1
|
Morinelli L, Corradi B, Arnaldi P, Cortese K, Muià M, Zara F, Maragliano L, Sterlini B, Corradi A. Unraveling the Membrane Topology of TMEM151A: A Step Towards Understanding its Cellular Role. J Mol Biol 2024; 436:168834. [PMID: 39454747 DOI: 10.1016/j.jmb.2024.168834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Transmembrane protein 151A (TMEM151A) has been identified as a causative gene for paroxysmal kinesigenic dyskinesia, though its molecular function remains almost completely unknown. Understanding the membrane topology of transmembrane proteins is crucial for elucidating their functions and possible interacting partners. In this study, we utilized molecular dynamics simulations, immunocytochemistry, and electron microscopy to define the topology of TMEM151A. Our results validate a starting AlphaFold model of TMEM151A and reveal that it comprises a transmembrane domain with two membrane-spanning alpha helices connected by a short extracellular loop and an intramembrane helix-hinge-helix structure. Notably, most of the protein is oriented towards the intracellular side of the membranes with a large cytosolic domain featuring a combination of alpha-helix and beta-sheet structures, as well as the protein N- and C-termini. These insights into TMEM151A's topology and orientation of its domains with respect of the cell membranes provide essential information for future functional studies and represent a first fundamental step for understanding its role in the pathogenesis of paroxysmal kinesigenic dyskinesia.
Collapse
Affiliation(s)
- Lisastella Morinelli
- University of Genova, Department of Experimental Medicine, Genova, Italy; Istituto Italiano di Tecnologia, Center for Synaptic Neuroscience and Technology, Genova, Italy
| | - Beatrice Corradi
- University of Genova, Department of Experimental Medicine, Genova, Italy; Istituto Italiano di Tecnologia, Center for Synaptic Neuroscience and Technology, Genova, Italy
| | - Pietro Arnaldi
- University of Genova, Department of Experimental Medicine, Genova, Italy
| | - Katia Cortese
- University of Genova, Department of Experimental Medicine, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Martina Muià
- University of Genova, Department of Experimental Medicine, Genova, Italy
| | - Federico Zara
- University of Genova, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Genova, Italy; IRCCS Istituto Giannina Gaslini, Unit of Medical Genetics, Genova, Italy
| | - Luca Maragliano
- Istituto Italiano di Tecnologia, Center for Synaptic Neuroscience and Technology, Genova, Italy; Polytechnic University of Marche, Department of Life and Environmental Sciences, Ancona, Italy
| | - Bruno Sterlini
- University of Genova, Department of Experimental Medicine, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Anna Corradi
- University of Genova, Department of Experimental Medicine, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
2
|
Koko M, Elseed MA, Mohammed IN, Hamed AA, Abd Allah ASI, Yahia A, Siddig RA, Altmüller J, Toliat MR, Elmahdi EO, Amin M, Ahmed EA, Eltazi IZM, Elmugadam FA, Abdelgadir WA, Eltaraifee E, Ibrahim MOM, Ali NMH, Malik HM, Babai AM, Bakhit YH, Nürnberg P, Ibrahim ME, Salih MA, Schubert J, Elsayed LEO, Lerche H. Bi-allelic PRRT2 variants may predispose to Self-limited Familial Infantile Epilepsy. Eur J Hum Genet 2024; 32:1338-1342. [PMID: 38316952 PMCID: PMC11500335 DOI: 10.1038/s41431-024-01541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/25/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Heterozygous PRRT2 variants are frequently implicated in Self-limited Infantile Epilepsy, whereas homozygous variants are so far linked to severe presentations including developmental and epileptic encephalopathy, movement disorders, and intellectual disability. In a study aiming to explore the genetics of epilepsy in the Sudanese population, we investigated several families including a consanguineous family with three siblings diagnosed with self-limited infantile epilepsy. We evaluated both dominant and recessive inheritance using whole exome sequencing and genomic arrays. We identified a pathogenic homozygous splice-site variant in the first intron of PRRT2 [NC_000016.10(NM_145239.3):c.-65-1G > A] that segregated with the phenotype in this family. This work taps into the genetics of epilepsy in an underrepresented African population and suggests that the phenotypes of homozygous PRRT2 variants may include milder epilepsy presentations without movement disorders.
Collapse
Affiliation(s)
- Mahmoud Koko
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Maha A Elseed
- Department of Pediatrics, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Inaam N Mohammed
- Department of Pediatrics, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Ahlam A Hamed
- Department of Pediatrics, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Amal S I Abd Allah
- Neurogenetics Research Group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Rayan A Siddig
- Neurogenetics Research Group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Berlin Institute of Health at Charité- Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Esra O Elmahdi
- Neurogenetics Research Group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mutaz Amin
- Department of Biochemistry, Faculty of Medicine, Al-Neelain University, Khartoum, Sudan
| | - Elhami A Ahmed
- UNESCO Chair on Bioethics, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Isra Z M Eltazi
- Department of Medicine, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Fatima A Elmugadam
- Neurogenetics Research Group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Wasma A Abdelgadir
- Department of Biochemistry and Molecular Biology, Faculty of Sciences and Technology, Al-Neelain University, Khartoum, Sudan
| | - Esraa Eltaraifee
- Neurogenetics Research Group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mohamed O M Ibrahim
- Department of Biochemistry, Faculty of Medicine, Sudan University of Science and Technology, Khartoum, Sudan
| | - Nabila M H Ali
- Neurogenetics Research Group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Hiba M Malik
- Neurogenetics Research Group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Arwa M Babai
- Neurogenetics Research Group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Yousuf H Bakhit
- Department of Neurology, Neurobiology Division, University Hospital Bonn, Bonn, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Muntaser E Ibrahim
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Mustafa A Salih
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Consultant Pediatric Neurologist, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Julian Schubert
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Liena E O Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Sottani C, Di Lazzaro G, Calabresi P, Pomponi MG, Tiziano FD, Bentivoglio AR, Servidei S, Vollono C. Efficacy of galcanezumab in proline-rich transmembrane protein 2 (PRRT2)-associated familial hemiplegic migraine: A case series. Headache 2024. [PMID: 39345003 DOI: 10.1111/head.14840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Familial hemiplegic migraine (FHM) is a rare subtype of migraine with aura. Variants in calcium voltage-gated channel subunit alpha1 A (CACNA1A), ATPase Na+/K+ transporting subunit alpha 2 (ATP1A2), and sodium voltage-gated channel alpha subunit 1 (SCN1A) genes have a well-established association with the development of FHM. Recent studies suggest that other genes may also have a significant role in the pathogenesis of FHM, including proline-rich transmembrane protein 2 (PRRT2). To our knowledge, there are currently no documented reports of the use of monoclonal antibodies targeting calcitonin gene-related peptide in FHM caused by a specific identified genetic mutation - and in particular not in FHM associated with PRRT2 mutations. The aim of our work is to describe the efficacy of galcanezumab as a prophylaxis treatment on patients from an Italian family consisting of six patient carriers of a PRRT2 pathogenic variant. METHODS Inclusion criteria for treatment eligibility consisted of a confirmed diagnosis of genetically confirmed FHM as defined by the International Classification of Headache Disorders, third edition, number of headache days/month ≥4, and at least two previously failed migraine prophylaxis treatments. We evaluated clinical data of patients treated with galcanezumab regarding number of headache days/month, frequency of aura, disability caused by HM using the Migraine Disability Assessment (MIDAS), attack severity through a numerical rating scale (NRS), acute medications intake, and response to acute medications at baseline (t0) and after 3 (t1) and 6 (t2) months of treatment. RESULTS Three out of six family members met inclusion criteria for treatment with galcanezumab. The average number of headache days/month, acute medications, and MIDAS significantly decreased in all treated patients, as well as the average NRS score. Aura frequency reduced by ≥50% compared to the baseline in all three patients. No adverse events related to galcanezumab were reported. CONCLUSION Galcanezumab is a valid and well-tolerated treatment option in PRRT2-associated FHM.
Collapse
Affiliation(s)
- Costanza Sottani
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia Di Lazzaro
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC Neurologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Paolo Calabresi
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC Neurologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Maria Grazia Pomponi
- UOC Genetica Medica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Francesco Danilo Tiziano
- UOC Genetica Medica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Section of Genomic Medicine, Department of Public Health and Life Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Rita Bentivoglio
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC Neurologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Serenella Servidei
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC Neurofisiopatologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Catello Vollono
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC Neurofisiopatologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| |
Collapse
|
4
|
McRae AM, Duncan J, Drackley A, Ing A, Allegretti V, Raski CR, Mercier A, Prada CE, Jurgensmeyer S. Further Delineation of the Proximal 16p11.2 Microdeletion Syndrome: Novel Findings Among 22 New Individuals. Am J Med Genet A 2024:e63873. [PMID: 39257254 DOI: 10.1002/ajmg.a.63873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024]
Abstract
The recurrent chromosome 16p11.2 BP4-BP5 microdeletion (MIM #611913) predisposes to a neurodevelopmental disorder with variable associated congenital anomalies and susceptibility to early-onset obesity. We identified 22 new individuals with proximal 16p11.2 deletions through retrospective data analysis at our institution and performed phenotyping through in-depth chart review. Our cohort exhibited a spectrum of neurodevelopmental abnormalities largely consistent with other publications, however they also were found to have a higher rate than expected of congenital anomalies, some of which have not yet been reported in association with 16p11.2 microdeletions to our knowledge. This series contributes to the body of data on this population, which we anticipate will continue to evolve along with increased uptake of genetic testing.
Collapse
Affiliation(s)
- Anne M McRae
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Jaime Duncan
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Andy Drackley
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alexander Ing
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Valerie Allegretti
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Carolyn R Raski
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Angelique Mercier
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Carlos E Prada
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sarah Jurgensmeyer
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
5
|
Iwanami N, Nagaki S, Gen A, Azuma D, Yamamoto T, Matsunaga T. Three siblings with self-limited familial infantile epilepsy with PRRT2 mutation: A case series. SAGE Open Med Case Rep 2024; 12:2050313X241264959. [PMID: 39055674 PMCID: PMC11271107 DOI: 10.1177/2050313x241264959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
We report three sisters with self-limited familial infantile epilepsy, caused by a mutation in proline-rich transmembrane protein2. Self-limited familial infantile epilepsy has been established as a distinct epileptic syndrome characterized by focal seizures in clusters of infantile-onset. The seizure types of our cases were focal with or without secondary generalization. The seizures manifested at 3-5 months of age, and each lasted 1-2 min. All three sisters fulfilled the criteria for self-limited familial infantile epilepsy, except in one case who showed interictal spikes in the right central area. The seizures were controlled with carbamazepine. When carbamazepine treatment was started, one case developed a rash, and her treatment was switched to valproic acid. However, the seizures persisted in this case such that carbamazepine was restarted. The rash did not recur. Electroencephalography showed spikes in only one case on interictal electroencephalography. All three sisters were developmentally normal, and no dyskinesia was observed during follow-up. All three sisters and their father, but not their mother, had the following pathogenic variant in proline-rich transmembrane protein2: NM_001256442.2(PRRT2): c.649dup[p.(Arg217Profs*8)]. This mutation has been identified in the majority of families with self-limited familial infantile epilepsy, paroxysmal kinesigenic dyskinesia, and/or infantile convulsion and choreoathetosis. Their father had no history of either self-limited familial infantile epilepsy or paroxysmal kinesigenic dyskinesia. The lack of a clear genotype-phenotype correlation was demonstrated in our cases with this proline-rich transmembrane protein2 mutation.
Collapse
Affiliation(s)
- Naoto Iwanami
- Department of Pediatrics, Toda Chuo General Hospital, Saitama, Japan
| | - Shigeru Nagaki
- Department of Pediatrics, Toda Chuo General Hospital, Saitama, Japan
- Nagaki Children’s Clinic, Tokyo, Japan
| | - Aki Gen
- Department of Pediatrics, Toda Chuo General Hospital, Saitama, Japan
| | - Daisuke Azuma
- Department of Pediatrics, Toda Chuo General Hospital, Saitama, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women’s Medical University, Tokyo, Japan
| | - Tamotsu Matsunaga
- Department of Pediatrics, Toda Chuo General Hospital, Saitama, Japan
| |
Collapse
|
6
|
Scorrano G, Dono F, Corniello C, Evangelista G, Chiarelli F, Sensi SL. Exploring epileptic phenotypes in PRRT2-related disorders: A report of two cases and literature appraisal. Seizure 2024; 119:3-11. [PMID: 38749256 DOI: 10.1016/j.seizure.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND The proline-rich transmembrane protein 2 (PRRT2) is a synaptic protein involved in neurotransmitter vesicle release. PRRT2 protein is highly expressed in the cerebellum, cerebral cortex, basal ganglia, and hippocampus. Variants in PRRT2 have been identified as a cause of several neurological disorders, including epilepsy, movement disorders, and headache. METHODS We report two families carrying two distinct PRRT2 mutations showing childhood onset of movement disorders, headache, and epilepsy. Demographics, clinical, EEG, neuroimaging, and genetic sequencing study data were collected. A systematic review of the literature was also performed to dissect the most frequently reported PRRT2-associated epileptic phenotypes. RESULTS two variants in PRRT2 gene (NM_145239.3:c718C>T, p.Arg240Ter; c.649dupC, p.Arg217Profs*8) were identified. The two variants altered the same extracellular domain of PRRT2. The de novo PRRT2 mutation (c718C>T, p.Arg240Ter) was related to multi-drug-resistant epilepsy. According to the literature, homozygous, biallelic variants and 16p11.2 deletions lead to PRRT2 haploinsufficiency and a more severe phenotype. CONCLUSIONS PRRT2 mutations can be associated with several epileptic phenotypes ranging from benign ASM-responsive form to more severe epileptic encephalopathies. Identifying PRRT2 variants in epilepsy patients may help achieve more personalized treatment approaches. However, phenotype-genotype correlations remain a challenge.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Pediatrics, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging and Clinical Science, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy; Neurology Clinic, Epilepsy Center, "SS Annunziata" Hospital of Chieti, Chieti, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST-, University G. d'Annunzio of Chieti-Pescara, Italy.
| | - Clarissa Corniello
- Department of Neuroscience, Imaging and Clinical Science, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy; Neurology Clinic, Epilepsy Center, "SS Annunziata" Hospital of Chieti, Chieti, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST-, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Giacomo Evangelista
- Department of Neuroscience, Imaging and Clinical Science, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy; Neurology Clinic, Epilepsy Center, "SS Annunziata" Hospital of Chieti, Chieti, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST-, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging and Clinical Science, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy; Neurology Clinic, Epilepsy Center, "SS Annunziata" Hospital of Chieti, Chieti, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST-, University G. d'Annunzio of Chieti-Pescara, Italy
| |
Collapse
|
7
|
Wen M, Huang H, Huang F, Xu R, Zhang J, Fan J, Zeng J, Jiang K, Liu D, Huang H, He Q. A new genetic diagnosis strategy for paroxysmal kinesigenic dyskinesia: Targeted high-throughput detection of PRRT2 gene c.649 locus. Mol Genet Genomic Med 2024; 12:e2469. [PMID: 38778723 PMCID: PMC11112295 DOI: 10.1002/mgg3.2469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Paroxysmal kinesigenic dyskinesia (PKD) is the most prevalent kind type of paroxysmal Dyskinesia, characterized by recurrent and transient episodes of involuntary movements. Most PKD cases were attributed to the proline-rich transmembrane protein 2 (PRRT2) gene, in which the c.649 region is a hotspot for known mutations. Even though some patients with PKD have been genetically diagnosed using whole-exome sequencing (WES) and Sanger sequencing, there are still cases of missed diagnoses due to the limitations of sequencing technology and analytic methods on throughput. METHODS Patients meeting the diagnosis criteria of PKD with negative results of PRRT2-Sanger sequencing and WES were included in this study. Mutation screening and targeted high-throughput sequencing were performed to analyze and verify the sequencing results of the potential mutations. RESULTS Six patients with PKD with high mutation ratios of c.649dupC were screened using our targeted high-throughput sequencing from 26 PKD patients with negative results of PRRT2-Sanger sequencing and WES (frequency = 23.1%), which compensated for the comparatively shallow sequencing depth and statistical flaws in this region. Compared with the local normal population and other patients with PKD, the mutation ratios of c.649dupC of these six patients with PKD were much higher and also had truncated protein structures and differentially altered mRNA expression. CONCLUSION Based on the above studies, we emphasize the routine targeted high-throughput sequencing of the c.649 site in the PRRT2 gene in so-called genetic-testing-negative patients with PKD, and manually calculate the deletion and duplication mutations depth and ratios to lower the rate of clinical misdiagnosis.
Collapse
Affiliation(s)
- Min Wen
- Department of Pediatrics, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Hui Huang
- Department of Medical Genetics, Hunan Province Clinical Research Center for Genetic Birth Defects and Rare Diseases, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Fei Huang
- Reproductive Medicine Center, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ru Xu
- Reproductive Medicine Center, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jing Zhang
- Reproductive Medicine Center, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jia‐Geng Fan
- Hangzhou Xiangyin Medical LaboratoryHangzhouZhejiangChina
| | - Jun Zeng
- Reproductive Medicine Center, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Kai‐Wen Jiang
- Reproductive Medicine Center, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ding Liu
- Department of Neurology, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Hua‐Lin Huang
- Reproductive Medicine Center, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Qing‐Nan He
- Department of Pediatrics, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
8
|
Hu B, Zhuang XL, Zhou L, Zhang G, Cooper DN, Wu DD. Deciphering the Role of Rapidly Evolving Conserved Elements in Primate Brain Development and Exploring Their Potential Involvement in Alzheimer's Disease. Mol Biol Evol 2024; 41:msae001. [PMID: 38175672 PMCID: PMC10798191 DOI: 10.1093/molbev/msae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
Although previous studies have identified human-specific accelerated regions as playing a key role in the recent evolution of the human brain, the characteristics and cellular functions of rapidly evolving conserved elements (RECEs) in ancestral primate lineages remain largely unexplored. Here, based on large-scale primate genome assemblies, we identify 888 RECEs that have been highly conserved in primates that exhibit significantly accelerated substitution rates in the ancestor of the Simiiformes. This primate lineage exhibits remarkable morphological innovations, including an expanded brain mass. Integrative multiomic analyses reveal that RECEs harbor sequences with potential cis-regulatory functions that are activated in the adult human brain. Importantly, genes linked to RECEs exhibit pronounced expression trajectories in the adult brain relative to the fetal stage. Furthermore, we observed an increase in the chromatin accessibility of RECEs in oligodendrocytes from individuals with Alzheimer's disease (AD) compared to that of a control group, indicating that these RECEs may contribute to brain aging and AD. Our findings serve to expand our knowledge of the genetic underpinnings of brain function during primate evolution.
Collapse
Affiliation(s)
- Benxia Hu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao-Lin Zhuang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Long Zhou
- Center of Evolutionary and Organismal Biology, and Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Guangdong, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Guangdong, China
| | - Guojie Zhang
- Center of Evolutionary and Organismal Biology, and Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Guangdong, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Guangdong, China
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Dong-Dong Wu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
9
|
Han JY, Cho YG, Jo DS, Park J. Diversity of Clinical and Molecular Characteristics in Korean Patients with 16p11.2 Microdeletion Syndrome. Int J Mol Sci 2023; 25:253. [PMID: 38203422 PMCID: PMC10779371 DOI: 10.3390/ijms25010253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
16p11.2 copy number variations (CNVs) are increasingly recognized as one of the most frequent genomic disorders, and the 16p11.2 microdeletion exhibits broad phenotypic variability and a diverse clinical phenotype. We describe the neurodevelopmental course and discordant clinical phenotypes observed within and between individuals with identical 16p11.2 microdeletions. An analysis with the CytoScan Dx Assay was conducted on a GeneChip System 3000Dx, and the sample signals were then compared to a reference set using the Chromosome Analysis Suite software version 3.1. Ten patients from six separate families were identified with 16p11.2 microdeletions. Nine breakpoints (BPs) 4-5 and one BP2-5 of the 16p11.2 microdeletion were identified. All patients with 16p11.2 microdeletions exhibited developmental delay and/or intellectual disability. Sixty percent of patients presented with neonatal hypotonia, but muscle weakness improved with age. Benign infantile epilepsy manifested between the ages of 7-10 months (a median of 8 months) in six patients (60%). Vertebral dysplasia was observed in two patients (20%), and mild scoliosis was noted in three patients. Sixty percent of patients were overweight. We present six unrelated Korean families, among which identical 16p11.2 microdeletions resulted in diverse developmental trajectories and discordant phenotypes. The clinical variability and incomplete penetrance observed in individuals with 16p11.2 microdeletions remain unclear, posing challenges to accurate clinical interpretation and diagnosis.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Yong Gon Cho
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Dae Sun Jo
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Pediatrics, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
| | - Joonhong Park
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
10
|
Tian Y, Shi Z, Cai J, Hou C, Wang X, Zhu H, Peng B, Shi K, Li X, Gong S, Chen WX. Levetiracetam may be an unsuitable choice for patients with PRRT2-associated self-limited infantile epilepsy. BMC Pediatr 2023; 23:529. [PMID: 37880614 PMCID: PMC10601096 DOI: 10.1186/s12887-023-04212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/26/2023] [Indexed: 10/27/2023] Open
Abstract
INTRODUCTION Self-limited infantile epilepsy (SeLIE) is a benign epilepsy. Previous studies have shown that monotherapy with most antiseizure medications can effectively relieve seizures in patients with SeLIE, but the efficacy of levetiracetam has not been investigated. OBJECTIVE This study aimed to investigate the efficacy of levetiracetam in the treatment of SeLIE patients with PRRT2 mutations. METHODS The clinical data of 39 SeLIE patients (21 males and 18 females, aged 4.79 ± 1.60 months) with pathogenic variants in PRRT2 or 16p11.2 microdeletion were retrospectively analyzed. Based on the use of initial antiseizure medication (ASM), the patients were classified into two groups: Levetiracetam group (LEG) and Other ASMs group (OAG). The difference of efficacy between the two groups was compared. RESULTS Among the 39 SeLIE patients, 16 were LEG (10 males and 6 females, aged 5.25 ± 2.07 months), with whom two obtained a seizure-free status (12.50%) and 14 ineffective or even deteriorated (87.50%). Among the 14 ineffective or deteriorated cases, 13 were seizure-controlled after replacing levetiracetam with other ASMs including topiramate, oxcarbazepine, lamotrigine, and valproate, and the remaining one finally achieved remission at age 3. Of the 39 patients, 23 were OAG (11 males and 12 females; aged 4.48 ± 1.12 months), of whom 22 achieved seizure remission, except for one patient who was ineffective with topiramate initially and relieved by oxcarbazepine instead. Although there were no significant differences in gender and age of onset between the two groups, the effective rate was significantly different (12.50% in LEG vs. 95.65% in OAG) (P < 0.01). CONCLUSION The findings showed that patients with SeLIE caused by the PRRT2 mutations did not benefit from the use of levetiracetam, but could benefit from other ASMs.
Collapse
Affiliation(s)
- Yang Tian
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Zhen Shi
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Jiahao Cai
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Chi Hou
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Xiuying Wang
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Haixia Zhu
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Binwei Peng
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Kaili Shi
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Xiaojing Li
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Sitang Gong
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
- Department of Pediartic, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9# Jin Sui Road, Guangzhou, 510623, China.
| | - Wen-Xiong Chen
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9# Jin Sui Road, Guangzhou, 510623, China.
| |
Collapse
|
11
|
Dias A, Santos M, Carvalho E, Felício D, Silva P, Alves I, Pinho T, Sousa A, Alves-Ferreira M, Lemos C. Functional characterization of a novel PRRT2 variant found in a Portuguese patient with hemiplegic migraine. Clin Genet 2023; 104:479-485. [PMID: 37243399 DOI: 10.1111/cge.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Familial hemiplegic migraine (FHM) is a rare autosomal-dominant form of migraine with aura. Three disease-causing genes have been identified for FHM: CACNA1A, ATP1A2 and SCN1A. However, not all families are linked to one of these three genes.PRRT2 variants were also commonly associated with HM symptoms; therefore, PRRT2 is hypothesized as the fourth gene causing FHM. PRRT2 plays an important role in neuronal migration, spinogenesis, and synapse mechanisms during development and calcium-dependent neurotransmitter release. We performed exome sequencing to unravel the genetic cause of migraine in one family, and a novel PRRT2 variant (c.938C > T;p.Ala313Val) was identified with further functional studies to confirm its pathogenicity. PRRT2-A313V reduced protein stability, led to protein premature degradation by the proteasome and altered the subcellular localization of PRRT2 from the plasma membrane (PM) to the cytoplasm. We identified and characterized for the first time in a Portuguese patient, a novel heterozygous missense variant in PRRT2 associated with HM symptoms. We suggest that PRRT2 should be included in the diagnosis of HM.
Collapse
Affiliation(s)
- Andreia Dias
- UnIGENe, IBMC - Instituto de Biologia Celular e Molecular, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Mariana Santos
- UnIGENe, IBMC - Instituto de Biologia Celular e Molecular, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Estefânia Carvalho
- UnIGENe, IBMC - Instituto de Biologia Celular e Molecular, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Daniela Felício
- UnIGENe, IBMC - Instituto de Biologia Celular e Molecular, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Paulo Silva
- UnIGENe, IBMC - Instituto de Biologia Celular e Molecular, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- CGPP, Centro de Genética Preditiva e Preventiva, IBMC - Instituto de Biologia Celular e Molecular, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ivânia Alves
- Serviço de Neurologia, Centro Hospitalar Tâmega e Sousa, Penafiel, Portugal
| | - Teresa Pinho
- UnIGENe, IBMC - Instituto de Biologia Celular e Molecular, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
| | - Alda Sousa
- UnIGENe, IBMC - Instituto de Biologia Celular e Molecular, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Miguel Alves-Ferreira
- UnIGENe, IBMC - Instituto de Biologia Celular e Molecular, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- CGPP, Centro de Genética Preditiva e Preventiva, IBMC - Instituto de Biologia Celular e Molecular, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carolina Lemos
- UnIGENe, IBMC - Instituto de Biologia Celular e Molecular, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
12
|
Fearn N, Macdonald-Laurs E, Moylan L, Howell KB. Peri-ictal EEG in infants with PRRT2-related self-limited infantile epilepsy. Epileptic Disord 2023; 25:510-518. [PMID: 37170076 DOI: 10.1002/epd2.20072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/08/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVE Pathogenic PRRT2 variants cause self-limited (familial) infantile epilepsy (SeLIE), which is responsive to sodium channel blocking antiseizure medications. The interictal EEG is typically normal. We describe a cohort of infants with PRRT2-related SeLIE with striking peri-ictal EEG abnormalities. METHODS We included all infants diagnosed with PRRT2-related SeLIE during July 2020 to November 2021 at the Royal Children's Hospital, Melbourne. Clinical features and results of aetiologic investigations were collected from electronic medical records. All EEGs were reviewed independently by two epileptologists. RESULTS Ten infants presented with focal seizures at a median age of 5 months (range: 3-6 months). Eight had a family history of epilepsy, paroxysmal kinesigenic dyskinesia (PKD) or hemiplegic migraine. Seven of the eight infants with an EEG performed within 24 h of the most recent seizure had epileptiform discharges. Their EEGs showed focal sharp waves, spikes, polyspikes or fast activity independently over the left and right temporo-occipital regions. Conversely, the two infants with last known seizure greater than 24 h prior to their EEG had no epileptiform discharges. Oxcarbazepine was commenced in two infants and was effective. Eight infants were initially treated with levetiracetam, and all were subsequently switched to oxcarbazepine due to ongoing seizures or side effects. SIGNIFICANCE Posterior polymorphic focal epileptiform discharges on a peri-ictal EEG recording are a feature of PRRT2-related SeLIE. This finding, particularly in the presence of a family history of infantile epilepsy, PKD or hemiplegic migraine, suggests a diagnosis of PRRT2-related SeLIE and has important treatment implications.
Collapse
Affiliation(s)
- Nicola Fearn
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Emma Macdonald-Laurs
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Laura Moylan
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Katherine B Howell
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Montanucci L, Lewis-Smith D, Collins RL, Niestroj LM, Parthasarathy S, Xian J, Ganesan S, Macnee M, Brünger T, Thomas RH, Talkowski M, Helbig I, Leu C, Lal D. Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals. Nat Commun 2023; 14:4392. [PMID: 37474567 PMCID: PMC10359300 DOI: 10.1038/s41467-023-39539-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 06/16/2023] [Indexed: 07/22/2023] Open
Abstract
Copy number variants (CNV) are established risk factors for neurodevelopmental disorders with seizures or epilepsy. With the hypothesis that seizure disorders share genetic risk factors, we pooled CNV data from 10,590 individuals with seizure disorders, 16,109 individuals with clinically validated epilepsy, and 492,324 population controls and identified 25 genome-wide significant loci, 22 of which are novel for seizure disorders, such as deletions at 1p36.33, 1q44, 2p21-p16.3, 3q29, 8p23.3-p23.2, 9p24.3, 10q26.3, 15q11.2, 15q12-q13.1, 16p12.2, 17q21.31, duplications at 2q13, 9q34.3, 16p13.3, 17q12, 19p13.3, 20q13.33, and reciprocal CNVs at 16p11.2, and 22q11.21. Using genetic data from additional 248,751 individuals with 23 neuropsychiatric phenotypes, we explored the pleiotropy of these 25 loci. Finally, in a subset of individuals with epilepsy and detailed clinical data available, we performed phenome-wide association analyses between individual CNVs and clinical annotations categorized through the Human Phenotype Ontology (HPO). For six CNVs, we identified 19 significant associations with specific HPO terms and generated, for all CNVs, phenotype signatures across 17 clinical categories relevant for epileptologists. This is the most comprehensive investigation of CNVs in epilepsy and related seizure disorders, with potential implications for clinical practice.
Collapse
Affiliation(s)
- Ludovica Montanucci
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
| | - David Lewis-Smith
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Clinical Neurosciences, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ryan L Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T.) and Harvard, Cambridge, USA
| | | | - Shridhar Parthasarathy
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julie Xian
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shiva Ganesan
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marie Macnee
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Tobias Brünger
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Rhys H Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Clinical Neurosciences, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michael Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T.) and Harvard, Cambridge, USA
| | - Ingo Helbig
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, USA.
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, USA.
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, US.
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, USA.
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T.) and Harvard, Cambridge, USA.
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, USA.
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, US.
| |
Collapse
|
14
|
Dzinovic I, Graf E, Brugger M, Berutti R, Příhodová I, Blaschek A, Winkelmann J, Jech R, Vill K, Zech M. Challenges in Establishing the Diagnosis of PRRT2-Related Dystonia: Recurrent Pathogenic Variants in a Homopolymeric Stretch. Mov Disord Clin Pract 2023; 10:1159-1161. [PMID: 37476319 PMCID: PMC10354604 DOI: 10.1002/mdc3.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/07/2023] [Accepted: 05/05/2023] [Indexed: 07/22/2023] Open
Affiliation(s)
- Ivana Dzinovic
- Institute of Neurogenomics, Helmholtz Zentrum MünchenMunichGermany
- Institute of Human Genetics, School of MedicineTechnical University of MunichMunichGermany
| | - Elisabeth Graf
- Institute of Human Genetics, School of MedicineTechnical University of MunichMunichGermany
| | - Melanie Brugger
- Institute of Human Genetics, School of MedicineTechnical University of MunichMunichGermany
| | - Riccardo Berutti
- Institute of Neurogenomics, Helmholtz Zentrum MünchenMunichGermany
- Institute of Human Genetics, School of MedicineTechnical University of MunichMunichGermany
| | - Iva Příhodová
- Department of NeurologyCharles University, 1st Faculty of Medicine and General University Hospital in PraguePragueCzech Republic
| | - Astrid Blaschek
- Dr. v. Hauner Children's Hospital, Department of Pediatric Neurology and Developmental MedicineLudwig‐Maximilians‐UniversitätMunichGermany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum MünchenMunichGermany
- Institute of Human Genetics, School of MedicineTechnical University of MunichMunichGermany
- Lehrstuhl für Neurogenetik, Technische Universität MünchenMunichGermany
- Munich Cluster for Systems Neurology, SyNergyMunichGermany
| | - Robert Jech
- Department of NeurologyCharles University, 1st Faculty of Medicine and General University Hospital in PraguePragueCzech Republic
| | - Katharina Vill
- Dr. v. Hauner Children's Hospital, Department of Pediatric Neurology and Developmental MedicineLudwig‐Maximilians‐UniversitätMunichGermany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum MünchenMunichGermany
- Institute of Human Genetics, School of MedicineTechnical University of MunichMunichGermany
| |
Collapse
|
15
|
Ekmen A, Doulazmi M, Méneret A, Jegatheesan P, Hervé A, Damier P, Gras D, Roubertie A, Piard J, Mutez E, Tarrano C, Welniarz Q, Vidailhet M, Worbe Y, Gallea C, Roze E. Non-Motor Symptoms and Quality of Life in Patients with PRRT2-Related Paroxysmal Kinesigenic Dyskinesia. Mov Disord Clin Pract 2023; 10:1082-1089. [PMID: 37476308 PMCID: PMC10354617 DOI: 10.1002/mdc3.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/23/2023] [Accepted: 05/01/2023] [Indexed: 07/22/2023] Open
Abstract
Background Monoallelic pathogenic variants of PRRT2 often result in paroxysmal kinesigenic dyskinesia (PKD). Little is known about health-related quality of life (HrQoL), non-motor manifestations, self-esteem, and stigma in patients with PKD. Objectives We investigated non-motor symptoms and how they related to HrQoL in a genetically homogeneous group of PRRT2-PKD patients. We paid special attention to perceived stigmatization and self-esteem. Methods We prospectively enrolled 21 consecutive PKD patients with a pathogenic variant of PRRT2, and 21 healthy controls matched for age and sex. They were evaluated with dedicated standardized tests for non-motor symptoms, HrQoL, anxiety, depression, stigma, self-esteem, sleep, fatigue, pain, and psychological well-being. Results Patients reported an alteration of the physical aspects of HrQoL, regardless of the presence of residual paroxysmal episodes. Non-motor manifestations were frequent, and were an important determinant of the alteration of HrQoL. In addition, patients perceived a higher level of stigmatization which positively correlated with a delay in diagnosis (ρ = 0.615, P = 0.003) and the fear of being judged (ρ = 0.452, P = 0.04), but not with the presence of paroxysmal episodes (ρ = 0.203, P = 0.379). Conclusions Our findings have important implications for care givers concerning patient management and medical education about paroxysmal dyskinesia. PRRT2-PKD patients should be screened for non-motor disorders in routine care. A long history of misdiagnosis may play a role in the high level of perceived stigmatization. Improving knowledge about diagnostic clues suggestive of PKD is mandatory.
Collapse
Affiliation(s)
- Asya Ekmen
- Sorbonne Université, INSERM, CNRS, Paris Brain InstituteParisFrance
- APHP Hôpital de La Pitié Salpetriêre et Saint‐AntoineParisFrance
| | - Mohamed Doulazmi
- Sorbonne University, Adaptation Biologique et Vieillissement (UMR8256), Institut de Biologie Paris Seine, CNRSParisFrance
| | - Aurélie Méneret
- Sorbonne Université, INSERM, CNRS, Paris Brain InstituteParisFrance
- APHP Hôpital de La Pitié Salpetriêre et Saint‐AntoineParisFrance
| | - Prasanthi Jegatheesan
- Sorbonne Université, INSERM, CNRS, Paris Brain InstituteParisFrance
- APHP Hôpital de La Pitié Salpetriêre et Saint‐AntoineParisFrance
| | - Anais Hervé
- Sorbonne Université, INSERM, CNRS, Paris Brain InstituteParisFrance
| | | | - Domitille Gras
- Sorbonne Université, INSERM, CNRS, Paris Brain InstituteParisFrance
| | - Agathe Roubertie
- Département NeuropédiatrieINM, Université de Montpellier, INSERM, CHU MontpellierMontpellierFrance
| | - Juliette Piard
- Centre de Génétique Humaine, CHUBesançonFrance
- INSERM UMR1231, Génétique des Anomalies du DéveloppementUniversité de BourgogneDijonFrance
| | - Eugenie Mutez
- Univ. Lille, Inserm, CHU Lille, U1172—LilNCog—Lille Neuroscience and CognitionLilleFrance
| | - Clément Tarrano
- Sorbonne Université, INSERM, CNRS, Paris Brain InstituteParisFrance
- APHP Hôpital de La Pitié Salpetriêre et Saint‐AntoineParisFrance
| | - Quentin Welniarz
- Sorbonne Université, INSERM, CNRS, Paris Brain InstituteParisFrance
- APHP Hôpital de La Pitié Salpetriêre et Saint‐AntoineParisFrance
| | - Marie Vidailhet
- Sorbonne Université, INSERM, CNRS, Paris Brain InstituteParisFrance
- APHP Hôpital de La Pitié Salpetriêre et Saint‐AntoineParisFrance
| | - Yulia Worbe
- Sorbonne Université, INSERM, CNRS, Paris Brain InstituteParisFrance
- APHP Hôpital de La Pitié Salpetriêre et Saint‐AntoineParisFrance
| | - Cécile Gallea
- Sorbonne Université, INSERM, CNRS, Paris Brain InstituteParisFrance
| | - Emmanuel Roze
- Sorbonne Université, INSERM, CNRS, Paris Brain InstituteParisFrance
- APHP Hôpital de La Pitié Salpetriêre et Saint‐AntoineParisFrance
| |
Collapse
|
16
|
Lin W. Translating Genetic Discovery into a Mechanistic Understanding of Pediatric Movement Disorders: Lessons from Genetic Dystonias and Related Disorders. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2200018. [PMID: 37288166 PMCID: PMC10242408 DOI: 10.1002/ggn2.202200018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 06/09/2023]
Abstract
The era of next-generation sequencing has increased the pace of gene discovery in the field of pediatric movement disorders. Following the identification of novel disease-causing genes, several studies have aimed to link the molecular and clinical aspects of these disorders. This perspective presents the developing stories of several childhood-onset movement disorders, including paroxysmal kinesigenic dyskinesia, myoclonus-dystonia syndrome, and other monogenic dystonias. These stories illustrate how gene discovery helps focus the research efforts of scientists trying to understand the mechanisms of disease. The genetic diagnosis of these clinical syndromes also helps clarify the associated phenotypic spectra and aids the search for additional disease-causing genes. Collectively, the findings of previous studies have led to increased recognition of the role of the cerebellum in the physiology and pathophysiology of motor control-a common theme in many pediatric movement disorders. To fully exploit the genetic information garnered in the clinical and research arenas, it is crucial that corresponding multi-omics analyses and functional studies also be performed at scale. Hopefully, these integrated efforts will provide us with a more comprehensive understanding of the genetic and neurobiological bases of movement disorders in childhood.
Collapse
Affiliation(s)
- Wei‐Sheng Lin
- Department of PediatricsTaipei Veterans General HospitalTaipei11217Taiwan
- School of MedicineNational Yang Ming Chiao Tung UniversityTaipei112304Taiwan
| |
Collapse
|
17
|
Gu Y, Mei D, Wang X, Ma A, Kong J, Zhang Y. Clinical and genetic analysis of benign familial infantile epilepsy caused by PRRT2 gene variant. Front Neurol 2023; 14:1135044. [PMID: 37228410 PMCID: PMC10204721 DOI: 10.3389/fneur.2023.1135044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Objective This study presents the clinical phenotypes and genetic analysis of seven patients with benign familial infantile epilepsy (BFIE) diagnosed by whole-exome sequencing. Methods The clinical data of seven children with BFIE diagnosed at the Department of Neurology, Children's Hospital Affiliated to Zhengzhou University between December 2017 and April 2022 were retrospectively analyzed. Whole-exome sequencing was used to identify the genetic causes, and the variants were verified by Sanger sequencing in other family members. Results The seven patients with BFIE included two males and five females ranging in age between 3 and 7 months old. The main clinical phenotype of the seven affected children was the presence of focal or generalized tonic-clonic seizures, which was well controlled by anti-seizure medication. Cases 1 and 5 exhibited predominantly generalized tonic-clonic seizures accompanied by focal seizures while cases 2, 3, and 7 displayed generalized tonic-clonic seizures, and cases 4 and 6 had focal seizures. The grandmother and father of cases 2, 6, and 7 had histories of seizures. However, there was no family history of seizures in the remaining cases. Case 1 carried a de novo frameshift variant c.397delG (p.E133Nfs*43) in the proline-rich transmembrane protein 2 (PRRT2) gene while case 2 had a nonsense variant c.46G > T (p.Glu16*) inherited from the father, and cases 3-7 carried a heterozygous frameshift variant c.649dup (p.R217Pfs*8) in the same gene. In cases 3 and 4, the frameshift variant was de novo, while in cases 5-7, the variant was paternally inherited. The c.397delG (p.E133Nfs*43) variant is previously unreported. Conclusion This study demonstrated the effectiveness of whole-exome sequencing in the diagnosis of BFIE. Moreover, our findings revealed a novel pathogenic variant c.397delG (p.E133Nfs*43) in the PRRT2 gene that causes BFIE, expanding the mutation spectrum of PRRT2.
Collapse
Affiliation(s)
- Yu Gu
- Department of Pediatrics, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Daoqi Mei
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Xiaona Wang
- Zhengzhou Key Laboratory of Pediatric Neurobehavioral, Henan Neural Development Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Ang Ma
- Department of Pediatrics, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Jinghui Kong
- Zhengzhou Key Laboratory of Pediatric Neurobehavioral, Henan Neural Development Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yaodong Zhang
- Zhengzhou Key Laboratory of Pediatric Neurobehavioral, Henan Neural Development Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Abstract
Benign paroxysmal torticollis is a rare, usually benign, condition classified as an episodic syndrome. It is characterized by episodes of paroxysmal head tilt and associated symptoms, some of which are shared with migraine. It is likely to be the migraine equivalent with the earliest age of onset, starting in some cases in the neonatal period but resolving typically by the age of three or four. It may evolve into other episodic syndromes, migraine, or hemiplegic migraine, and an antecedent history or family history should be sought from migraineurs. Its prevalence and under-recognition has made it difficult to study. There are emerging associations with genes implicated in other paroxysmal syndromes, including hemiplegic migraine and episodic ataxia. Treatment currently centers on supportive care and environmental modification.
Collapse
Affiliation(s)
- Timothy Yates
- Headache and Facial Pain Group, University College London (UCL) Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| |
Collapse
|
19
|
Erro R, Magrinelli F, Bhatia KP. Paroxysmal movement disorders: Paroxysmal dyskinesia and episodic ataxia. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:347-365. [PMID: 37620078 DOI: 10.1016/b978-0-323-98817-9.00033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Paroxysmal movement disorders have traditionally been classified into paroxysmal dyskinesia (PxD), which consists in attacks of involuntary movements (mainly dystonia and/or chorea) without loss of consciousness, and episodic ataxia (EA), which features spells of cerebellar dysfunction with or without interictal neurological manifestations. In this chapter, PxD will be discussed first according to the trigger-based classification, thus reviewing clinical, genetic, and molecular features of paroxysmal kinesigenic dyskinesia, paroxysmal nonkinesigenic dyskinesia, and paroxysmal exercise-induced dyskinesia. EA will be presented thereafter according to their designated gene or genetic locus. Clinicogenetic similarities among paroxysmal movement disorders have progressively emerged, which are herein highlighted along with growing evidence that their pathomechanisms overlap those of epilepsy and migraine. Advances in our comprehension of the biological pathways underlying paroxysmal movement disorders, which involve ion channels as well as proteins associated with the vesical synaptic cycle or implicated in neuronal energy metabolism, may represent the cornerstone for defining a shared pathophysiologic framework and developing target-specific therapies.
Collapse
Affiliation(s)
- Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Salerno, Italy
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
20
|
Bukhari-Parlakturk N, Frucht SJ. Isolated and combined dystonias: Update. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:425-442. [PMID: 37620082 DOI: 10.1016/b978-0-323-98817-9.00005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Dystonia is a hyperkinetic movement disorder with a unique motor phenomenology that can manifest as an isolated clinical syndrome or combined with other neurological features. This chapter reviews the characteristic features of dystonia phenomenology and the syndromic approach to evaluating the disorders that may allow us to differentiate the isolated and combined syndromes. We also present the most common types of isolated and combined dystonia syndromes. Since accelerated gene discoveries have increased our understanding of the molecular mechanisms of dystonia pathogenesis, we also present isolated and combined dystonia syndromes by shared biological pathways. Examples of these converging mechanisms of the isolated and combined dystonia syndromes include (1) disruption of the integrated response pathway through eukaryotic initiation factor 2 alpha signaling, (2) disease of dopaminergic signaling, (3) alterations in the cerebello-thalamic pathway, and (4) disease of protein mislocalization and stability. The discoveries that isolated and combined dystonia syndromes converge in shared biological pathways will aid in the development of clinical trials and therapeutic strategies targeting these convergent molecular pathways.
Collapse
Affiliation(s)
- Noreen Bukhari-Parlakturk
- Department of Neurology, Movement Disorders Division, Duke University (NBP), Durham, NC, United States.
| | - Steven J Frucht
- Department of Neurology, NYU Grossman School of Medicine (SJF), New York, NY, United States
| |
Collapse
|
21
|
The Benefit of Multigene Panel Testing for the Diagnosis and Management of the Genetic Epilepsies. Genes (Basel) 2022; 13:genes13050872. [PMID: 35627257 PMCID: PMC9141259 DOI: 10.3390/genes13050872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
With the increasing use of genetic testing in pediatric epilepsy, it is important to describe the diagnostic outcomes as they relate to clinical care. The goal of this study was to assess the diagnostic yield and impact on patient care of genetic epilepsy panel testing. We conducted a retrospective chart review of patients at the Children’s Hospital of Eastern Ontario (CHEO) who had genetic testing between the years of 2013–2020. We identified 227 patients that met criteria for inclusion. The majority of patients had their testing performed as “out-of-province” tests since province-based testing during this period was limited. The diagnostic yield for multi-gene epilepsy panel testing was 17% (39/227) and consistent with the literature. Variants of unknown significance (VUS) were reported in a significant number of undiagnosed individuals (77%; 128/163). A higher diagnostic rate was observed in patients with a younger age of onset of seizures (before one year of age; 32%; 29/90). A genetic diagnosis informed prognosis, recurrence risk counselling and expedited access to resources in all those with a diagnosis. A direct change in clinical management as a result of the molecular diagnosis was evident for 9% (20/227) of patients. The information gathered in this study provides evidence of the clinical benefits of genetic testing in epilepsy and serves as a benchmark for comparison with the current provincial Ontario Epilepsy Genetic Testing Program (OEGTP) that began in 2020.
Collapse
|
22
|
Genetic paroxysmal neurological disorders featuring episodic ataxia and epilepsy. Eur J Med Genet 2022; 65:104450. [DOI: 10.1016/j.ejmg.2022.104450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 01/25/2023]
|
23
|
Ekmen A, Meneret A, Valabregue R, Beranger B, Worbe Y, Lamy JC, Mehdi S, Herve A, Adanyeguh I, Temiz G, Damier P, Gras D, Roubertie A, Piard J, Navarro V, Mutez E, Riant F, Welniarz Q, Vidailhet M, Lehericy S, Meunier S, Gallea C, Roze E. Cerebellum Dysfunction in Patients With PRRT2-Related Paroxysmal Dyskinesia. Neurology 2022; 98:e1077-e1089. [DOI: 10.1212/wnl.0000000000200060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
Background and Objectives:The main culprit gene for paroxysmal kinesigenic dyskinesia, characterized by brief and recurrent attacks of involuntary movements, is PRRT2. The location of the primary dysfunction associated with paroxysmal dyskinesia remains a matter of debate and may vary depending on the etiology. While striatal dysfunction has often been implicated in these patients, evidence from preclinical models indicate that the cerebellum could also play a role. We aimed to investigate the role of the cerebellum in the pathogenesis of PRRT2-related dyskinesia in humans.Methods:We enrolled 22 consecutive right-handed patients with paroxysmal kinesigenic dyskinesia with a pathogenic variant of PRRT2, and their matched controls. Participants underwent a multi-modal neuroimaging protocol. We recorded anatomic and diffusion-weighted MRI, as well as resting-state functional MRI during which we tested the after-effects of sham and repetitive transcranial magnetic stimulation applied to the cerebellum on endogenous brain activity. We quantified: (i) the structural integrity of gray matter using voxel-based morphometry; (ii) the structural integrity of white matter using fixel-based analysis; (iii) the strength and direction of functional cerebellar connections using spectral dynamic causal modeling.Results:PRRT2 patients had: (i) decreased gray matter volume in the cerebellar lobule VI and in the medial prefrontal cortex; (ii) microstructural alterations of white matter in the cerebellum and along the tracts connecting the cerebellum to the striatum and the cortical motor areas; (iii) dysfunction of cerebellar motor pathways to the striatum and the cortical motor areas, as well as abnormal communication between the associative cerebellum (Crus I) and the medial prefrontal cortex. Cerebellar stimulation modulated communication within the motor and associative cerebellar networks, and tended to restore this communication to the level observed in healthy controls.Discussion:Patients with PRRT2-related dyskinesia have converging structural alterations of the motor cerebellum and related pathways with a dysfunction of cerebellar output towards the cerebello-thalamo-striato-cortical network. We hypothesize that abnormal cerebellar output is the primary dysfunction in patients with a PRRT2 pathogenic variant, resulting in striatal dysregulation and paroxysmal dyskinesia. More broadly, striatal dysfunction in paroxysmal dyskinesia might be secondary to aberrant cerebellar output transmitted by thalamic relays in certain disorders.Clinical trial number:NCT03481491 (https://ichgcp.net/clinical-trials-registry/NCT03481491)
Collapse
|
24
|
De Icco R, Tassorelli C. Headache in 2021: clinical, biological, and genetic advances. Lancet Neurol 2021; 21:6-8. [PMID: 34942139 DOI: 10.1016/s1474-4422(21)00425-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Roberto De Icco
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Cristina Tassorelli
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| |
Collapse
|