1
|
Sarró C, Stalin C, Gutierrez-Quintana R, Cloquell A. Clinical characterization of a novel episodic ataxia in young working Cocker Spaniels. J Vet Intern Med 2025; 39:e17268. [PMID: 39715410 DOI: 10.1111/jvim.17268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Episodic ataxias (EAs) are a rare group of paroxysmal movement disorders (PMD) described in human medicine with only one suspected case described in veterinary literature. HYPOTHESIS/OBJECTIVES This study aimed to provide clinical description of a suspected primary EA in working Cocker Spaniel (WCS) dogs. ANIMALS Seven WCS dogs with suspected primary EA. METHODS Descriptive, retrospecitve, multicenter study. Clinical signs, video footage, investigations, treatment, and outcome were reviewed. Owners of affected dogs were invited to complete a questionnaire. RESULTS The mean age at clinical onset was 4 months. Signs were acute and included episodic body swaying, titubation, cerebellar ataxia, wide-base stance, and hypermetria, all while mentation remained unaltered. Neither autonomic nor vestibular signs nor hyperkinetic movements were observed. Duration of episodes ranged from 30 minutes up to 24 hours, and their frequency varied from weekly to once every 5 months. When investigations were performed, results revealed no abnormalities except for 1 dog that had increased gluten antibody titers. None of the dogs deteriorated, and in dogs with available follow-up (5/7) the frequency of episodes decreased or completely resolved, from which the majority (4/5) received gluten-free diet. CONCLUSION AND CLINICAL IMPORTANCE A novel PMD was identified in young WCS, manifesting as EA. The condition is suspected to have a primary (genetic) etiology, although the cause of this manifestation has not yet been identified. Episodic ataxia in our WCS had a good prognosis. Veterinarians must be aware of this presentation, and further investigations are needed to determine the origin of the clinical signs.
Collapse
Affiliation(s)
- Clara Sarró
- Small Animal Hospital, School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Catherine Stalin
- Small Animal Hospital, School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
- Moorview Referrals, Cramlington, United Kingdom
| | | | - Ana Cloquell
- Small Animal Hospital, School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Spoto G, Ceraolo G, Butera A, Di Rosa G, Nicotera AG. Exploring the Genetic Landscape of Chorea in Infancy and Early Childhood: Implications for Diagnosis and Treatment. Curr Issues Mol Biol 2024; 46:5632-5654. [PMID: 38921008 PMCID: PMC11202702 DOI: 10.3390/cimb46060337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024] Open
Abstract
Chorea is a hyperkinetic movement disorder frequently observed in the pediatric population, and, due to advancements in genetic techniques, an increasing number of genes have been associated with this disorder. In genetic conditions, chorea may be the primary feature of the disorder, or be part of a more complex phenotype characterized by epileptic encephalopathy or a multisystemic syndrome. Moreover, it can appear as a persistent disorder (chronic chorea) or have an episodic course (paroxysmal chorea). Managing chorea in childhood presents challenges due to its varied clinical presentation, often involving a spectrum of hyperkinetic movement disorders alongside neuropsychiatric and multisystemic manifestations. Furthermore, during infancy and early childhood, transient motor phenomena resembling chorea occurring due to the rapid nervous system development during this period can complicate the diagnosis. This review aims to provide an overview of the main genetic causes of pediatric chorea that may manifest during infancy and early childhood, focusing on peculiarities that can aid in differential diagnosis among different phenotypes and discussing possible treatment options.
Collapse
Affiliation(s)
- Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Biomedical Sciences, Dental Sciences & Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy;
| | - Graziana Ceraolo
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Ambra Butera
- Unit of Child Neurology and Psychiatry, Department of Chemical, Biological, Farmaceutical & Environmental Science, University of Messina, 98125 Messina, Italy;
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Biomedical Sciences, Dental Sciences & Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy;
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Maternal-Infantile Department, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
3
|
Shambetova C, Klein C. Genetic testing for non-parkinsonian movement disorders: Navigating the diagnostic maze. Parkinsonism Relat Disord 2024; 121:106033. [PMID: 38429185 DOI: 10.1016/j.parkreldis.2024.106033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/03/2024]
Abstract
Genetic testing has become a valuable diagnostic tool for movement disorders due to substantial advancements in understanding their genetic basis. However, the heterogeneity of movement disorders poses a significant challenge, with many genes implicated in different subtypes. This paper aims to provide a neurologist's perspective on approaching patients with hereditary hyperkinetic disorders with a focus on select forms of dystonia, paroxysmal dyskinesia, chorea, and ataxia. Age at onset, initial symptoms, and their severity, as well as the presence of any concurrent neurological and non-neurological features, contribute to the individual clinical profiles of hereditary non-parkinsonian movement disorders, aiding in the selection of appropriate genetic testing strategies. There are also more specific diagnostic clues that may facilitate the decision-making process and may be highly specific for certain conditions, such as diurnal fluctuations and l-dopa response in dopa-responsive dystonia, and triggering factors, duration and frequency of attacks in paroxysmal dyskinesia. While the genetic and mutational spectrum across non-parkinsonian movement disorders is broad, certain groups of diseases tend to be associated with specific types of pathogenic variants, such as repeat expansions in many of the ataxias. Some of these pathogenic variants cannot be detected by standard methods, such as panel or exome sequencing, but require the investigation of intronic regions for repeat expansions, such as Friedreich's or FGF14-linked ataxia. With our advancing knowledge of the genetic underpinnings of movement disorders, the incorporation of precise and personalized diagnostic strategies can enhance patient care, prognosis, and the application and development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Cholpon Shambetova
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany; Center for Continuing and Distance Learning, I. K. Akhunbaev Kyrgyz State Medical Academy, Bishkek, Kyrgyzstan
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
4
|
Thomsen M, Lange LM, Zech M, Lohmann K. Genetics and Pathogenesis of Dystonia. ANNUAL REVIEW OF PATHOLOGY 2024; 19:99-131. [PMID: 37738511 DOI: 10.1146/annurev-pathmechdis-051122-110756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Dystonia is a clinically and genetically highly heterogeneous neurological disorder characterized by abnormal movements and postures caused by involuntary sustained or intermittent muscle contractions. A number of groundbreaking genetic and molecular insights have recently been gained. While they enable genetic testing and counseling, their translation into new therapies is still limited. However, we are beginning to understand shared pathophysiological pathways and molecular mechanisms. It has become clear that dystonia results from a dysfunctional network involving the basal ganglia, cerebellum, thalamus, and cortex. On the molecular level, more than a handful of, often intertwined, pathways have been linked to pathogenic variants in dystonia genes, including gene transcription during neurodevelopment (e.g., KMT2B, THAP1), calcium homeostasis (e.g., ANO3, HPCA), striatal dopamine signaling (e.g., GNAL), endoplasmic reticulum stress response (e.g., EIF2AK2, PRKRA, TOR1A), autophagy (e.g., VPS16), and others. Thus, different forms of dystonia can be molecularly grouped, which may facilitate treatment development in the future.
Collapse
Affiliation(s)
- Mirja Thomsen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| | - Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| |
Collapse
|
5
|
Olszewska DA, Shetty A, Rajalingam R, Rodriguez-Antiguedad J, Hamed M, Huang J, Breza M, Rasheed A, Bahr N, Madoev H, Westenberger A, Trinh J, Lohmann K, Klein C, Marras C, Waln O. Genotype-phenotype relations for episodic ataxia genes: MDSGene systematic review. Eur J Neurol 2023; 30:3377-3393. [PMID: 37422902 DOI: 10.1111/ene.15969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Most episodic ataxias (EA) are autosomal dominantly inherited and characterized by recurrent attacks of ataxia and other paroxysmal and non-paroxysmal features. EA is often caused by pathogenic variants in the CACNA1A, KCNA1, PDHA1, and SLC1A3 genes, listed as paroxysmal movement disorders (PxMD) by the MDS Task Force on the Nomenclature of Genetic Movement Disorders. Little is known about the genotype-phenotype correlation of the different genetic EA forms. METHODS We performed a systematic review of the literature to identify individuals affected by an episodic movement disorder harboring pathogenic variants in one of the four genes. We applied the standardized MDSGene literature search and data extraction protocol to summarize the clinical and genetic features. All data are available via the MDSGene protocol and platform on the MDSGene website (https://www.mdsgene.org/). RESULTS Information on 717 patients (CACNA1A: 491, KCNA1: 125, PDHA1: 90, and SLC1A3: 11) carrying 287 different pathogenic variants from 229 papers was identified and summarized. We show the profound phenotypic variability and overlap leading to the absence of frank genotype-phenotype correlation aside from a few key 'red flags'. CONCLUSION Given this overlap, a broad approach to genetic testing using a panel or whole exome or genome approach is most practical in most circumstances.
Collapse
Affiliation(s)
- Diana Angelika Olszewska
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Aakash Shetty
- Department of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Rajasumi Rajalingam
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Jon Rodriguez-Antiguedad
- Movement Disorders Unit and Institut d'Investigacions Biomediques-Sant Pau, Hospital Sant Pau, Barcelona, Spain
| | - Moath Hamed
- Department of Neurosciences, NYP Brooklyn Methodist Hospital, Brooklyn, New York, USA
| | - Jana Huang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | | | - Ashar Rasheed
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Natascha Bahr
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Harutyan Madoev
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Connie Marras
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Olga Waln
- Houston Methodist Neurological Institute, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
6
|
Menon PJ, Nilles C, Silveira‐Moriyama L, Yuan R, de Gusmao CM, Münchau A, Carecchio M, Grossman S, Grossman G, Méneret A, Roze E, Pringsheim T. Scoping Review on ADCY5-Related Movement Disorders. Mov Disord Clin Pract 2023; 10:1048-1059. [PMID: 37476318 PMCID: PMC10354615 DOI: 10.1002/mdc3.13796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 07/22/2023] Open
Abstract
Background Adenylyl cyclase 5 (ADCY5)-related movement disorder (ADCY5-RMD) is a rare, childhood-onset disease resulting from pathogenic variants in the ADCY5 gene. The clinical features, diagnostic options, natural history, and treatments for this disease are poorly characterized and have never been established through a structured approach. Objective This scoping review attempts to summarize all available clinical literature on ADCY5-RMD. Methods Eighty-seven articles were selected for inclusion in this scoping review. The majority of articles identified were case reports or case series. Results These articles demonstrate that patients with ADCY5-RMD suffer from permanent and/ or paroxysmal hyperkinetic movements. The paroxysmal episodes can be worsened by environmental triggers, in particular the sleep-wake transition phase in the early morning. Occurrence of nocturnal paroxysmal dyskinesias and perioral twitches are highly suggestive of the diagnosis when present. In the majority of patients intellectual capacity is preserved. ADCY5-RMD is considered a non-progressive disorder, with inter-individual variations in evolution with aging. Somatic mosaicism, mode of inheritance and the location of the mutation within the protein can influence phenotype. Conclusions The current evidence for therapeutic options for ADCY5-RMD is limited: caffeine, benzodiazepines and deep brain stimulation have been consistently reported to be useful in case reports and case series.
Collapse
Affiliation(s)
- Poornima Jayadev Menon
- Sorbonne University, APHP—Salpêtrière Hospital, CNRS, INSERM, Paris Brain InstituteParisFrance
- School of Postgraduate StudiesRoyal College of Surgeons in IrelandDublinIreland
| | - Christelle Nilles
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryABCanada
| | | | - Ruiyi Yuan
- Sorbonne University, APHP—Salpêtrière Hospital, CNRS, INSERM, Paris Brain InstituteParisFrance
| | - Claudio M. de Gusmao
- Department of NeurologyUniversity of Campinas (UNICAMP)CampinasBrazil
- Boston Children's HospitalBostonMAUSA
| | | | - Miryam Carecchio
- Center for the Study of Neurodegeneration (CESNE) and Department of NeuroscienceUniversity of PaduaPaduaItaly
| | | | | | - Aurélie Méneret
- Sorbonne University, APHP—Salpêtrière Hospital, CNRS, INSERM, Paris Brain InstituteParisFrance
| | - Emmanuel Roze
- Sorbonne University, APHP—Salpêtrière Hospital, CNRS, INSERM, Paris Brain InstituteParisFrance
| | - Tamara Pringsheim
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryABCanada
| |
Collapse
|
7
|
Christen M, Gutierrez-Quintana R, James M, Faller KME, Lowrie M, Rusbridge C, Bossens K, Mellersh C, Pettitt L, Heinonen T, Lohi H, Jagannathan V, Leeb T. A TNR Frameshift Variant in Weimaraner Dogs with an Exercise-Induced Paroxysmal Movement Disorder. Mov Disord 2023; 38:1094-1099. [PMID: 37023257 DOI: 10.1002/mds.29391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Some paroxysmal movement disorders remain without an identified genetic cause. OBJECTIVES The aim was to identify the causal genetic variant for a paroxysmal dystonia-ataxia syndrome in Weimaraner dogs. METHODS Clinical and diagnostic investigations were performed. Whole genome sequencing of one affected dog was used to identify private homozygous variants against 921 control genomes. RESULTS Four Weimaraners were presented for episodes of abnormal gait. Results of examinations and diagnostic investigations were unremarkable. Whole genome sequencing revealed a private frameshift variant in the TNR (tenascin-R) gene in an affected dog, XM_038542431.1:c.831dupC, which is predicted to truncate more than 75% of the open read frame. Genotypes in a cohort of 4 affected and 70 unaffected Weimaraners showed perfect association with the disease phenotype. CONCLUSIONS We report the association of a TNR variant with a paroxysmal dystonia-ataxia syndrome in Weimaraners. It might be relevant to include sequencing of this gene in diagnosing humans with unexplained paroxysmal movement disorders. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Matthias Christen
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rodrigo Gutierrez-Quintana
- Small Animal Hospital, School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | | | - Kiterie M E Faller
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Roslin, United Kingdom
| | - Mark Lowrie
- Dovecote Veterinary Hospital, Derby, United Kingdom
| | - Clare Rusbridge
- School of Veterinary Medicine, University of Surrey, Surrey, United Kingdom
| | - Kenny Bossens
- Nesto Veterinary Referral Center Orion, Herentals, Belgium
| | - Cathryn Mellersh
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Louise Pettitt
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Tiina Heinonen
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki, and Folkhälsan Research Center, Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki, and Folkhälsan Research Center, Helsinki, Finland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Sarıgecılı E, Anlas O. A Rare Cause of Paroxysmal Movement Disorder Associated with TBC1D24 Gene Mutation in Two Siblings. Ann Indian Acad Neurol 2023; 26:290-293. [PMID: 37538433 PMCID: PMC10394464 DOI: 10.4103/aian.aian_465_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 08/05/2023] Open
Affiliation(s)
- Esra Sarıgecılı
- Department of Pediatric Neurology, University of Health Sciences Adana City Training and Research Hospital, Adana, Turkey
| | - Ozlem Anlas
- Department of Medical Genetics, University of Health Sciences Adana City Training and Research Hospital, Adana, Turkey
| |
Collapse
|
9
|
Cincotta MC, Walker RH. Diagnostic Uncertainties: Chorea. Semin Neurol 2023; 43:65-80. [PMID: 36882120 DOI: 10.1055/s-0043-1763506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Chorea is a hyperkinetic movement disorder with a multitude of potential etiologies, both acquired and inherited. Although the differential diagnosis for new-onset chorea is extensive, there are often clues in the history, exam, and basic testing that can help to narrow the options. Evaluation for treatable or reversible causes should take priority, as rapid diagnosis can lead to more favorable outcomes. While Huntington's disease is most common genetic cause of chorea, multiple phenocopies also exist and should be considered if Huntington gene testing is negative. The decision of what additional genetic testing to pursue should be based on both clinical and epidemiological factors. The following review provides an overview of the many possible etiologies as well as a practical approach for a patient presenting with new-onset chorea.
Collapse
Affiliation(s)
- Molly C Cincotta
- Department of Neurology, Temple University, Philadelphia, Pennsylvania
| | - Ruth H Walker
- Department of Neurology, James J. Peters Veterans Affairs Medical Center and Mount Sinai School of Medicine, Bronx, New York
| |
Collapse
|
10
|
Garg D, Mohammad S, Shukla A, Sharma S. Genetic Links to Episodic Movement Disorders: Current Insights. Appl Clin Genet 2023; 16:11-30. [PMID: 36883047 PMCID: PMC9985884 DOI: 10.2147/tacg.s363485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Episodic or paroxysmal movement disorders (PxMD) are conditions, which occur episodically, are transient, usually have normal interictal periods, and are characterized by hyperkinetic disorders, including ataxia, chorea, dystonia, and ballism. Broadly, these comprise paroxysmal dyskinesias (paroxysmal kinesigenic and non-kinesigenic dyskinesia [PKD/PNKD], paroxysmal exercise-induced dyskinesias [PED]) and episodic ataxias (EA) types 1-9. Classification of paroxysmal dyskinesias has traditionally been clinical. However, with advancement in genetics and the discovery of the molecular basis of several of these disorders, it is becoming clear that phenotypic pleiotropy exists, that is, the same variant may give rise to a variety of phenotypes, and the classical understanding of these disorders requires a new paradigm. Based on molecular pathogenesis, paroxysmal disorders are now categorized as synaptopathies, transportopathies, channelopathies, second-messenger related disorders, mitochondrial or others. A genetic paradigm also has an advantage of identifying potentially treatable disorders, such as glucose transporter 1 deficiency syndromes, which necessitates a ketogenic diet, and ADCY5-related disorders, which may respond to caffeine. Clues for a primary etiology include age at onset below 18 years, presence of family history and fixed triggers and attack duration. Paroxysmal movement disorder is a network disorder, with both the basal ganglia and the cerebellum implicated in pathogenesis. Abnormalities in the striatal cAMP turnover pathway may also be contributory. Although next-generation sequencing has restructured the approach to paroxysmal movement disorders, the genetic underpinnings of several entities remain undiscovered. As more genes and variants continue to be reported, these will lead to enhanced understanding of pathophysiological mechanisms and precise treatment.
Collapse
Affiliation(s)
- Divyani Garg
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Shekeeb Mohammad
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College and Hospital, Manipal, India
| | - Suvasini Sharma
- Department of Pediatrics (Neurology Division), Lady Hardinge Medical College and Kalawati Saran Hospital, New Delhi, India
| |
Collapse
|
11
|
Erro R, Magrinelli F, Bhatia KP. Paroxysmal movement disorders: Paroxysmal dyskinesia and episodic ataxia. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:347-365. [PMID: 37620078 DOI: 10.1016/b978-0-323-98817-9.00033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Paroxysmal movement disorders have traditionally been classified into paroxysmal dyskinesia (PxD), which consists in attacks of involuntary movements (mainly dystonia and/or chorea) without loss of consciousness, and episodic ataxia (EA), which features spells of cerebellar dysfunction with or without interictal neurological manifestations. In this chapter, PxD will be discussed first according to the trigger-based classification, thus reviewing clinical, genetic, and molecular features of paroxysmal kinesigenic dyskinesia, paroxysmal nonkinesigenic dyskinesia, and paroxysmal exercise-induced dyskinesia. EA will be presented thereafter according to their designated gene or genetic locus. Clinicogenetic similarities among paroxysmal movement disorders have progressively emerged, which are herein highlighted along with growing evidence that their pathomechanisms overlap those of epilepsy and migraine. Advances in our comprehension of the biological pathways underlying paroxysmal movement disorders, which involve ion channels as well as proteins associated with the vesical synaptic cycle or implicated in neuronal energy metabolism, may represent the cornerstone for defining a shared pathophysiologic framework and developing target-specific therapies.
Collapse
Affiliation(s)
- Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Salerno, Italy
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
12
|
Qiu Y, O’Neill N, Maffei B, Zourray C, Almacellas-Barbanoj A, Carpenter JC, Jones SP, Leite M, Turner TJ, Moreira FC, Snowball A, Shekh-Ahmad T, Magloire V, Barral S, Kurian MA, Walker MC, Schorge S, Kullmann DM, Lignani G. On-demand cell-autonomous gene therapy for brain circuit disorders. Science 2022; 378:523-532. [PMID: 36378958 PMCID: PMC7613996 DOI: 10.1126/science.abq6656] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Several neurodevelopmental and neuropsychiatric disorders are characterized by intermittent episodes of pathological activity. Although genetic therapies offer the ability to modulate neuronal excitability, a limiting factor is that they do not discriminate between neurons involved in circuit pathologies and "healthy" surrounding or intermingled neurons. We describe a gene therapy strategy that down-regulates the excitability of overactive neurons in closed loop, which we tested in models of epilepsy. We used an immediate early gene promoter to drive the expression of Kv1.1 potassium channels specifically in hyperactive neurons, and only for as long as they exhibit abnormal activity. Neuronal excitability was reduced by seizure-related activity, leading to a persistent antiepileptic effect without interfering with normal behaviors. Activity-dependent gene therapy is a promising on-demand cell-autonomous treatment for brain circuit disorders.
Collapse
Affiliation(s)
- Yichen Qiu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Nathanael O’Neill
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Benito Maffei
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Clara Zourray
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Developmental Neurosciences, Zayed Centre for Research Into Rare Disease in Children, GOS−Institute of Child Health, University College London, London, UK
| | - Amanda Almacellas-Barbanoj
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jenna C. Carpenter
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Steffan P. Jones
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Marco Leite
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Thomas J. Turner
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Francisco C. Moreira
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Albert Snowball
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Tawfeeq Shekh-Ahmad
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Vincent Magloire
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Serena Barral
- Department of Developmental Neurosciences, Zayed Centre for Research Into Rare Disease in Children, GOS−Institute of Child Health, University College London, London, UK
| | - Manju A. Kurian
- Department of Developmental Neurosciences, Zayed Centre for Research Into Rare Disease in Children, GOS−Institute of Child Health, University College London, London, UK
- Department of Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Matthew C. Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Stephanie Schorge
- Department of Neuroscience, Physiology and Pharmacology University College London, London, UK
| | - Dimitri M. Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
13
|
Agarwal PA, Kuipers DJS, Fevga C, Agrawal S, Ravat SH, Breedveld GJ, Sethi K, Bonifati V. Isolated Paroxysmal Non-kinesigenic Dystonia Associated with Homozygous PDHB Variant in an Indian Family. Mov Disord 2022; 37:2166-2167. [PMID: 35838632 DOI: 10.1002/mds.29158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/07/2022] Open
Affiliation(s)
- Pankaj A Agarwal
- Movement Disorders Clinic, Department of Neurology, Global Hospitals, Mumbai, India.,Department of Neurology, Global Hospitals, Mumbai, India.,Department of Neurology, Seth GS Medical College and KEM Hospital, Mumbai, India
| | - Demy J S Kuipers
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Christina Fevga
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Shruti Agrawal
- Department of Neurology, Seth GS Medical College and KEM Hospital, Mumbai, India
| | - Sangeeta H Ravat
- Department of Neurology, Global Hospitals, Mumbai, India.,Department of Neurology, Seth GS Medical College and KEM Hospital, Mumbai, India
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Kapil Sethi
- Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
14
|
Chen F, Zhang S, Liu T, Yuan L, Wang Y, Zhang G, Liang S. Preliminary study on pathogenic mechanism of first Chinese family with PNKD. Transl Neurosci 2022; 13:125-133. [PMID: 35795196 PMCID: PMC9186512 DOI: 10.1515/tnsci-2022-0222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 11/15/2022] Open
Abstract
Background The first Chinese family with paroxysmal non-kinesigenic dystonia (PNKD) was confirmed to harbour a PNKD mutation. However, the pathogenic mechanism of the PNKD-causing gene mutation was unclear. Methods Wild-type and mutant PNKD-L plasmids were prepared and transfected into the C6 cell line to study the distribution and stability of PNKD protein in C6 cells and its effect on the glutathione content. The blood and cerebrospinal fluid (CSF) of 3 PNKD patients and 3 healthy controls were collected. The differentially expressed proteins were identified using isobaric tags for relative and absolute quantitation. Furthermore, Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analyses were performed, and the protein–protein interaction network was constructed. Results Wild-type PNKD protein was mainly distributed in the membranes, whereas mutant PNKD protein was distributed throughout the C6 cells. After transfection with mutant PNKD-L plasmid, the glutathione content decreased significantly in C6 cells; the stability of the mutant PNKD protein was significantly low. There were 172 and 163 differentially expressed proteins in CSF and plasma, respectively, of PNKD patients and healthy controls. For these proteins, blood microparticle and complex activation (classical pathway) were the common GO enrichment term, and complex and coordination cascade pathway were the common KEGG enrichment pathway. Recombinant mothers against decapentaplegic homolog 4 (SMAD4) was one of the differentially expressed proteins; it exhibited a relationship with the aforementioned enrichment GO terms and KEGG pathway. Conclusion PNKD protein was mainly distributed in cell membranes. PNKD-L mutation affected subcellular localisation, PNKD protein stability, and glutathione content. SMAD4 was found to be a potential biomarker for PNKD diagnosis.
Collapse
Affiliation(s)
- Feng Chen
- Functional Neurosurgery Department, National Children’s Health Center of China, Beijing Children’s Hospital, Capital Medical University , No. 56, Nanlishi Road, Xicheng District , Beijing , 100045 , China
| | - Shaohui Zhang
- Neurosurgery Department, PLA General Hospital , No. 28 Fuxing Road, Haidian District , Beijing , 100853 , China
| | - Tinghong Liu
- Functional Neurosurgery Department, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China , No. 56, Nanlishi Road, Xicheng District , Beijing , 100045 , China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China , No. 56, Nanlishi Road, Xicheng District , Beijing , 100045 , China
| | - Liu Yuan
- Functional Neurosurgery Department, National Children’s Health Center of China, Beijing Children’s Hospital, Capital Medical University , No. 56, Nanlishi Road, Xicheng District , Beijing , 100045 , China
| | - Yangshuo Wang
- Functional Neurosurgery Department, National Children’s Health Center of China, Beijing Children’s Hospital, Capital Medical University , No. 56, Nanlishi Road, Xicheng District , Beijing , 100045 , China
| | - Guojun Zhang
- Functional Neurosurgery Department, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China , No. 56, Nanlishi Road, Xicheng District , Beijing , 100045 , China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China , No. 56, Nanlishi Road, Xicheng District , Beijing , 100045 , China
| | - Shuli Liang
- Functional Neurosurgery Department, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China , No. 56, Nanlishi Road, Xicheng District , Beijing , 100045 , China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China , No. 56, Nanlishi Road, Xicheng District , Beijing , 100045 , China
| |
Collapse
|
15
|
Keros S, Heim J, Hakami W, Zohar‐Dayan E, Ben‐Zeev B, Grinspan Z, Kruer MC, Meredith AL. Lisdexamfetamine Therapy in Paroxysmal Non-kinesigenic Dyskinesia Associated with the KCNMA1-N999S Variant. Mov Disord Clin Pract 2022; 9:229-235. [PMID: 35141357 PMCID: PMC8810426 DOI: 10.1002/mdc3.13394] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/04/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND KCNMA1-linked channelopathy is a rare movement disorder first reported in 2005. Paroxysmal non-kinesigenic dyskinesia (PNKD) in KCNMA1-linked channelopathy is the most common symptom in patients harboring the KCNMA1-N999S mutation. PNKD episodes occur up to hundreds of times daily with significant morbidity and limited treatment options, often in the context of epilepsy. CASES We report 6 cases with the KCNMA1-N999S variant treated with lisdexamfetamine (0.7-1.25 mg/kg/day), a pro-drug of dextroamphetamine. Data were collected retrospectively from interviews and chart review. Parent-reported daily PNKD episode counts were reduced under treatment, ranging from a 10-fold decrease to complete resolution. CONCLUSION Our findings suggest that lisdexamfetamine is an effective therapy for PNKD3 (KCNMA1-associated PNKD). Treatment produced dramatic reductions in debilitating dyskinesia episodes, without provocation or exacerbation of other KCNMA1-associated symptoms such as seizures.
Collapse
Affiliation(s)
- Sotirios Keros
- Division of Neurology, Department of PediatricsWeill Cornell Medical CollegeNew YorkNew YorkUSA
- KCNMA1 Channelopathy International Advocacy Foundation (KCIAF)New YorkNew YorkUSA
| | - Jennifer Heim
- Pediatric Movement Disorders ProgramBarrow Neurological Institute, Phoenix Children's HospitalPhoenixArizonaUSA
| | - Wejdan Hakami
- Pediatric Movement Disorders ProgramBarrow Neurological Institute, Phoenix Children's HospitalPhoenixArizonaUSA
| | - Efrat Zohar‐Dayan
- Pediatric Neurology Unit, Edmond & Lily Safra Children's HospitalChaim Sheba Medical CenterTel HashomerIsrael
| | - Bruria Ben‐Zeev
- Pediatric Neurology Unit, Edmond & Lily Safra Children's HospitalChaim Sheba Medical CenterTel HashomerIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Zach Grinspan
- Division of Neurology, Department of PediatricsWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Michael C. Kruer
- KCNMA1 Channelopathy International Advocacy Foundation (KCIAF)New YorkNew YorkUSA
- Pediatric Movement Disorders ProgramBarrow Neurological Institute, Phoenix Children's HospitalPhoenixArizonaUSA
- Department of Child Health, Neurology, and Cellular Molecular Medicine and Program in GeneticsUniversity of Arizona College of MedicinePhoenixArizonaUSA
| | - Andrea L. Meredith
- KCNMA1 Channelopathy International Advocacy Foundation (KCIAF)New YorkNew YorkUSA
- Department of PhysiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|