1
|
Jiang TF, Chen ZY, Liu J, Yin XJ, Tan ZJ, Wang GL, Li B, Guo J. Acupuncture modulates emotional network resting-state functional connectivity in patients with insomnia disorder: a randomized controlled trial and fMRI study. BMC Complement Med Ther 2024; 24:311. [PMID: 39169368 PMCID: PMC11340108 DOI: 10.1186/s12906-024-04612-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Insomnia disorder (ID) is one of the most common sleep problems, usually accompanied by anxiety and depression symptoms. Functional magnetic resonance imaging (fMRI) study suggests that both poor sleep quality and negative emotion are linked to the dysregulation of brain network related to emotion processing in ID patients. Acupuncture therapy has been proven effective in improving sleep quality and mood of ID patients, but the involved neurobiological mechanism remains unclear. We aimed to investigate the modulation effect of acupuncture on resting-state functional connectivity (rsFC) of the emotional network (EN) in patients experiencing insomnia. METHODS A total of 30 healthy controls (HCs) and 60 ID patients were enrolled in this study. Sixty ID patients were randomly assigned to real and sham acupuncture groups and attended resting-state fMRI scans before and after 4 weeks of acupuncture treatment. HCs completed an MRI/fMRI scan at baseline. The rsFC values within EN were calculated, and Hamilton Anxiety Scale (HAMA), Hamilton Depression Scale (HAMD), Pittsburgh Sleep Quality Index (PSQI), Hyperarousal Scale (HAS), and actigraphy data were collected for clinical efficacy evaluation. RESULTS Resting-state FC analysis showed abnormalities in rsFC centered on the thalamus and dorsolateral prefrontal cortex within EN of ID patients compared to HCs. After real acupuncture treatment, rsFC of the anterior cingulate cortex, hippocampus, and amygdala were increased compared with the sham acupuncture group (p < 0.05, FDR corrected). In real acupuncture group, the rsFC value was decreased between left amygdala and left thalamus after 4 weeks of treatment compared with baseline. A trend of correlation was found that the increased rsFC value between the right amygdala and left hippocampus was positively correlated with the decreased HAMA scores across all ID patients, and the decreased left amygdala rsFC value with the left thalamus was negatively correlated with the increased sleep efficiency in the real acupuncture group. CONCLUSION Our findings showed that real acupuncture could produce a positive effect on modulating rsFC within network related to emotion processing in ID patients, which may illustrate the central mechanism underlying acupuncture for insomnia in improving sleep quality and emotion regulation. TRIAL REGISTRATION http://www.chictr.org.cn ., ChiCTR1800015282, 20/03/2018.
Collapse
Affiliation(s)
- Tong-Fei Jiang
- Department of Acupuncture and Moxibustion, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Zhao-Yi Chen
- Department of Acupuncture and Moxibustion, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Jiao Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Xue-Jiao Yin
- Department of Acupuncture and Moxibustion, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Zhong-Jian Tan
- Department of Radiology, Dong Zhimen Hospital Beijing University of Chinese Medicine, Beijing, 100010, China
| | - Gui-Ling Wang
- Department of Acupuncture and Moxibustion, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Bin Li
- Department of Acupuncture and Moxibustion, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Jing Guo
- Department of Acupuncture and Moxibustion, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
2
|
Chang X, Zhang H, Chen S. Neural circuits regulating visceral pain. Commun Biol 2024; 7:457. [PMID: 38615103 PMCID: PMC11016080 DOI: 10.1038/s42003-024-06148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/05/2024] [Indexed: 04/15/2024] Open
Abstract
Visceral hypersensitivity, a common clinical manifestation of irritable bowel syndrome, may contribute to the development of chronic visceral pain, which is a major challenge for both patients and health providers. Neural circuits in the brain encode, store, and transfer pain information across brain regions. In this review, we focus on the anterior cingulate cortex and paraventricular nucleus of the hypothalamus to highlight the progress in identifying the neural circuits involved in visceral pain. We also discuss several neural circuit mechanisms and emphasize the importance of cross-species, multiangle approaches and the identification of specific neurons in determining the neural circuits that control visceral pain.
Collapse
Affiliation(s)
- Xiaoli Chang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Haiyan Zhang
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shaozong Chen
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
3
|
Sadvandi G, Kianfar AE, Becker K, Heinzel A, Wolf M, Said‐Yekta Michael S. Systematic review on effects of experimental orthodontic tooth displacement on brain activation assessed by fMRI. Clin Exp Dent Res 2024; 10:e879. [PMID: 38558512 PMCID: PMC10982672 DOI: 10.1002/cre2.879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Orthodontic treatment is often accompanied by discomfort and pain in patients, which are believed to be a result of orthodontic tooth displacement caused by the mechanical forces exerted by the orthodontic appliances on the periodontal tissues. These lead to change blood oxygen level dependent response in related brain regions. OBJECTIVE This systematic review aims to assess the impact of experimental orthodontic tooth displacement on alterations in central nervous system activation assessed by tasked based and resting state fMRI. MATERIALS AND METHODS A literature search was conducted using online databases, following PRISMA guidelines and the PICO framework. Selected studies utilized magnetic resonance imaging to examine the brain activity changes in healthy participants after the insertion of orthodontic appliances. RESULTS The initial database screening resulted in 791 studies. Of these, 234 were duplicates and 547 were deemed irrelevant considering the inclusion and exclusion criteria. Of the ten remaining potential relevant studies, two were excluded during full-text screening. Eight prospective articles were eligible for further analysis. The included studies provided evidence of the intricate interplay between orthodontic treatment, pain perception, and brain function. All of the participants in the included studies employed orthodontic separators in short-term experiments to induce tooth displacement during the early stage of orthodontic treatment. Alterations in brain activation were observed in brain regions, functional connectivity and brain networks, predominantly affecting regions implicated in nociception (thalamus, insula), emotion (insula, frontal areas), and cognition (frontal areas, cerebellum, default mode network). CONCLUSIONS The results suggest that orthodontic treatment influences beyond the pain matrix and affects other brain regions including the limbic system. Furthermore, understanding the orthodontically induced brain activation can aid in development of targeted pain management strategies that do not adversely affect orthodontic tooth movement. Due to the moderate to serious risk of bias and the heterogeneity among the included studies, further clinical trials on this subject are recommended.
Collapse
Affiliation(s)
- Gelareh Sadvandi
- Department of OrthodonticsRWTH Aachen University HospitalGermany
| | | | - Kathrin Becker
- Department of Dentofacial Orthopedics and OrthodonticsCharité Universitätsmedizin BerlinBerlinCC03Germany
| | - Alexander Heinzel
- Department of Nuclear MedicineMartin‐Luther‐University Halle‐WittenbergHalleGermany
| | - Michael Wolf
- Department of OrthodonticsRWTH Aachen University HospitalGermany
| | | |
Collapse
|
4
|
Filimonova E, Pashkov A, Moysak G, Martirosyan A, Zaitsev B, Rzaev J. Diffusion tensor imaging reveals distributed white matter abnormalities in primary trigeminal neuralgia: Tract-based spatial statistics study. Clin Neurol Neurosurg 2024; 236:108080. [PMID: 38113657 DOI: 10.1016/j.clineuro.2023.108080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Primary trigeminal neuralgia (PTN) is a prevalent chronic pain disorder whose pathogenesis is not limited to the trigeminal system. Despite the significant advances in uncovering underlying mechanisms, there is a paucity of comprehensive and consistent data regarding the role of white matter throughout the entire brain in PTN. METHODS We performed a prospective case-control study. Sixty patients with PTN and 28 age- and sex-matched healthy controls were evaluated using diffusion tensor imaging (DTI). A tract-based spatial statistical approach was performed to investigate white matter impairment in patients with PTN with several metrics, including fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD). Additionally, ROI-based analysis was performed for each white matter tract to compare FA values between groups with correction for patient age and sex. Correlations between DTI data and nerve root compression severity, as well as pain severity, were also evaluated in patients with PTN. RESULTS Our analysis demonstrated a widespread and symmetrical reduction in FA values among TN patients when compared to the control group (p < 0.05). Specifically, this FA decrease was predominantly observed in regions such as the corona radiata, internal capsule, optic radiation, and thalami, as well as structures within the posterior fossa, notably the cerebellar peduncles. No statistically significant differences were found between patients and the control group during the MD, AD and RD map analyses. ROI-based analysis did not reveal statistically significant changes in FA values in white matter tracts (p > 0.05 in all comparisons, FDR-corrected); however, there were trends towards FA value decreases in the internal capsule (p = 0.08, FDR-corrected) and inferior fronto-occipital fasciculus (p = 0.09, FDR-corrected). CONCLUSIONS Our findings indicate the presence of microstructural abnormalities in white matter among individuals with primary trigeminal neuralgia, which may potentially play a role in the development and progression of the condition.
Collapse
Affiliation(s)
- Elena Filimonova
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia; Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia.
| | - Anton Pashkov
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia; Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia; Department of Data Collection and Processing Systems, Novosibirsk State Technical University, Novosibirsk, Russia
| | - Galina Moysak
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia; Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia; Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | | | - Boris Zaitsev
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia
| | - Jamil Rzaev
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia; Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia; Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
5
|
Cabrera-Álvarez J, Doorn N, Maestú F, Susi G. Modeling the role of the thalamus in resting-state functional connectivity: Nature or structure. PLoS Comput Biol 2023; 19:e1011007. [PMID: 37535694 PMCID: PMC10426958 DOI: 10.1371/journal.pcbi.1011007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/15/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023] Open
Abstract
The thalamus is a central brain structure that serves as a relay station for sensory inputs from the periphery to the cortex and regulates cortical arousal. Traditionally, it has been regarded as a passive relay that transmits information between brain regions. However, recent studies have suggested that the thalamus may also play a role in shaping functional connectivity (FC) in a task-based context. Based on this idea, we hypothesized that due to its centrality in the network and its involvement in cortical activation, the thalamus may also contribute to resting-state FC, a key neurological biomarker widely used to characterize brain function in health and disease. To investigate this hypothesis, we constructed ten in-silico brain network models based on neuroimaging data (MEG, MRI, and dwMRI), and simulated them including and excluding the thalamus, and raising the noise into thalamus to represent the afferences related to the reticular activating system (RAS) and the relay of peripheral sensory inputs. We simulated brain activity and compared the resulting FC to their empirical MEG counterparts to evaluate model's performance. Results showed that a parceled version of the thalamus with higher noise, able to drive damped cortical oscillators, enhanced the match to empirical FC. However, with an already active self-oscillatory cortex, no impact on the dynamics was observed when introducing the thalamus. We also demonstrated that the enhanced performance was not related to the structural connectivity of the thalamus, but to its higher noisy inputs. Additionally, we highlighted the relevance of a balanced signal-to-noise ratio in thalamus to allow it to propagate its own dynamics. In conclusion, our study sheds light on the role of the thalamus in shaping brain dynamics and FC in resting-state and allowed us to discuss the general role of criticality in the brain at the mesoscale level.
Collapse
Affiliation(s)
- Jesús Cabrera-Álvarez
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
- Centre for Cognitive and Computational Neuroscience, Madrid, Spain
| | - Nina Doorn
- Department of Clinical Neurophysiology, University of Twente, Enschede, The Netherlands
| | - Fernando Maestú
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
- Centre for Cognitive and Computational Neuroscience, Madrid, Spain
| | - Gianluca Susi
- Centre for Cognitive and Computational Neuroscience, Madrid, Spain
- Department of Structure of Matter, Thermal Physics and Electronics, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
6
|
Shi ZM, Jing JJ, Xue ZJ, Chen WJ, Tang YB, Chen DJ, Qi XY, Huang L, Zou YQ, Wu XZ, Yang F. Stellate ganglion block ameliorated central post-stroke pain with comorbid anxiety and depression through inhibiting HIF-1α/NLRP3 signaling following thalamic hemorrhagic stroke. J Neuroinflammation 2023; 20:82. [PMID: 36944982 PMCID: PMC10031944 DOI: 10.1186/s12974-023-02765-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 03/12/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Central post-stroke pain (CPSP) is an intractable and disabling central neuropathic pain that severely affects patients' lives, well-being, and socialization abilities. However, CPSP has been poorly studied mechanistically and its treatment remains challenging. Here, we used a rat model of CPSP induced by thalamic hemorrhage to investigate its underlying mechanisms and the effect of stellate ganglion block (SGB) on CPSP and emotional comorbidities. METHODS Thalamic hemorrhage was produced by injecting collagenase IV into the ventral-posterolateral nucleus (VPL) of the right thalamus. The up-and-down method with von Frey hairs was used to measure the mechanical allodynia. Behavioral tests were carried out to examine depressive and anxiety-like behaviors including the open field test (OFT), elevated plus maze test (EPMT), novelty-suppressed feeding test (NSFT), and forced swim test (FST). The peri-thalamic lesion tissues were collected for immunofluorescence, western blotting, and enzyme-linked immunosorbent assay (ELISA). Genetic knockdown of thalamic hypoxia-inducible factor-1α (HIF-1α) and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) with microinjection of HIF-1α siRNA and NLRP3 siRNA into the VPL of thalamus were performed 3 days before collagenase injection into the same regions. Microinjection of lificiguat (YC-1) and MCC950 into the VPL of thalamus were administrated 30 min before the collagenase injection in order to inhibited HIF-1α and NLRP3 pharmacologically. Repetitive right SGB was performed daily for 5 days and laser speckle contrast imaging (LSCI) was conducted to examine cerebral blood flow. RESULTS Thalamic hemorrhage caused persistent mechanical allodynia and anxiety- and depression-like behaviors. Accompanying the persistent mechanical allodynia, the expression of HIF-1α and NLRP3, as well as the activities of microglia and astrocytes in the peri-thalamic lesion sites, were significantly increased. Genetic knockdown of thalamic HIF-1α and NLRP3 significantly attenuated mechanical allodynia and anxiety- and depression-like behaviors following thalamic hemorrhage. Further studies revealed that intra-thalamic injection of YC-1, or MCC950 significantly suppressed the activation of microglia and astrocytes, the release of pro-inflammatory cytokines, the upregulation of malondialdehyde (MDA), and the downregulation of superoxide dismutase (SOD), as well as mechanical allodynia and anxiety- and depression-like behaviors following thalamic hemorrhage. In addition, repetitive ipsilateral SGB significantly restored the upregulated HIF-1α/NLRP3 signaling and the hyperactivated microglia and astrocytes following thalamic hemorrhage. The enhanced expression of pro-inflammatory cytokines and the oxidative stress in the peri-thalamic lesion sites were also reversed by SGB. Moreover, LSCI showed that repetitive SGB significantly increased cerebral blood flow following thalamic hemorrhage. Most strikingly, SGB not only prevented, but also reversed the development of mechanical allodynia and anxiety- and depression-like behaviors induced by thalamic hemorrhage. However, pharmacological activation of thalamic HIF-1α and NLRP3 with specific agonists significantly eliminated the therapeutic effects of SGB on mechanical allodynia and anxiety- and depression-like behaviors following thalamic hemorrhage. CONCLUSION This study demonstrated for the first time that SGB could improve CPSP with comorbid anxiety and depression by increasing cerebral blood flow and inhibiting HIF-1α/NLRP3 inflammatory signaling.
Collapse
Affiliation(s)
- Zhong-Mou Shi
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Jun-Jie Jing
- Department of Neurosurgery, Fujian Children's Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350025, China
| | - Zheng-Jie Xue
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Wen-Jun Chen
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Yan-Bin Tang
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Du-Juan Chen
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Xin-Yi Qi
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Li Huang
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Yi-Qing Zou
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China.
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China.
| | - Xiao-Zhi Wu
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China.
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China.
| | - Fei Yang
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China.
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China.
- Pain Research Institute, Fujian Medical University, Fuzhou, 350025, China.
| |
Collapse
|
7
|
Chen B, Guo Q, Zhang Q, Di Z, Zhang Q. Revealing the Central Mechanism of Acupuncture for Primary Dysmenorrhea Based on Neuroimaging: A Narrative Review. Pain Res Manag 2023; 2023:8307249. [PMID: 36852393 PMCID: PMC9966569 DOI: 10.1155/2023/8307249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/29/2022] [Accepted: 01/17/2023] [Indexed: 02/20/2023]
Abstract
Objective The central mechanism of acupuncture for primary dysmenorrhea was explored by summarizing the changes in different regional networks of the brain induced by acupuncture stimulation by analyzing the existing studies. Methods The original studies were collected and selected from three English databases such as PubMed and four Chinese databases as China Knowledge Network (CNKI). The main keyword clusters are neuroimaging, acupuncture, and primary dysmenorrhea. Results The literature review yielded 130 possibly qualified studies, and 23 articles fulfilled the criteria for inclusion. Regarding the type of acupuncture studies, 6 moxibustion studies and 17 manual acupuncture studies for primary dysmenorrhea were included. Based on functional magnetic resonance imaging (fMRI), perfusion-weighted imaging (PWI), and positron emission tomography-computer tomography techniques (PET-CT), one or more analysis methods such as amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), functional connectivity (FC), and independent components analysis (ICA) were used. The results are summarized. To summarize the high-frequency brain area alterations observed in patients with acupuncture-induced primary dysmenorrhea were the anterior cingulate gyrus, thalamus, insula, precentral gyrus, middle frontal gyrus, postcentral gyrus, putamen, and cerebellum. Conclusion The results suggest that the mechanism of acupuncture in the treatment of primary dysmenorrhea is the involvement of networks regulating different areas of the brain in the analgesic effects of acupuncture. The brain regions involved in primary dysmenorrhea acupuncture analgesia were mainly located in the pain matrix, default mode network, salience network, and limbic system.
Collapse
Affiliation(s)
- Benlu Chen
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qin Guo
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiwen Zhang
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Di
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Quanai Zhang
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
8
|
Jin Y, Li F, Yang H, Long H, Gong Q, Lai W. Altered spontaneous neural activity in experimental odontogenic pain: a resting-state functional MRI study. Am J Transl Res 2022; 14:8398-8406. [PMID: 36505321 PMCID: PMC9730070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/07/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE This study aimed to evaluate the intrinsic cerebral activity alternations in experimental odontogenic pain with resting-state functional magnetic resonance imaging (fMRI). MATERIALS AND METHODS Forty-nine participants in an odontogenic pain group and 49 participants in control group underwent imaging using fMRI in this prospective study. Odontogenic pain was induced by experimental tooth movement. We calculated the fractional amplitude of low-frequency fluctuation (fALFF) value to evaluate regional cerebral function and compared it between the two groups utilizing a voxel-based two-sample t-test. RESULTS In comparison with the healthy controls, the participants in odontogenic pain group showed increased fALFF value in the left cerebellum, right posterior cingulate gyrus, and bilateral inferior temporal gyrus, as well as decreased fALFF in the medial prefrontal cortex, the left anterior cingulate cortex, bilateral angular gyrus, left inferior parietal cortex, middle temporal gyrus, and miscellaneous cerebral regions (P < 0.001 familywise error-corrected VOXEL > 100). CONCLUSION The present study showed abnormal cerebral activity in odontogenic pain, and reveled that the aberrant regional functional activities were mainly located within the default mode network. The finding could provide insight into the underlying neural mechanism of odontogenic pain. Registry of clinical trials (Trial number ChiCTR1800018589) - http://www.chictr.org.cn/showproj.aspx?proj=31424.
Collapse
Affiliation(s)
- Yu Jin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, Sichuan, P. R. China
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan UniversityChengdu, Sichuan, P. R. China,Unit of Psychoradiology, Chinese Academy of Medical SciencesChengdu 610041, Sichuan, P. R. China
| | - Hong Yang
- School of Stomatology, Southern Medical UniversityGuangzhou, Guangdong, P. R. China
| | - Hu Long
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, Sichuan, P. R. China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan UniversityChengdu, Sichuan, P. R. China,Unit of Psychoradiology, Chinese Academy of Medical SciencesChengdu 610041, Sichuan, P. R. China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, Sichuan, P. R. China
| |
Collapse
|
9
|
Argaman Y, Granovsky Y, Sprecher E, Sinai A, Yarnitsky D, Weissman-Fogel I. Resting-state functional connectivity predicts motor cortex stimulation-dependent pain relief in fibromyalgia syndrome patients. Sci Rep 2022; 12:17135. [PMID: 36224244 PMCID: PMC9556524 DOI: 10.1038/s41598-022-21557-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/28/2022] [Indexed: 01/04/2023] Open
Abstract
MRI-based resting-state functional connectivity (rsFC) has been shown to predict response to pharmacological and non-pharmacological treatments for chronic pain, but not yet for motor cortex transcranial magnetic stimulation (M1-rTMS). Twenty-seven fibromyalgia syndrome (FMS) patients participated in this double-blind, crossover, and sham-controlled study. Ten daily treatments of 10 Hz M1-rTMS were given over 2 weeks. Before treatment series, patients underwent resting-state fMRI and clinical pain evaluation. Significant pain reduction occurred following active, but not sham, M1-rTMS. The following rsFC patterns predicted reductions in clinical pain intensity after the active treatment: weaker rsFC of the default-mode network with the middle frontal gyrus (r = 0.76, p < 0.001), the executive control network with the rostro-medial prefrontal cortex (r = 0.80, p < 0.001), the thalamus with the middle frontal gyrus (r = 0.82, p < 0.001), and the pregenual anterior cingulate cortex with the inferior parietal lobule (r = 0.79, p < 0.001); and stronger rsFC of the anterior insula with the angular gyrus (r = - 0.81, p < 0.001). The above regions process the attentional and emotional aspects of pain intensity; serve as components of the resting-state networks; are modulated by rTMS; and are altered in FMS. Therefore, we suggest that in FMS, the weaker pre-existing interplay between pain-related brain regions and networks, the larger the pain relief resulting from M1-rTMS.
Collapse
Affiliation(s)
- Yuval Argaman
- grid.6451.60000000121102151Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Yelena Granovsky
- grid.6451.60000000121102151Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel ,grid.413731.30000 0000 9950 8111Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Elliot Sprecher
- grid.413731.30000 0000 9950 8111Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Alon Sinai
- grid.413731.30000 0000 9950 8111Department of Neurosurgery, Rambam Health Care Campus, Haifa, Israel
| | - David Yarnitsky
- grid.6451.60000000121102151Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel ,grid.413731.30000 0000 9950 8111Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Irit Weissman-Fogel
- grid.18098.380000 0004 1937 0562Department of Physical Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
10
|
Wu Y, Wu X, Gao L, Yan Y, Geng Z, Zhou S, Zhu W, Tian Y, Yu Y, Wei L, Wang K. Abnormal Functional Connectivity of Thalamic Subdivisions in Alzheimer's Disease: A Functional Magnetic Resonance Imaging Study. Neuroscience 2022; 496:73-82. [PMID: 35690336 DOI: 10.1016/j.neuroscience.2022.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/23/2022] [Accepted: 06/02/2022] [Indexed: 12/01/2022]
Abstract
Alzheimer's disease (AD) is characterized by global cognitive impairment in multiple cognitive domains. Thalamic dysfunction during AD progression has been reported. However, there are limited studies regarding dysfunction in the functional connectivity (FC) of thalamic subdivisions and the relationship between such dysfunction and clinical assessments. This study examined dysfunction in the FC of thalamic subdivisions and determined the relationship between such dysfunction and clinical assessments. Forty-eight patients with AD and 47 matched healthy controls were recruited and assessed with scales for multiple cognitive domains. Group-wise comparisons of FC with thalamic subdivisions as seed points were conducted to identify abnormal cerebral regions. Moreover, correlation analysis was conducted to evaluate the relationship between abnormal FC and cognitive performance. Decreased FC of the intralaminar and medial nuclei with the left precuneus was observed in patients but not in heathy controls. The abnormal FC of the medial nuclei with the left precuneus was correlated with the Mini Mental State Examination score in the patient group. Using the FC values showing between-group differences, the linear support vector machine classifier achieved quite good in accuracy, sensitivity, specificity and area under the curve. Dysfunction in the FC of the intralaminar and medial thalamus with the precuneus may comprise a potential neural substrate for cognitive impairment during AD progression, which in turn may provide new treatment targets.
Collapse
Affiliation(s)
- Yue Wu
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui 230022, China
| | - Xingqi Wu
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui 230022, China
| | - Liying Gao
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui 230022, China
| | - Yibing Yan
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui 230022, China
| | - Zhi Geng
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui 230022, China; Department of Neurology, Second People's Hospital of Hefei City, The Hefei Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Shanshan Zhou
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province 230022, China
| | - Wanqiu Zhu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yanghua Tian
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui 230022, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui 230088, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province 230022, China
| | - Yongqiang Yu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China.
| | - Ling Wei
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province 230022, China.
| | - Kai Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui 230022, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui 230088, China; The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province 230022, China.
| |
Collapse
|
11
|
Pondelis NJ, Moulton EA. Supraspinal Mechanisms Underlying Ocular Pain. Front Med (Lausanne) 2022; 8:768649. [PMID: 35211480 PMCID: PMC8862711 DOI: 10.3389/fmed.2021.768649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/27/2021] [Indexed: 12/04/2022] Open
Abstract
Supraspinal mechanisms of pain are increasingly understood to underlie neuropathic ocular conditions previously thought to be exclusively peripheral in nature. Isolating individual causes of centralized chronic conditions and differentiating them is critical to understanding the mechanisms underlying neuropathic eye pain and ultimately its treatment. Though few functional imaging studies have focused on the eye as an end-organ for the transduction of noxious stimuli, the brain networks related to pain processing have been extensively studied with functional neuroimaging over the past 20 years. This article will review the supraspinal mechanisms that underlie pain as they relate to the eye.
Collapse
Affiliation(s)
- Nicholas J Pondelis
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Eric A Moulton
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Neuner I, Veselinović T, Ramkiran S, Rajkumar R, Schnellbaecher GJ, Shah NJ. 7T ultra-high-field neuroimaging for mental health: an emerging tool for precision psychiatry? Transl Psychiatry 2022; 12:36. [PMID: 35082273 PMCID: PMC8791951 DOI: 10.1038/s41398-022-01787-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Given the huge symptom diversity and complexity of mental disorders, an individual approach is the most promising avenue for clinical transfer and the establishment of personalized psychiatry. However, due to technical limitations, knowledge about the neurobiological basis of mental illnesses has, to date, mainly been based on findings resulting from evaluations of average data from certain diagnostic groups. We postulate that this could change substantially through the use of the emerging ultra-high-field MRI (UHF-MRI) technology. The main advantages of UHF-MRI include high signal-to-noise ratio, resulting in higher spatial resolution and contrast and enabling individual examinations of single subjects. Thus, we used this technology to assess changes in the properties of resting-state networks over the course of therapy in a naturalistic study of two depressed patients. Significant changes in several network property measures were found in regions corresponding to prior knowledge from group-level studies. Moreover, relevant parameters were already significantly divergent in both patients at baseline. In summary, we demonstrate the feasibility of UHF-MRI for capturing individual neurobiological correlates of mental diseases. These could serve as a tool for therapy monitoring and pave the way for a truly individualized and predictive clinical approach in psychiatric care.
Collapse
Affiliation(s)
- Irene Neuner
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany.
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.
- JARA-BRAIN, Jülich/Aachen, Germany.
| | - Tanja Veselinović
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Shukti Ramkiran
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Ravichandran Rajkumar
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN, Jülich/Aachen, Germany
| | | | - N Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- JARA-BRAIN, Jülich/Aachen, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 11, INM-11, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
13
|
mGluR5 binding changes during a mismatch negativity task in a multimodal protocol with [ 11C]ABP688 PET/MR-EEG. Transl Psychiatry 2022; 12:6. [PMID: 35013095 PMCID: PMC8748790 DOI: 10.1038/s41398-021-01763-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/08/2023] Open
Abstract
Currently, the metabotropic glutamate receptor 5 (mGluR5) is the subject of several lines of research in the context of neurology and is of high interest as a target for positron-emission tomography (PET). Here, we assessed the feasibility of using [11C]ABP688, a specific antagonist radiotracer for an allosteric site on the mGluR5, to evaluate changes in glutamatergic neurotransmission through a mismatch-negativity (MMN) task as a part of a simultaneous and synchronized multimodal PET/MR-EEG study. We analyzed the effect of MMN by comparing the changes in nondisplaceable binding potential (BPND) prior to (baseline) and during the task in 17 healthy subjects by applying a bolus/infusion protocol. Anatomical and functional regions were analyzed. A small change in BPND was observed in anatomical regions (posterior cingulate cortex and thalamus) and in a functional network (precuneus) after the start of the task. The effect size was quantified using Kendall's W value and was 0.3. The motor cortex was used as a control region for the task and did not show any significant BPND changes. There was a significant ΔBPND between acquisition conditions. On average, the reductions in binding across the regions were - 8.6 ± 3.2% in anatomical and - 6.4 ± 0.5% in the functional network (p ≤ 0.001). Correlations between ΔBPND and EEG latency for both anatomical (p = 0.008) and functional (p = 0.022) regions were found. Exploratory analyses suggest that the MMN task played a role in the glutamatergic neurotransmission, and mGluR5 may be indirectly modulated by these changes.
Collapse
|
14
|
Tang Z, Zhou J, Long H, Gao Y, Wang Q, Li X, Wang Y, Lai W, Jian F. Molecular mechanism in trigeminal nerve and treatment methods related to orthodontic pain. J Oral Rehabil 2021; 49:125-137. [PMID: 34586644 DOI: 10.1111/joor.13263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/02/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Orthodontic treatment is the main treatment approach for malocclusion. Orthodontic pain is an inevitable undesirable adverse reaction during orthodontic treatment. It is reported orthodontic pain has become one of the most common reason that patients withdraw from orthodontic treatment. Therefore, understanding the underlying mechanism and finding treatment of orthodontic pain are in urgent need. AIMS This article aims to sort out the mechanisms and treatments of orthodontic pain, hoping to provide some ideas for future orthodontic pain relief. MATERIALS Tooth movement will cause local inflammation. Certain inflammatory factors and cytokines stimulating the trigeminal nerve and further generating pain perception, as well as drugs and molecular targeted therapy blocking nerve conduction pathways, will be reviewed in this article. METHOD We review and summaries current studies related to molecular mechanisms and treatment approaches in orthodontic pain control. RESULTS Orthodontics pain related influencing factors and molecular mechanisms has been introduced. Commonly used clinical methods in orthodontic pain control has been evaluated. DISCUSSION With the clarification of more molecular mechanisms, the direction of orthodontic pain treatment will shift to targeted drugs.
Collapse
Affiliation(s)
- Ziwei Tang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiawei Zhou
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Long
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanzi Gao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaolong Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fan Jian
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|