1
|
Guarracino I, Lettieri C, Mondani M, D’Auria S, Sciacca G, Lavezzi F, Skrap M, D’Agostini S, Gigli GL, Valente M, Tomasino B. Monitoring Cognitive Functions During Deep Brain Stimulation Interventions by Real Time Neuropsychological Testing. J Mov Disord 2024; 17:442-446. [PMID: 39313238 PMCID: PMC11540533 DOI: 10.14802/jmd.24102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/15/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024] Open
Abstract
OBJECTIVE We monitored cognition in 14 Parkinson's disease (PD) patients during deep brain stimulation (DBS) surgery when the electrode was positioned at the target subthalamic nucleus (STN) (i.e., the STN motor area). METHODS We present the DBS-real-time neuropsychological testing (DBS-RTNT) protocol and our preliminary experience with it; we also compared the intraoperative patient performance with the baseline data. RESULTS Compared with the baseline data, patients undergoing DBS-RTNT in the target area demonstrated a significantly decreased performance on some tasks belonging to the memory and executive function domains. Patients undergoing right hemisphere DBS-RTNT had significantly lower short-term memory and sequencing scores than did patients undergoing left hemisphere DBS-RTNT. CONCLUSION PD patient cognitive performance should be monitored during DBS surgery, as STN-DBS may induce changes. These preliminary data contribute to improving our understanding of the anatomo-functional topography of the STN during DBS surgery, which will enable the identification of the best site for producing positive motor effects without causing negative cognitive and/or emotional changes in individual patients in the future. In principle, medications (i.e., patients who underwent surgery in a levodopa-off state) could have influenced our results; therefore, future studies are needed to address the possible confounding effects of levodopa use.
Collapse
Affiliation(s)
- Ilaria Guarracino
- Scientific Institute, IRCCS E. Medea, Dipartimento/Unità Operativa Pasian di Prato, Udine, Italy
| | - Christian Lettieri
- Clinical Neurology Unit, Azienda Ospedaliero Universitaria Friuli Centrale, Udine, Italy
| | - Massimo Mondani
- Neurosurgery Unit, Department Head-Neck and Neurosciences, Azienda Ospedaliero Universitaria Friuli Centrale, Udine, Italy
| | - Stanislao D’Auria
- Neurosurgery Unit, Department Head-Neck and Neurosciences, Azienda Ospedaliero Universitaria Friuli Centrale, Udine, Italy
| | - Giovanni Sciacca
- Neurosurgery Unit, Department Head-Neck and Neurosciences, Azienda Ospedaliero Universitaria Friuli Centrale, Udine, Italy
| | - Flavia Lavezzi
- Clinical Neurology Unit, Azienda Ospedaliero Universitaria Friuli Centrale, Udine, Italy
| | - Miran Skrap
- Neurosurgery Unit, Department Head-Neck and Neurosciences, Azienda Ospedaliero Universitaria Friuli Centrale, Udine, Italy
| | - Serena D’Agostini
- Neuroradiology Unit, Department of Radiology, Azienda Ospedaliero Universitaria Friuli Centrale, Udine, Italy
| | - Gian Luigi Gigli
- Clinical Neurology Unit, Azienda Ospedaliero Universitaria Friuli Centrale, Udine, Italy
- Department of Medicine, University of Udine, Udine, Italy
| | - Mariarosaria Valente
- Clinical Neurology Unit, Azienda Ospedaliero Universitaria Friuli Centrale, Udine, Italy
- Department of Medicine, University of Udine, Udine, Italy
| | - Barbara Tomasino
- Scientific Institute, IRCCS E. Medea, Dipartimento/Unità Operativa Pasian di Prato, Udine, Italy
| |
Collapse
|
2
|
Del Bene VA, Martin RC, Brinkerhoff SA, Olson JW, Nelson MJ, Marotta D, Gonzalez CL, Mills KA, Kamath V, Cutter G, Hurt CP, Wade M, Robinson FG, Bentley JN, Guthrie BL, Knight RT, Walker HC. Differential Cognitive Effects of Unilateral Subthalamic Nucleus Deep Brain Stimulation for Parkinson's Disease. Ann Neurol 2024; 95:1205-1219. [PMID: 38501317 PMCID: PMC11102318 DOI: 10.1002/ana.26903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE The aim of this study was to investigate the cognitive effects of unilateral directional versus ring subthalamic nucleus deep brain stimulation (STN DBS) in patients with advanced Parkinson's disease. METHODS We examined 31 participants who underwent unilateral STN DBS (left n = 17; right n = 14) as part of an National Institutes of Health (NIH)-sponsored randomized, double-blind, crossover study contrasting directional versus ring stimulation. All participants received unilateral DBS implants in the hemisphere more severely affected by motor parkinsonism. Measures of cognition included verbal fluency, auditory-verbal memory, and response inhibition. We used mixed linear models to contrast the effects of directional versus ring stimulation and implant hemisphere on longitudinal cognitive function. RESULTS Crossover analyses showed no evidence for group-level changes in cognitive performance related to directional versus ring stimulation. Implant hemisphere, however, impacted cognition in several ways. Left STN participants had lower baseline verbal fluency than patients with right implants (t [20.66 = -2.50, p = 0.02]). Verbal fluency declined after left (p = 0.013) but increased after right STN DBS (p < 0.001), and response inhibition was faster following right STN DBS (p = 0.031). Regardless of hemisphere, delayed recall declined modestly over time versus baseline (p = 0.001), and immediate recall was unchanged. INTERPRETATION Directional versus ring STN DBS did not differentially affect cognition. Similar to prior bilateral DBS studies, unilateral left stimulation worsened verbal fluency performance. In contrast, unilateral right STN surgery increased performance on verbal fluency and response inhibition tasks. Our findings raise the hypothesis that unilateral right STN DBS in selected patients with predominant right brain motor parkinsonism could mitigate declines in verbal fluency associated with the bilateral intervention. ANN NEUROL 2024;95:1205-1219.
Collapse
Affiliation(s)
- Victor A Del Bene
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- The Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Roy C. Martin
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- The Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Sarah A. Brinkerhoff
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Joseph W. Olson
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Matthew J. Nelson
- Department of Neurosurgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Dario Marotta
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Christopher L. Gonzalez
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Kelly A. Mills
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Vidyulata Kamath
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Gary Cutter
- School of Public Health, University of Alabama at Birmingham, Birmingham, AL
| | - Chris P. Hurt
- Department of Physical Therapy, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
| | - Melissa Wade
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Frank G. Robinson
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - J. Nicole Bentley
- Department of Neurosurgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Barton L. Guthrie
- Department of Neurosurgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Robert T. Knight
- Department of Psychology, University of California, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Harrison C. Walker
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| |
Collapse
|
3
|
Sisodia V, Malekzadeh A, Verwijk E, Schuurman PR, de Bie RMA, Swinnen BEKS. Bidirectional Interplay between Deep Brain Stimulation and Cognition in Parkinson's Disease: A Systematic Review. Mov Disord 2024; 39:910-915. [PMID: 38429947 DOI: 10.1002/mds.29772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is efficacious for treating motor symptoms in Parkinson's disease (PD). OBJECTIVES The aim is to evaluate the evidence regarding DBS effectiveness after postoperative cognitive deterioration, the impact of preoperative cognition on DBS effectiveness, and the impact of DBS on cognition. METHODS Literature searches were performed on MEDLINE, EMBASE, and CENTRAL (Cochrane library). Primary outcomes were OFF-drug Unified Parkinson Disease Rating Scale Part III score and cognitive test scores. RESULTS DBS effectiveness did not differ in patients with postoperative declining compared to stable cognition (n = 5 studies). Preoperative cognition did not influence DBS effectiveness (n = 1 study). DBS moderately decreased verbal fluency compared to the best medical treatment (n = 24 studies), which may be transient. CONCLUSION DBS motor effectiveness in PD does not appear to be influenced by cognition. DBS in PD seems cognitively safe, except for a moderate decline in verbal fluency. Further research is warranted. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Vibuthi Sisodia
- Department of Neurology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Arjan Malekzadeh
- Medical Library, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Esmée Verwijk
- Department of Medical Psychology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, Netherlands
- Department of Psychology, Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - P Richard Schuurman
- Department of Neurosurgery, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Rob M A de Bie
- Department of Neurology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Bart E K S Swinnen
- Department of Neurology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Del Bene VA, Martin RC, Brinkerhoff SA, Olson JW, Nelson MJ, Marotta D, Gonzalez CL, Mills KA, Kamath V, Bentley JN, Guthrie BL, Knight RT, Walker HC. Differential cognitive effects of unilateral left and right subthalamic nucleus deep brain stimulation for Parkinson disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.27.23286478. [PMID: 36909562 PMCID: PMC10002774 DOI: 10.1101/2023.02.27.23286478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Objective To investigate hemispheric effects of directional versus ring subthalamic nucleus (STN) deep brain stimulation (DBS) surgery on cognitive function in patients with advanced Parkinson's disease (PD). Methods We examined 31 PD patients (Left STN n = 17; Right STN n = 14) who underwent unilateral subthalamic nucleus (STN) DBS as part of a NIH-sponsored randomized, cross-over, double-blind (ring vs directional) clinical trial. Outcome measures were tests of verbal fluency, auditory-verbal memory, and response inhibition. First, all participants were pooled together to study the effects of directional versus ring stimulation. Then, we stratified the groups by surgery hemisphere and studied the longitudinal changes in cognition post-unilateral STN DBS. Results Relative to pre-DBS cognitive baseline performances, there were no group changes in cognition following unilateral DBS for either directional or ring stimulation. However, assessment of unilateral DBS by hemisphere revealed a different pattern. The left STN DBS group had lower verbal fluency than the right STN group (t(20.66 = -2.50, p = 0.02). Over a period of eight months post-DBS, verbal fluency declined in the left STN DBS group (p = 0.013) and improved in the right STN DBS group over time (p < .001). Similarly, response inhibition improved following right STN DBS (p = 0.031). Immediate recall did not significantly differ over time, nor was it affected by implant hemisphere, but delayed recall equivalently declined over time for both left and right STN DBS groups (left STN DBS p = 0.001, right STN DBS differ from left STN DBS p = 0.794). Conclusions Directional and ring DBS did not differentially or adversely affect cognition over time. Regarding hemisphere effects, verbal fluency decline was observed in those who received left STN DBS, along with the left and right STN DBS declines in delayed memory. The left STN DBS verbal fluency decrement is consistent with prior bilateral DBS research, likely reflecting disruption of the basal-ganglia-thalamocortical network connecting STN and inferior frontal gyrus. Interestingly, we found an improvement in verbal fluency and response inhibition following right STN DBS. It is possible that unilateral STN DBS, particularly in the right hemisphere, may mitigate cognitive decline.
Collapse
Affiliation(s)
- Victor A Del Bene
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- The Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Roy C. Martin
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- The Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Sarah A. Brinkerhoff
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Joseph W. Olson
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Matthew J. Nelson
- Department of Neurosurgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Dario Marotta
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Christopher L. Gonzalez
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Kelly A. Mills
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Vidyulata Kamath
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - J. Nicole Bentley
- Department of Neurosurgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Barton L. Guthrie
- Department of Neurosurgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Robert T. Knight
- Department of Psychology, University of California, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Harrison C. Walker
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| |
Collapse
|
5
|
Rački V, Hero M, Rožmarić G, Papić E, Raguž M, Chudy D, Vuletić V. Cognitive Impact of Deep Brain Stimulation in Parkinson’s Disease Patients: A Systematic Review. Front Hum Neurosci 2022; 16:867055. [PMID: 35634211 PMCID: PMC9135964 DOI: 10.3389/fnhum.2022.867055] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionParkinson’s disease (PD) patients have a significantly higher risk of developing dementia in later disease stages, leading to severe impairments in quality of life and self-functioning. Questions remain on how deep brain stimulation (DBS) affects cognition, and whether we can individualize therapy and reduce the risk for adverse cognitive effects. Our aim in this systematic review is to assess the current knowledge in the field and determine if the findings could influence clinical practice.MethodsWe have conducted a systematic review according to PRISMA guidelines through MEDLINE and Embase databases, with studies being selected for inclusion via a set inclusion and exclusion criteria.ResultsSixty-seven studies were included in this systematic review according to the selected criteria. This includes 6 meta-analyses, 18 randomized controlled trials, 17 controlled clinical trials, and 26 observational studies with no control arms. The total number of PD patients encompassed in the studies cited in this review is 3677, not including the meta-analyses.ConclusionCognitive function in PD patients can deteriorate, in most cases mildly, but still impactful to the quality of life. The strongest evidence is present for deterioration in verbal fluency, while inconclusive evidence is still present for executive function, memory, attention and processing speed. Global cognition does not appear to be significantly impacted by DBS, especially if cognitive screening is performed prior to the procedure, as lower baseline cognitive function is connected to poor outcomes. Further randomized controlled studies are required to increase the level of evidence, especially in the case of globus pallidus internus DBS, pedunculopontine nucleus DBS, and the ventral intermediate nucleus of thalamus DBS, and more long-term studies are required for all respective targets.
Collapse
Affiliation(s)
- Valentino Rački
- Department of Neurology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Clinic of Neurology, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Mario Hero
- Department of Neurology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Clinic of Neurology, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | | | - Eliša Papić
- Department of Neurology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Clinic of Neurology, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Marina Raguž
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
| | - Darko Chudy
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimira Vuletić
- Department of Neurology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Clinic of Neurology, Clinical Hospital Center Rijeka, Rijeka, Croatia
- *Correspondence: Vladimira Vuletić,
| |
Collapse
|
6
|
Jahanshahi M, Leimbach F, Rawji V. Short and Long-Term Cognitive Effects of Subthalamic Deep Brain Stimulation in Parkinson's Disease and Identification of Relevant Factors. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2191-2209. [PMID: 36155529 DOI: 10.3233/jpd-223446] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND Subthalamic nucleus deep brain stimulation (STN-DBS) successfully controls the motor symptoms of Parkinson's disease (PD) but has associated cognitive side-effects. OBJECTIVE Establish the short- and long-term cognitive effects of STN-DBS in PD. METHODS Both the short-term and long-term effects of STN-DBS on cognition were examined through evaluation of the controlled studies that compared patients with STN-DBS to unoperated PD patients, thus controlling for illness progression. We also reviewed the literature to identify the factors that influence cognitive outcome of STN-DBS in PD. RESULTS The meta-analysis of the short-term cognitive effects of STN-DBS revealed moderate effect sizes for semantic and phonemic verbal fluency and small effect sizes for psychomotor speed and language, indicating greater decline in the STN-DBS operated than the unoperated patients in these cognitive domains. The longer-term STN-DBS results from controlled studies indicated rates of cognitive decline/dementia up to 32%; which are no different from the rates from the natural progression of PD. Greater executive dysfunction and poorer memory pre-operatively, older age, higher pre-operative doses of levodopa, and greater axial involvement are some of the factors associated with worse cognition after STN-DBS in PD. CONCLUSION This evidence can be used to inform patients and their families about the short-term and long-term risks of cognitive decline following STN-DBS surgery and aid the team in selection of suitable candidates for surgery.
Collapse
Affiliation(s)
- Marjan Jahanshahi
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology & Neurosurgery, London, UK
| | - Friederike Leimbach
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology & Neurosurgery, London, UK
| | - Vishal Rawji
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology & Neurosurgery, London, UK
| |
Collapse
|