.)
- Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
18
|
Canto-Gomes J, Silva CS, Rb-Silva R, Boleixa D, da Silva AM, Cheynier R, Costa P, González-Suárez I, Correia-Neves M, Cerqueira JJ, Nobrega C. Low Memory T Cells Blood Counts and High Naïve Regulatory T Cells Percentage at Relapsing Remitting Multiple Sclerosis Diagnosis. Front Immunol 2022; 13:901165. [PMID: 35711452 PMCID: PMC9196633 DOI: 10.3389/fimmu.2022.901165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022] Open
Abstract
Objective The aim of this study is to assess the peripheral immune system of newly diagnosed patients with relapsing remitting multiple sclerosis (RRMS) and compare it to healthy controls (HC). Methods This cross-sectional study involves 30 treatment-naïve newly diagnosed patients with RRMS and 33 sex- and age-matched HC. Peripheral blood mononuclear cells were analyzed regarding: i) thymic function surrogates [T cell receptor excision circles (TRECs) and recent thymic emigrants (RTEs)]; ii) naïve and memory CD4+ and CD8+ T cells subsets; iii) T helper (Th) phenotype and chemokine receptors expression on CD8+ T cells subsets; iv) regulatory T cell (Tregs) phenotype; and exclude expression of activating/inhibitory receptors by natural killer (NK) and NKT cells. Analyses were controlled for age, sex, and human cytomegalovirus (HCMV) IgG seroprevalence. Results Newly diagnosed patients with RRMS and HC have equivalent thymic function as determined by similar numbers of RTEs and levels of sjTRECs, DJβTRECs, and sj/DJβTREC ratio. In the CD8+ T cells compartment, patients with RRMS have a higher naive to memory ratio and lower memory cell counts in blood, specifically of effector memory and TemRA CD8+ T cells. Interestingly, higher numbers and percentages of central memory CD8+ T cells are associated with increasing time from the relapse. Among CD4+ T cells, lower blood counts of effector memory cells are found in patients upon controlling for sex, age, and anti-HCMV IgG seroprevalence. Higher numbers of CD4+ T cells (both naïve and memory) and of Th2 cells are associated with increasing time from the relapse; lower numbers of Th17 cells are associated with higher MS severity scores (MSSS). Patients with RRMS have a higher percentage of naïve Tregs compared with HC, and lower percentages of these cells are associated with higher MSSS. Percentages of immature CD56bright NK cells expressing the inhibitory receptor KLRG1 and of mature CD56dimCD57+ NK cells expressing NKp30 are higher in patients. No major alterations are observed on NKT cells. Conclusion Characterization of the peripheral immune system of treatment-naïve newly diagnosed patients with RRMS unveiled immune features present at clinical onset including lower memory T cells blood counts, particularly among CD8+ T cells, higher percentage of naïve Tregs and altered percentages of NK cells subsets expressing inhibitory or activating receptors. These findings might set the basis to better understand disease pathogenesis.
Collapse
Affiliation(s)
- João Canto-Gomes
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga, Portugal
| | - Carolina S. Silva
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga, Portugal
- Division of Infectious Diseases and Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Rita Rb-Silva
- Department of Onco-Hematology, Portuguese Institute of Oncology of Porto, Porto, Portugal
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS, University of Porto, Porto, Portugal
| | | | - Ana Martins da Silva
- Porto University Hospital Center, Porto, Portugal
- Multidisciplinary Unit for Biomedical Research (UMIB) - Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Rémi Cheynier
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Patrício Costa
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga, Portugal
| | - Inés González-Suárez
- University Hospital Complex of Vigo, Vigo, Spain
- Álvaro Cunqueiro Hospital, Vigo, Spain
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga, Portugal
- Division of Infectious Diseases and Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - João J. Cerqueira
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga, Portugal
- Hospital of Braga, Braga, Portugal
- Clinical Academic Centre, Hospital of Braga, Braga, Portugal
| | - Claudia Nobrega
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga, Portugal
- *Correspondence: Claudia Nobrega,
| |
Collapse
|
19
|
Sex-specific differences in KCC2 localisation and inhibitory synaptic transmission in the rat hippocampus. Sci Rep 2022; 12:3186. [PMID: 35210456 PMCID: PMC8873453 DOI: 10.1038/s41598-022-06769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/03/2022] [Indexed: 11/09/2022] Open
Abstract
Sexual differentiation of the brain is influenced by testosterone and its metabolites during the perinatal period, when many aspects of brain development, including the maturation of GABAergic transmission, occur. Whether and how testosterone signaling during the perinatal period affects GABAergic transmission is unclear. Here, we analyzed GABAergic circuit functional markers in male, female, testosterone-treated female, and testosterone-insensitive male rats after the first postnatal week and in young adults. In the hippocampus, mRNA levels of proteins associated with GABA signaling were not significantly affected at postnatal day (P) 7 or P40. Conversely, membrane protein levels of KCC2, which are critical for determining inhibition strength, were significantly higher in females compared to males and testosterone-treated females at P7. Further, female and testosterone-insensitive male rats at P7 showed higher levels of the neurotrophin BDNF, which is a powerful regulator of neuronal function, including GABAergic transmission. Finally, spontaneous GABAergic currents in hippocampal CA1 pyramidal cells were more frequent in females and testosterone-insensitive males at P40. Overall, these results show that perinatal testosterone levels modulate GABAergic circuit function, suggesting a critical role of perinatal sex hormones in regulating network excitability in the adult hippocampus.
Collapse
|
20
|
Leffler J, Trend S, Gorman S, Hart PH. Sex-Specific Environmental Impacts on Initiation and Progression of Multiple Sclerosis. Front Neurol 2022; 13:835162. [PMID: 35185777 PMCID: PMC8850837 DOI: 10.3389/fneur.2022.835162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/12/2022] [Indexed: 12/28/2022] Open
Abstract
The immunological mechanisms that contribute to multiple sclerosis (MS) differ between males and females. Females are 2–3 times more likely to develop MS compared to males, however the reason for this discrepancy is unknown. Once MS is established, there is a more inflammatory yet milder form of disease in females whereas males generally suffer from more severe disease and faster progression, neural degradation, and disability. Some of these differences relate to genetics, including genetic control of immune regulatory genes on the X-chromosome, as well as immune modulatory properties of sex hormones. Differences in MS development may also relate to how sex interacts with environmental risk factors. There are several environmental risk factors for MS including late-onset Epstein Barr virus infection, low serum vitamin D levels, low UV radiation exposure, smoking, obesity, and lack of physical activity. Most of these risk factors impact males and females differently, either due to biological or immunological processes or through behavioral differences. In this review, we explore these differences further and focus on how the interaction of environmental risk factors with sex hormones may contribute to significantly different prevalence and pathology of MS in males and females.
Collapse
Affiliation(s)
- Jonatan Leffler
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- *Correspondence: Jonatan Leffler
| | - Stephanie Trend
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Shelley Gorman
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Prue H. Hart
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
21
|
Batzdorf CS, Morr AS, Bertalan G, Sack I, Silva RV, Infante-Duarte C. Sexual Dimorphism in Extracellular Matrix Composition and Viscoelasticity of the Healthy and Inflamed Mouse Brain. BIOLOGY 2022; 11:biology11020230. [PMID: 35205095 PMCID: PMC8869215 DOI: 10.3390/biology11020230] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 12/13/2022]
Abstract
Simple Summary In multiple sclerosis (MS), an autoimmune disease of the central nervous system that primarily affects women, gender differences in disease course and in brain softening have been reported. It has been shown that the molecular network found between the cells of the tissue, the extracellular matrix (ECM), influences tissue stiffness. However, it is still unclear if sex influences ECM composition. Therefore, here we investigated how brain ECM and stiffness differ between sexes in the healthy mouse, and in an MS mouse model. We applied multifrequency magnetic resonance elastography and gene expression analysis for associating in vivo brain stiffness with ECM protein content in the brain, such as collagen and laminin. We found that the cortex was softer in males than in females in both healthy and sick mice. Softening was associated with sex differences in expression levels of collagen and laminin. Our findings underscore the importance of considering sex when studying the constitution of brain tissue in health and disease, particularly when investigating the processes underlying gender differences in MS. Abstract Magnetic resonance elastography (MRE) has revealed sexual dimorphism in brain stiffness in healthy individuals and multiple sclerosis (MS) patients. In an animal model of MS, named experimental autoimmune encephalomyelitis (EAE), we have previously shown that inflammation-induced brain softening was associated with alterations of the extracellular matrix (ECM). However, it remained unclear whether the brain ECM presents sex-specific properties that can be visualized by MRE. Therefore, here we aimed at quantifying sexual dimorphism in brain viscoelasticity in association with ECM changes in healthy and inflamed brains. Multifrequency MRE was applied to the midbrain of healthy and EAE mice of both sexes to quantitatively map regional stiffness. To define differences in brain ECM composition, the gene expression of the key basement membrane components laminin (Lama4, Lama5), collagen (Col4a1, Col1a1), and fibronectin (Fn1) were investigated by RT-qPCR. We showed that the healthy male cortex expressed less Lama4, Lama5, and Col4a1, but more Fn1 (all p < 0.05) than the healthy female cortex, which was associated with 9% softer properties (p = 0.044) in that region. At peak EAE cortical softening was similar in both sexes compared to healthy tissue, with an 8% difference remaining between males and females (p = 0.006). Cortical Lama4, Lama5 and Col4a1 expression increased 2 to 3-fold in EAE in both sexes while Fn1 decreased only in males (all p < 0.05). No significant sex differences in stiffness were detected in other brain regions. In conclusion, sexual dimorphism in the ECM composition of cortical tissue in the mouse brain is reflected by in vivo stiffness measured with MRE and should be considered in future studies by sex-specific reference values.
Collapse
Affiliation(s)
- Clara Sophie Batzdorf
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany; (C.S.B.); (R.V.S.)
| | - Anna Sophie Morr
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (A.S.M.); (G.B.); (I.S.)
| | - Gergely Bertalan
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (A.S.M.); (G.B.); (I.S.)
| | - Ingolf Sack
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (A.S.M.); (G.B.); (I.S.)
| | - Rafaela Vieira Silva
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany; (C.S.B.); (R.V.S.)
- Einstein Center for Neurosciences Berlin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Carmen Infante-Duarte
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany; (C.S.B.); (R.V.S.)
- Correspondence:
| |
Collapse
|
22
|
Lee JW, Profant M, Wang C. Metabolic Sex Dimorphism of the Brain at the Gene, Cell, and Tissue Level. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:212-220. [PMID: 35017210 DOI: 10.4049/jimmunol.2100853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022]
Abstract
The palpable observation in the sex bias of disease prevalence in the CNS has fascinated scientists for several generations. Brain sex dimorphism has been visualized by imaging and analytical tools at the tissue, cellular, and molecular levels. Recent work highlighted the specificity of such sex bias in the brain and its subregions, offering a unique lens through which disease pathogenesis can be investigated. The brain is the largest consumer of energy in the body and provides a unique metabolic environment for diverse lineages of cells. Immune cells are increasingly recognized as an integral part of brain physiology, and their function depends on metabolic homeostasis. This review focuses on metabolic sex dimorphism in brain tissue, resident, and infiltrating immune cells. In this context, we highlight the relevance of recent advances in metabolomics and RNA sequencing technologies at the single cell resolution and the development of novel computational approaches.
Collapse
Affiliation(s)
- Jun Won Lee
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; and
| | - Martin Profant
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; and.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Chao Wang
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; and .,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Sullivan A, Kane A, Valentic G, Rensel M. Recommendations to Address the Unique Clinical and Psychological Needs of Transgender Persons Living With Multiple Sclerosis. Int J MS Care 2022; 24:35-40. [PMID: 35261570 PMCID: PMC8883816 DOI: 10.7224/1537-2073.2021-066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
BACKGROUND People living with multiple sclerosis (MS) face challenges coping with chronic illnesses, and transgender (TGD) persons living with MS may experience additional unique challenges and barriers to care. Medical biases toward TGD people are widely reported, and best practices in TGD MS care have not been identified. METHODS A case report of a TGD person living with MS is reviewed that helped to identify and inform us regarding the unique aspects of their clinical and psychological care needs. We conducted a systematic review of the literature according to the standard methods in PubMed. The literature was reviewed and summarized for relevant topics related to the unique care needs of TGD persons living with MS, and proposed care recommendations were created. RESULTS We used the aforementioned case to identify and inform the special care needs and subsequently describe proposed recommendations to achieve inclusive comprehensive care of TGD persons with MS. The importance of providing an inclusive environment, comprehensive care, mental health screening, domestic violence screening, and case coordination are highlighted with the goal of providing best practice recommendations for the comprehensive inclusive care of TGD persons living with MS. CONCLUSIONS The lack of published guidance on the care of TGD persons living with MS and our informative case have led to the proposed recommendations for the care of TGD persons living with MS.
Collapse
Affiliation(s)
- Amy Sullivan
- From the Department of Psychiatry and Psychology (AS, AK), Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, Cleveland, OH, USA
| | - Alexa Kane
- From the Department of Psychiatry and Psychology (AS, AK), Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, Cleveland, OH, USA
| | - Gianna Valentic
- Department of Psychology, Miami University, Oxford, OH, USA (GV)
| | - Mary Rensel
- Department of Neurology (MR), Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
24
|
Human-Induced Pluripotent Stem Cell-Based Models for Studying Sex-Specific Differences in Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1387:57-88. [PMID: 34921676 DOI: 10.1007/5584_2021_683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The prevalence of neurodegenerative diseases is steadily increasing worldwide, and epidemiological studies strongly suggest that many of the diseases are sex-biased. It has long been suggested that biological sex differences are crucial for neurodegenerative diseases; however, how biological sex affects disease initiation, progression, and severity is not well-understood. Sex is a critical biological variable that should be taken into account in basic research, and this review aims to highlight the utility of human-induced pluripotent stem cells (iPSC)-derived models for studying sex-specific differences in neurodegenerative diseases, with advantages and limitations. In vitro systems utilizing species-specific, renewable, and physiologically relevant cell sources can provide powerful platforms for mechanistic studies, toxicity testings, and drug discovery. Matched healthy, patient-derived, and gene-corrected human iPSCs, from both sexes, can be utilized to generate neuronal and glial cell types affected by specific neurodegenerative diseases to study sex-specific differences in two-dimensional (2D) and three-dimensional (3D) human culture systems. Such relatively simple and well-controlled systems can significantly contribute to the elucidation of molecular mechanisms underlying sex-specific differences, which can yield effective, and potentially sex-based strategies, against neurodegenerative diseases.
Collapse
|
25
|
Virtual Reality-Based Therapy Improves Fatigue, Impact, and Quality of Life in Patients with Multiple Sclerosis. A Systematic Review with a Meta-Analysis. SENSORS 2021; 21:s21217389. [PMID: 34770694 PMCID: PMC8588272 DOI: 10.3390/s21217389] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022]
Abstract
Patients with multiple sclerosis (PwMS) have a high level of fatigue and a reduced quality of life (QoL) due to the impact of multiple sclerosis (MS). Virtual reality-based therapy (VRBT) is being used to reduce disability in PwMS. The aim of this study was to assess the effect of VRBT on fatigue, the impact of MS, and QoL in PwMS. Methods: A systematic review with meta-analysis was conducted through a bibliographic search on PubMed, Scopus, Web of Science, and PEDro up to April 2021. We included randomized controlled trials (RCTs) with PwMS that received VRBT in comparison to conventional therapy (CT) including physiotherapy, balance and strength exercises, and stretching or physical activity, among others; or in comparison to simple observation; in order to assess fatigue, MS-impact, and QoL. The effect size was calculated using Cohen’s standardized mean difference with a 95% confidence interval (95% CI). Results: Twelve RCTs that provided data from 606 PwMS (42.83 ± 6.86 years old and 70% women) were included. The methodological quality mean, according to the PEDro Scale, was 5.83 ± 0.83 points. Our global findings showed that VRBT is effective at reducing fatigue (SMD −0.33; 95% CI −0.61, −0.06), lowering the impact of MS (SMD −0.3; 95% CI −0.55, −0.04), and increasing overall QoL (0.5; 95% CI 0.23, 0.76). Subgroup analysis showed the following: (1) VRBT is better than CT at reducing fatigue (SMD −0.4; 95% CI −0.7, −0.11), as well as in improving the mental dimension of QoL (SMD 0.51; 95% CI 0.02, 1); (2) VRBT is better than simple observation at reducing the impact of MS (SMD −0.61; 95% CI −0.97, −0.23) and increasing overall QoL (SMD 0.79; 95% CI 0.3, 1.28); and (3) when combined with CT, VRBT is more effective than CT in improving the global (SMD 0.6, 95% CI 0.13, 1.07), physical (SMD 0.87; 95% CI 0.3, 1.43), and mental dimensions (SMD 0.6; 95% CI 0.08, 1.11) of QoL. Conclusion: VRBT is effective at reducing fatigue and MS impact and improving QoL in PwMS.
Collapse
|
26
|
Kister I, Bacon T, Cutter GR. How Multiple Sclerosis Symptoms Vary by Age, Sex, and Race/Ethnicity. Neurol Clin Pract 2021; 11:335-341. [PMID: 34476125 PMCID: PMC8382423 DOI: 10.1212/cpj.0000000000001105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
Objective Little is known about how symptom severity in the various neurologic domains commonly affected by multiple sclerosis (MS) varies by age, sex, and race/ethnicity. Methods This was a retrospective study of patients with MS attending 2 tertiary centers in the New York City metropolitan area, who self-identified as White, African American (AA), or Hispanic American (HA). Disability was rated with Patient-Determined Disability Steps (PDDS) and symptom severity, with SymptoMScreen (SyMS), a validated battery for assessing symptoms in 12 domains. Analyses comparing race, sex, and age groups were performed using analysis of variance models and Tukey honestly significant difference tests to control the overall type I error. A multivariable model was constructed to predict good self-rated health (SRH) that included demographic variables, PDDS, and SyMS domain scores. Results The sample consisted of 2,622 patients with MS (age 46.4 years; 73.6% female; 66.4% White, 21.7% AA, and 11.9% HA). Men had higher adjusted PDDS than women (p = 0.012), but similar total SyMS scores. Women reported higher fatigue and anxiety scores, whereas men had higher walking and dexterity scores. AAs and HAs had higher symptom domain scores than Whites in each of the 12 domains and worse SRH. In a multivariable logistic model, only pain, walking, depression, fatigue, and global disability (PDDS), but not sex or race/ethnicity, predicted good SRH. Conclusions AA and HA race/ethnicity was associated with higher overall disability, higher symptom severity in each of the 12 domains commonly affected by MS, and worse SRH relative to Whites. However, only symptom severity and disability, and not demographic variables, predicted good SRH.
Collapse
Affiliation(s)
- Ilya Kister
- NYU Multiple Sclerosis Comprehensive Care Center (IK, TB), NYU Langone Medical Center, NY; and Department of Biostatistics (GRC), UAB School of Public Health, Birmingham, AL
| | - Tamar Bacon
- NYU Multiple Sclerosis Comprehensive Care Center (IK, TB), NYU Langone Medical Center, NY; and Department of Biostatistics (GRC), UAB School of Public Health, Birmingham, AL
| | - Gary R Cutter
- NYU Multiple Sclerosis Comprehensive Care Center (IK, TB), NYU Langone Medical Center, NY; and Department of Biostatistics (GRC), UAB School of Public Health, Birmingham, AL
| |
Collapse
|
27
|
Bateman GA, Lechner-Scott J, Carey MF, Bateman AR, Lea RA. Possible Markers of Venous Sinus Pressure Elevation in Multiple Sclerosis: Correlations with Gender and Disease Progression. Mult Scler Relat Disord 2021; 55:103207. [PMID: 34392058 DOI: 10.1016/j.msard.2021.103207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND In a previous study, multiple sclerosis (MS) was found to be associated with an increase in intracranial arterial pulsation volume and a reduction in venous sinus compliance, affecting pulsation dampening. There was a suggestion that the reduction in compliance of the sagittal sinus in MS was caused by an increase in venous pressure, secondary to transverse sinus stenosis. Some differences were noted depending on the gender of the patients, however, the original study was relatively underpowered for further sub-classification. The purpose of the current study is to enroll a larger number of patients to allow sub-classification on gender and disease type to further evaluate the markers of possible venous pressure alteration. METHODS 103 patients with MS were prospectively recruited from an MS clinic and compared to 50 matched non-MS patients. Using 3DT1 post contrast images, the sagittal sinus cross-sectional area was measured. The narrowest portion of the transverse sinuses was located and the cross sectional areas and wetted circumferences were measured to calculate the minimum hydraulic and effective diameters. The jugular bulb heights were measured. Voxel wise brain morphometry was performed to evaluate atrophy. Statistical analysis was performed using non-parametric methods and was assessed using α≤0.05. RESULTS Compared to controls, the MS patients' sagittal sinuses were 23% larger in cross-section (p<0.0001), the transverse sinuses had an average effective stenosis of 39% by area (p<0.0001) and there was a 62% increase in jugular bulb height (p=0.0001). The MS patients showed a reduction in normalized grey matter volume of 2.8% (p= 0.0001). Males with MS showed worse outcomes compared to females, with an increased EDSS and grey matter loss and had a 23% larger sagittal sinus area (p=0.02), 22% higher jugular bulb height (p=0.03) but a lower transverse sinus stenosis percentage (19% vs 48%, p<0.0001). Progressive forms of MS also had worse outcomes and had a 19% larger sagittal sinus area (p=0.04) compared to relapsing remitting MS. CONCLUSION In this larger cohort, worse outcomes in both males and progressive forms of MS were associated with larger sagittal sinuses. The possible cause of the altered sinus pressure in females was narrower transverse sinuses. In males, higher jugular bulbs may be associated with increased venous sinus pressure.
Collapse
Affiliation(s)
- Grant Alexander Bateman
- Department of Medical Imaging, John Hunter Hospital, Newcastle, NSW, Australia; Newcastle University Faculty of Health, Callaghan Campus, Newcastle, NSW, Australia.
| | - Jeannette Lechner-Scott
- Newcastle University Faculty of Health, Callaghan Campus, Newcastle, NSW, Australia; Department of Neurology, John Hunter Hospital, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Michael Fionn Carey
- Department of Medical Imaging, John Hunter Hospital, Newcastle, NSW, Australia
| | | | - Rodney Arthur Lea
- Newcastle University Faculty of Health, Callaghan Campus, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|
28
|
Moulson AJ, Squair JW, Franklin RJM, Tetzlaff W, Assinck P. Diversity of Reactive Astrogliosis in CNS Pathology: Heterogeneity or Plasticity? Front Cell Neurosci 2021; 15:703810. [PMID: 34381334 PMCID: PMC8349991 DOI: 10.3389/fncel.2021.703810] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/02/2021] [Indexed: 01/02/2023] Open
Abstract
Astrocytes are essential for the development and homeostatic maintenance of the central nervous system (CNS). They are also critical players in the CNS injury response during which they undergo a process referred to as "reactive astrogliosis." Diversity in astrocyte morphology and gene expression, as revealed by transcriptional analysis, is well-recognized and has been reported in several CNS pathologies, including ischemic stroke, CNS demyelination, and traumatic injury. This diversity appears unique to the specific pathology, with significant variance across temporal, topographical, age, and sex-specific variables. Despite this, there is limited functional data corroborating this diversity. Furthermore, as reactive astrocytes display significant environmental-dependent plasticity and fate-mapping data on astrocyte subsets in the adult CNS is limited, it remains unclear whether this diversity represents heterogeneity or plasticity. As astrocytes are important for neuronal survival and CNS function post-injury, establishing to what extent this diversity reflects distinct established heterogeneous astrocyte subpopulations vs. environmentally dependent plasticity within established astrocyte subsets will be critical for guiding therapeutic development. To that end, we review the current state of knowledge on astrocyte diversity in the context of three representative CNS pathologies: ischemic stroke, demyelination, and traumatic injury, with the goal of identifying key limitations in our current knowledge and suggesting future areas of research needed to address them. We suggest that the majority of identified astrocyte diversity in CNS pathologies to date represents plasticity in response to dynamically changing post-injury environments as opposed to heterogeneity, an important consideration for the understanding of disease pathogenesis and the development of therapeutic interventions.
Collapse
Affiliation(s)
- Aaron J. Moulson
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
| | - Jordan W. Squair
- Department of Clinical Neuroscience, Faculty of Life Sciences, Center for Neuroprosthetics and Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), NeuroRestore, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Robin J. M. Franklin
- Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Peggy Assinck
- Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
29
|
Begentas OC, Koc D, Yurtogullari S, Temel M, Akcali KC, Demirkaya S, Kiris E. Generation and characterization of human induced pluripotent stem cell line METUi001-A from a 25-year-old male patient with relapsing-remitting multiple sclerosis. Stem Cell Res 2021; 53:102370. [PMID: 34087999 DOI: 10.1016/j.scr.2021.102370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/21/2021] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis is a chronic disease characterized by inflammation, demyelination, and axonal damage in the central nervous system. Here, we established an induced pluripotent stem cell (iPSC) line METUi001-A from the peripheral blood mononuclear cells of a 25-year-old male individual with clinically diagnosed Relapsing-Remitting Multiple Sclerosis (RRMS) using the integration-free Sendai reprogramming method. We demonstrated that the iPSCs are free of exogenous Sendai reprogramming vectors, have a normal male karyotype, express pluripotency markers, and differentiate into the three germ layers. The iPSC line can serve as a valuable resource to generate cellular model systems to investigate molecular mechanisms underlying RRMS.
Collapse
Affiliation(s)
- Onur Can Begentas
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Dilara Koc
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Sukran Yurtogullari
- Gaziler Physical Therapy and Rehabilitation Training and Research Hospital, Ankara, Turkey
| | - Musa Temel
- Sanliurfa Education and Research Hospital, Sanliurfa, Turkey
| | - Kamil Can Akcali
- Stem Cell Institute, Ankara University, Ankara, Turkey; Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Seref Demirkaya
- Gulhane Training and Research Hospital, The University of Health Sciences, Ankara, Turkey
| | - Erkan Kiris
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
30
|
Angeloni B, Bigi R, Bellucci G, Mechelli R, Ballerini C, Romano C, Morena E, Pellicciari G, Reniè R, Rinaldi V, Buscarinu MC, Romano S, Ristori G, Salvetti M. A Case of Double Standard: Sex Differences in Multiple Sclerosis Risk Factors. Int J Mol Sci 2021; 22:ijms22073696. [PMID: 33918133 PMCID: PMC8037645 DOI: 10.3390/ijms22073696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis is a complex, multifactorial, dysimmune disease prevalent in women. Its etiopathogenesis is extremely intricate, since each risk factor behaves as a variable that is interconnected with others. In order to understand these interactions, sex must be considered as a determining element, either in a protective or pathological sense, and not as one of many variables. In particular, sex seems to highly influence immune response at chromosomal, epigenetic, and hormonal levels. Environmental and genetic risk factors cannot be considered without sex, since sex-based immunological differences deeply affect disease onset, course, and prognosis. Understanding the mechanisms underlying sex-based differences is necessary in order to develop a more effective and personalized therapeutic approach.
Collapse
Affiliation(s)
- Benedetta Angeloni
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
| | - Rachele Bigi
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
- Correspondence: (R.B.); (G.R.)
| | - Gianmarco Bellucci
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
| | - Rosella Mechelli
- San Raffaele Roma Open University, 00166 Rome, Italy;
- Scientific Institute for Research, Hospitalization and Healthcare San Raffaele Pisana (IRCCS), 00166 Rome, Italy
| | - Chiara Ballerini
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
| | - Carmela Romano
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
| | - Emanuele Morena
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
| | - Giulia Pellicciari
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
| | - Roberta Reniè
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
| | - Virginia Rinaldi
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
| | - Maria Chiara Buscarinu
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
| | - Silvia Romano
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
| | - Giovanni Ristori
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
- Neuroimmunology Unit, Scientific Institute for Research, Hospitalization and Healthcare Fondazione Santa Lucia (IRCCS), 00179 Rome, Italy
- Correspondence: (R.B.); (G.R.)
| | - Marco Salvetti
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy; (B.A.); (G.B.); (C.B.); (C.R.); (E.M.); (G.P.); (R.R.); (V.R.); (M.C.B.); (S.R.); (M.S.)
- Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
31
|
Chowen JA, Garcia-Segura LM. Role of glial cells in the generation of sex differences in neurodegenerative diseases and brain aging. Mech Ageing Dev 2021; 196:111473. [PMID: 33766745 DOI: 10.1016/j.mad.2021.111473] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Diseases and aging-associated alterations of the nervous system often show sex-specific characteristics. Glial cells play a major role in the endogenous homeostatic response of neural tissue, and sex differences in the glial transcriptome and function have been described. Therefore, the possible role of these cells in the generation of sex differences in pathological alterations of the nervous system is reviewed here. Studies have shown that glia react to pathological insults with sex-specific neuroprotective and regenerative effects. At least three factors determine this sex-specific response of glia: sex chromosome genes, gonadal hormones and neuroactive steroid hormone metabolites. The sex chromosome complement determines differences in the transcriptional responses in glia after brain injury, while gonadal hormones and their metabolites activate sex-specific neuroprotective mechanisms in these cells. Since the sex-specific neuroprotective and regenerative activity of glial cells causes sex differences in the pathological alterations of the nervous system, glia may represent a relevant target for sex-specific therapeutic interventions.
Collapse
Affiliation(s)
- Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, and IMDEA Food Institute, CEIUAM+CSIC, Madrid, Spain.
| | - Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
32
|
Linher-Melville K, Shah A, Singh G. Sex differences in neuro(auto)immunity and chronic sciatic nerve pain. Biol Sex Differ 2020; 11:62. [PMID: 33183347 PMCID: PMC7661171 DOI: 10.1186/s13293-020-00339-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023] Open
Abstract
Chronic pain occurs with greater frequency in women, with a parallel sexually dimorphic trend reported in sufferers of many autoimmune diseases. There is a need to continue examining neuro-immune-endocrine crosstalk in the context of sexual dimorphisms in chronic pain. Several phenomena in particular need to be further explored. In patients, autoantibodies to neural antigens have been associated with sensory pathway hyper-excitability, and the role of self-antigens released by damaged nerves remains to be defined. In addition, specific immune cells release pro-nociceptive cytokines that directly influence neural firing, while T lymphocytes activated by specific antigens secrete factors that either support nerve repair or exacerbate the damage. Modulating specific immune cell populations could therefore be a means to promote nerve recovery, with sex-specific outcomes. Understanding biological sex differences that maintain, or fail to maintain, neuroimmune homeostasis may inform the selection of sex-specific treatment regimens, improving chronic pain management by rebalancing neuroimmune feedback. Given the significance of interactions between nerves and immune cells in the generation and maintenance of neuropathic pain, this review focuses on sex differences and possible links with persistent autoimmune activity using sciatica as an example.
Collapse
Affiliation(s)
- Katja Linher-Melville
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
| | - Anita Shah
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|