1
|
Shi Y, Bao L, Li Y, Ou D, Li J, Liu X, Deng N, Deng C, Huang X, Zhang W, Ding H. Multi-omics combined to investigate potential druggable therapeutic targets for stroke: A systematic Mendelian randomization study and transcriptome verification. J Affect Disord 2024; 366:196-209. [PMID: 39214372 DOI: 10.1016/j.jad.2024.08.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/15/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Stroke is a highly prevalent and disabling disease whose disease mechanisms are not fully understood. The discovery of disease-associated proteins with genetic evidence of pathogenicity provides an opportunity to identify new therapeutic targets. METHOD We examined the observed and causal associations of thousands of plasma and inflammatory proteins that were measured using affinity-based proteomic assays. First, we pooled >3000 relevant proteins using a fixed-effects meta-analysis of 2 population-based studies involving 48,383 participants, then investigated the causal effects of stroke and its subtype-associated proteins by forward Mendelian randomization using cis-protein quantitative locus genetic tools identified from genome-wide association studies of these >48,000 individuals. To improve the accuracy of causal estimation, we implemented a systematic Mendelian randomization model that accounts for cascading imbalances between instruments and tested the robustness of causal estimation through multi-method analyses. To further validate the hypothesis that ginsenoside Rg1 monomer acts on the five protein targets screened for drug-targeted regulation, we conducted a comparative analysis of the mRNA (gene) expression levels of a limited number of genes in the brain tissues of different groups of SD rats. The druggability of the candidate proteins was investigated and the mechanism of action and potential targeting side effects were explored by Phenome-wide MR. RESULTS Six circulating proteins were identified to have a significant genetic association with stroke (PFDR < 0.05). For example, in patients with cardioembolic stroke, higher genetically predicted APRT was associated with a lower risk of cardioembolic stroke (ORivw [95 % CI] = 0.641 [0.517, 0.795]; P = 5.25 × 10-5, ORSMR [95 % CI] = 0.572, [0.397, 0.825], PSMR = 0.003). Mediation analyses suggested that atrial fibrillation, angina pectoris, and heart failure may mediate the association of CD40L, LIFR, and UPA with stroke. Molecular docking revealed promising interactions between the identified proteins and glycosides. Transcriptomic sequencing in animal models indicated that ginsenoside Rg1 may act through APRT, IL15RA, and VSIR pathways, with APRT showing significant variability in mRNA sequencing expression. Phenome-wide MR of the six target proteins showed an overwhelming predominance of PFDR > 0.05, indicating less toxicity. CONCLUSIONS The present study provides genetic evidence to support the potential efficacy of targeting the three druggable protein targets for the treatment of stroke. This is achieved by triangulating population genomic and proteomic data. Furthermore, the study validates the pathway mechanisms by which APRT, IL15RA, and VSIR dock ginsenoside Rg1 in animal models. This will help to prioritize stroke drug development.
Collapse
Affiliation(s)
- Yiming Shi
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Le Bao
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Yanling Li
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Dian Ou
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Jiating Li
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Xiaodan Liu
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Nujiao Deng
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Changqing Deng
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Xiaoping Huang
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China.
| | - Wei Zhang
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China.
| | - Huang Ding
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China.
| |
Collapse
|
2
|
Zhang J, Jiang X, Pang B, Li D, Kang L, Zhou T, Wang B, Zheng L, Zhou CM, Zhang L. Association between tryptophan concentrations and the risk of developing cardiovascular diseases: a systematic review and meta-analysis. Nutr Metab (Lond) 2024; 21:82. [PMID: 39407297 PMCID: PMC11476920 DOI: 10.1186/s12986-024-00857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Metabolic regulation of various amino acids have been proven to be effective in preventing cardiovascular disease (CVD). The impact of tryptophan, an essential amino acid, on the risk of developing CVD has not been fully elucidated. AIMS The aim of this meta-analysis was to systematically review evidence of the effects of tryptophan on CVD risk. METHODS The PubMed, Embase, Web of Science, Cochrane Library, and China National Knowledge Infrastructure (CNKI) databases were searched to collect relevant trials from inception to August 2024. The means and hazard ratios (HRs) were extracted and pooled. Subgroup analysis was performed to identify pooled effect estimates, and sensitivity analysis was conducted to assess the robustness of the pooled estimates. RESULTS Data were collected from 34,370 people under follow-up for CVD events in 13 studies, including cohort studies and case-control studies. They were categorized into three groups on the basis of sample type and indicators: the plasma tryptophan level group, the plasma tryptophan CVD hazard group, and the urinary tryptophan CVD hazard group. The CVD included in this study were coronary artery disease, heart failure, and peripheral artery disease. Twelve studies on plasma tryptophan were meta-analyzed. The plasma tryptophan levels in CVD patients were generally lower than those in individuals without CVD (SMD = -8.57, 95%CI (-15.77, -1.37), P = 0.02). Decreased circulating tryptophan levels are associated with cardiovascular disease risk (HR = 0.85, 95%CI (0.78, 0.92), P < 0.00001). CONCLUSIONS Decreased circulating tryptophan levels are associated with an increased risk of CVD events. Intervention in circulating tryptophan levels may be indicated to help prevent CVD.
Collapse
Affiliation(s)
- Jing Zhang
- Department of General Surgery, Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xia Jiang
- Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bo Pang
- Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dongyun Li
- Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Longfei Kang
- Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tengda Zhou
- Department of General Surgery, Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Boyu Wang
- Department of General Surgery, Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lihua Zheng
- Department of General Surgery, Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chuan-Min Zhou
- Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Lei Zhang
- Department of General Surgery, Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
3
|
Li Y, Wu C, Yang R, Tang J, Li Z, Yi X, Fan Z. Application and Development of Cell Membrane Functionalized Biomimetic Nanoparticles in the Treatment of Acute Ischemic Stroke. Int J Mol Sci 2024; 25:8539. [PMID: 39126107 PMCID: PMC11313357 DOI: 10.3390/ijms25158539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Ischemic stroke is a serious neurological disease involving multiple complex physiological processes, including vascular obstruction, brain tissue ischemia, impaired energy metabolism, cell death, impaired ion pump function, and inflammatory response. In recent years, there has been significant interest in cell membrane-functionalized biomimetic nanoparticles as a novel therapeutic approach. This review comprehensively explores the mechanisms and importance of using these nanoparticles to treat acute ischemic stroke with a special emphasis on their potential for actively targeting therapies through cell membranes. We provide an overview of the pathophysiology of ischemic stroke and present advances in the study of biomimetic nanoparticles, emphasizing their potential for drug delivery and precision-targeted therapy. This paper focuses on bio-nanoparticles encapsulated in bionic cell membranes to target ischemic stroke treatment. It highlights the mechanism of action and research progress regarding different types of cell membrane-functionalized bi-onic nanoparticles such as erythrocytes, neutrophils, platelets, exosomes, macrophages, and neural stem cells in treating ischemic stroke while emphasizing their potential to improve brain tissue's ischemic state and attenuate neurological damage and dysfunction. Through an in-depth exploration of the potential benefits provided by cell membrane-functionalized biomimetic nanoparticles to improve brain tissue's ischemic state while reducing neurological injury and dysfunction, this study also provides comprehensive research on neural stem cells' potential along with that of cell membrane-functionalized biomimetic nanoparticles to ameliorate neurological injury and dysfunction. However, it is undeniable that there are still some challenges and limitations in terms of biocompatibility, safety, and practical applications for clinical translation.
Collapse
Affiliation(s)
- Ying Li
- Xiamen Key Laboratory of Traditional Chinese Bio-Engineering, Xiamen Medical College, Xiamen 361021, China
| | - Chuang Wu
- Xiamen Key Laboratory of Traditional Chinese Bio-Engineering, Xiamen Medical College, Xiamen 361021, China
| | - Rui Yang
- Xiamen Key Laboratory of Traditional Chinese Bio-Engineering, Xiamen Medical College, Xiamen 361021, China
| | - Jiannan Tang
- Xiamen Key Laboratory of Traditional Chinese Bio-Engineering, Xiamen Medical College, Xiamen 361021, China
| | - Zhanqing Li
- Xiamen Key Laboratory of Traditional Chinese Bio-Engineering, Xiamen Medical College, Xiamen 361021, China
| | - Xue Yi
- Xiamen Key Laboratory of Traditional Chinese Bio-Engineering, Xiamen Medical College, Xiamen 361021, China
| | - Zhongxiong Fan
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
4
|
Fang S, Zhang W. Heart-Brain Axis: A Narrative Review of the Interaction between Depression and Arrhythmia. Biomedicines 2024; 12:1719. [PMID: 39200183 PMCID: PMC11351688 DOI: 10.3390/biomedicines12081719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 09/02/2024] Open
Abstract
Arrhythmias and depression are recognized as diseases of the heart and brain, respectively, and both are major health threats that often co-occur with a bidirectional causal relationship. The autonomic nervous system (ANS) serves as a crucial component of the heart-brain axis (HBA) and the pathway of interoception. Cardiac activity can influence emotional states through ascending interoceptive pathways, while psychological stress can precipitate arrhythmias via the ANS. However, the HBA and interoception frameworks are often considered overly broad, and the precise mechanisms underlying the bidirectional relationship between depression and arrhythmias remain unclear. This narrative review aims to synthesize the existing literature, focusing on the pathological mechanisms of the ANS in depression and arrhythmia while integrating other potential mechanisms to detail heart-brain interactions. In the bidirectional communication between the heart and brain, we emphasize considering various internal factors such as genes, personality traits, stress, the endocrine system, inflammation, 5-hydroxytryptamine, and behavioral factors. Current research employs multidisciplinary knowledge to elucidate heart-brain relationships, and a deeper understanding of these interactions can help optimize clinical treatment strategies. From a broader perspective, this study emphasizes the importance of considering the body as a complex, interconnected system rather than treating organs in isolation. Investigating heart-brain interactions enhance our understanding of disease pathogenesis and advances medical science, ultimately improving human quality of life.
Collapse
Affiliation(s)
- Shuping Fang
- Mental Health Center of West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Wei Zhang
- Mental Health Center of West China Hospital, Sichuan University, Chengdu 610041, China;
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Shen X, Mu X. Systematic Insights into the Relationship between the Microbiota-Gut-Brain Axis and Stroke with the Focus on Tryptophan Metabolism. Metabolites 2024; 14:399. [PMID: 39195495 DOI: 10.3390/metabo14080399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Stroke, as a serious cerebral vascular disease with high incidence and high rates of disability and mortality, has limited therapeutic options due to the narrow time window. Compelling evidence has highlighted the significance of the gut microbiota and gut-brain axis as critical regulatory factors affecting stroke. Along the microbiota-gut-brain axis, tryptophan metabolism further acquires increasing attention for its intimate association with central nervous system diseases. For the purpose of exploring the potential role of tryptophan metabolism in stroke and providing systematic insights into the intricate connection of the microbiota-gut-brain axis with the pathological procedure of stroke, this review first summarized the practical relationship between microbiota and stroke by compiling the latest case-control research. Then, the microbiota-gut-brain axis, as well as its interaction with stroke, were comprehensively elucidated on the basis of the basic anatomical structure and physiological function. Based on the crosstalk of microbiota-gut-brain, we further focused on the tryptophan metabolism from the three major metabolic pathways, namely, the kynurenine pathway, serotonin pathway, and microbial pathway, within the axis. Moreover, the effects of tryptophan metabolism on stroke were appreciated and elaborated here, which is scarcely found in other reviews. Hopefully, the systematic illustration of the mechanisms and pathways along the microbiota-gut-brain axis will inspire more translational research from metabolic perspectives, along with more attention paid to tryptophan metabolism as a promising pharmaceutical target in order to reduce the risk of stroke, mitigate the stroke progression, and ameliorate the stroke prognosis.
Collapse
Affiliation(s)
- Xinyu Shen
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Xiaoqin Mu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| |
Collapse
|
6
|
Saccaro LF, Mallet C, Wullschleger A, Sabé M. Psychiatric manifestations in moyamoya disease: more than a puff of smoke? a systematic review and a case-reports meta-analysis. Front Psychiatry 2024; 15:1371763. [PMID: 38585478 PMCID: PMC10995700 DOI: 10.3389/fpsyt.2024.1371763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Moyamoya disease (MMD) is a life-threatening condition characterized by stenosis of intracranial arteries. Despite the frequency and the impact of psychiatric symptoms on the long-term prognosis and quality of life of MMD patients, no systematic review on this topic exists. Methods This systematic review and meta-analysis included 41 studies (29 being case reports), from PubMed, Scopus, Embase until 27/3/2023, on MMD patients exhibiting psychiatric symptoms. Results Despite a fair average quality of the articles, quantitative synthesis through logistic regression was possible only for case reports, due to heterogeneity between the other studies. Psychosis, the most frequent psychiatric symptom reported in case reports, was more frequent in MMD patients with left hemisphere involvement. Neurological symptoms occurrence increased the odds of MMD diagnosis preceding psychiatric symptoms. Psychiatric symptoms are highly prevalent in MMD patients and are relatively often the only presenting symptoms. Discussion We discuss the diagnostic, therapeutic, and prognostic implications of recognizing and characterizing specific psychiatric symptoms in MMD, outlining preliminary guidelines for targeted pharmacological and psychotherapeutic interventions. Lastly, we outline future research and clinical perspectives, striving to enhance the oft-overlooked psychiatric care for MMD patients and to ameliorate their long-term outcome. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023406303.
Collapse
Affiliation(s)
- Luigi F. Saccaro
- Psychiatry Department, Geneva University Hospital, Geneva, Switzerland
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Clément Mallet
- Psychiatry Department, Geneva University Hospital, Geneva, Switzerland
| | - Alexandre Wullschleger
- Psychiatry Department, Geneva University Hospital, Geneva, Switzerland
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michel Sabé
- Psychiatry Department, Geneva University Hospital, Geneva, Switzerland
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Petruso F, Giff A, Milano B, De Rossi M, Saccaro L. Inflammation and emotion regulation: a narrative review of evidence and mechanisms in emotion dysregulation disorders. Neuronal Signal 2023; 7:NS20220077. [PMID: 38026703 PMCID: PMC10653990 DOI: 10.1042/ns20220077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Emotion dysregulation (ED) describes a difficulty with the modulation of which emotions are felt, as well as when and how these emotions are experienced or expressed. It is a focal overarching symptom in many severe and prevalent neuropsychiatric diseases, including bipolar disorders (BD), attention deficit/hyperactivity disorder (ADHD), and borderline personality disorder (BPD). In all these disorders, ED can manifest through symptoms of depression, anxiety, or affective lability. Considering the many symptomatic similarities between BD, ADHD, and BPD, a transdiagnostic approach is a promising lens of investigation. Mounting evidence supports the role of peripheral inflammatory markers and stress in the multifactorial aetiology and physiopathology of BD, ADHD, and BPD. Of note, neural circuits that regulate emotions appear particularly vulnerable to inflammatory insults and peripheral inflammation, which can impact the neuroimmune milieu of the central nervous system. Thus far, few studies have examined the link between ED and inflammation in BD, ADHD, and BPD. To our knowledge, no specific work has provided a critical comparison of the results from these disorders. To fill this gap in the literature, we review the known associations and mechanisms linking ED and inflammation in general, and clinically, in BD, ADHD, and BD. Our narrative review begins with an examination of the routes linking ED and inflammation, followed by a discussion of disorder-specific results accounting for methodological limitations and relevant confounding factors. Finally, we critically discuss both correspondences and discrepancies in the results and comment on potential vulnerability markers and promising therapeutic interventions.
Collapse
Affiliation(s)
| | - Alexis E. Giff
- Department of Neuroscience, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Beatrice A. Milano
- Sant’Anna School of Advanced Studies, Pisa, Italy
- University of Pisa, Pisa, Italy
| | | | - Luigi Francesco Saccaro
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Switzerland
- Department of Psychiatry, Geneva University Hospital, Switzerland
| |
Collapse
|
8
|
Aquilani R, Cotta Ramusino M, Maestri R, Iadarola P, Boselli M, Perini G, Boschi F, Dossena M, Bellini A, Buonocore D, Doria E, Costa A, Verri M. Several dementia subtypes and mild cognitive impairment share brain reduction of neurotransmitter precursor amino acids, impaired energy metabolism, and lipid hyperoxidation. Front Aging Neurosci 2023; 15:1237469. [PMID: 37655338 PMCID: PMC10466813 DOI: 10.3389/fnagi.2023.1237469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
Objective Dementias and mild cognitive impairment (MCI) are associated with variously combined changes in the neurotransmitter system and signaling, from neurotransmitter synthesis to synaptic binding. The study tested the hypothesis that different dementia subtypes and MCI may share similar reductions of brain availability in amino acid precursors (AAPs) of neurotransmitter synthesis and concomitant similar impairment in energy production and increase of oxidative stress, i.e., two important metabolic alterations that impact neurotransmission. Materials and methods Sixty-five demented patients (Alzheimer's disease, AD, n = 44; frontotemporal disease, FTD, n = 13; vascular disease, VaD, n = 8), 10 subjects with MCI and 15 control subjects (CTRL) were recruited for this study. Cerebrospinal fluid (CSF) and plasma levels of AAPs, energy substrates (lactate, pyruvate), and an oxidative stress marker (malondialdehyde, MDA) were measured in all participants. Results Demented patients and subjects with MCI were similar for age, anthropometric parameters, biohumoral variables, insulin resistance (HOMA index model), and CSF neuropathology markers. Compared to age-matched CTRL, both demented patients and MCI subjects showed low CSF AAP tyrosine (precursor of dopamine and catecholamines), tryptophan (precursor of serotonin), methionine (precursor of acetylcholine) limited to AD and FTD, and phenylalanine (an essential amino acid largely used for protein synthesis) (p = 0.03 to <0.0001). No significant differences were found among dementia subtypes or between each dementia subtype and MCI subjects. In addition, demented patients and MCI subjects, compared to CTRL, had similar increases in CSF and plasma levels of pyruvate (CSF: p = 0.023 to <0.0001; plasma: p < 0.002 to <0.0001) and MDA (CSF: p < 0.035 to 0.002; plasma: p < 0.0001). Only in AD patients was the CSF level of lactate higher than in CTRL (p = 0.003). Lactate/pyruvate ratios were lower in all experimental groups than in CTRL. Conclusion AD, FTD, and VaD dementia patients and MCI subjects may share similar deficits in AAPs, partly in energy substrates, and similar increases in oxidative stress. These metabolic alterations may be due to AAP overconsumption following high brain protein turnover (leading to phenylalanine reductions), altered mitochondrial structure and function, and an excess of free radical production. All these metabolic alterations may have a negative impact on synaptic plasticity and activity.
Collapse
Affiliation(s)
- Roberto Aquilani
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Matteo Cotta Ramusino
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto Maestri
- Department of Biomedical Engineering of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, Montescano, Italy
| | - Paolo Iadarola
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Mirella Boselli
- Neurorehabilitation Unit of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, Montescano, Italy
| | - Giulia Perini
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Federica Boschi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Maurizia Dossena
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Anna Bellini
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Daniela Buonocore
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Enrico Doria
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Alfredo Costa
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Manuela Verri
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Sagaro GG, Amenta F. Choline-Containing Phospholipids in Stroke Treatment: A Systematic Review and Meta-Analysis. J Clin Med 2023; 12:jcm12082875. [PMID: 37109211 PMCID: PMC10143951 DOI: 10.3390/jcm12082875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/14/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Globally, stroke is the second leading cause of death and disability. In different studies conducted previously, the choline-containing phospholipids citicoline and choline alphoscerate have been proposed as adjuvants in the treatment of acute strokes. A systematic review was conducted to provide updated information on the effects of citicoline and choline alphoscerate in patients with acute and hemorrhagic strokes. METHODS PubMed/Medline, Scopus, and Web of Science were searched to identify relevant materials. Data were pooled, and odds ratios (OR) were reported for binary outcomes. Using mean differences (MD), we evaluated continuous outcomes. RESULTS A total of 1460 studies were reviewed; 15 studies with 8357 subjects met the eligibility criteria and were included in the analysis. In our study, citicoline treatment did not result in improved neurological function (NIHSS < 1, OR = 1.05; 95% confidence interval (CI): 0.87-1.27) or functional recovery (mRS < 1, OR = 1.36; 95% CI: 0.99-1.87) in patients with acute stroke. Choline alphoscerate improved neurological function and functional recovery in stroke patients based on the Mathew's scale and the Mini-Mental State Examination (MMSE). CONCLUSION Citicoline did not improve the neurological or functional outcomes in acute stroke patients. In contrast, choline alphoscerate improved neurological function and functional recovery and reduced dependency in stroke patients.
Collapse
Affiliation(s)
- Getu Gamo Sagaro
- Clinical Research, Telemedicine and Telepharmacy Center, School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy
| | - Francesco Amenta
- Clinical Research, Telemedicine and Telepharmacy Center, School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy
| |
Collapse
|
10
|
Piffko A, Ricklefs FL, Schweingruber N, Sauvigny T, Mader MMD, Mohme M, Dührsen L, Westphal M, Regelsberger J, Schmidt NO, Czorlich P. Corticosteroid-Dependent Leukocytosis Masks the Predictive Potential of White Blood Cells for Delayed Cerebral Ischemia and Ventriculoperitoneal Shunt Dependency in Aneurysmatic Subarachnoid Hemorrhage. J Clin Med 2023; 12:jcm12031006. [PMID: 36769654 PMCID: PMC9917511 DOI: 10.3390/jcm12031006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
A multitude of pathological and inflammatory processes determine the clinical course after aneurysmal subarachnoid hemorrhage (aSAH). However, our understanding of predictive factors and therapeutic consequences is limited. We evaluated the predictive value of clinically relevant factors readily available in the ICU setting, such as white blood cell (WBC) count and CRP, for two of the leading comorbidities, delayed cerebral ischemia (DCI) and ventriculoperitoneal (VP) shunt dependency in aSAH patients with and without corticosteroid treatment. We conducted a retrospective analysis of 484 aSAH patients admitted to our institution over an eight-year period. Relevant clinical factors affecting the risk of DCI and VP shunt dependency were identified and included in a multivariate logistic regression model. Overall, 233/484 (48.1%) patients were treated with corticosteroids. Intriguingly, predictive factors associated with the occurrence of DCI differed significantly depending on the corticosteroid treatment status (dexamethasone group: Hunt and Hess grade (p = 0.002), endovascular treatment (p = 0.016); no-dexamethasone group: acute hydrocephalus (p = 0.018), peripheral leukocyte count 7 days post SAH (WBC at day 7) (p = 0.009)). Similar disparities were found for VP shunt dependency (dexamethasone group: acute hydrocephalus (p = 0.002); no-dexamethasone group: WBC d7 (p = 0.036), CRP peak within 72 h (p = 0.015)). Our study shows that corticosteroid-induced leukocytosis negates the predictive prognostic potential of systemic inflammatory markers for DCI and VP shunt dependency, which has previously been neglected and should be accounted for in future studies.
Collapse
Affiliation(s)
- Andras Piffko
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637, USA
| | - Franz L. Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Nils Schweingruber
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Marius Marc-Daniel Mader
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Jan Regelsberger
- Department of Neurosurgery, Diako Hospital Flensburg, 24939 Flensburg, Germany
| | - Nils Ole Schmidt
- Department of Neurosurgery, Regensburg University Hospital, 93053 Regensburg, Germany
| | - Patrick Czorlich
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Correspondence: ; Tel.: +49-40-7410-50753
| |
Collapse
|
11
|
Saccaro LF, Gasparini S, Rutigliano G. Applications of Mendelian randomization in psychiatry: a comprehensive systematic review. Psychiatr Genet 2022; 32:199-213. [PMID: 36354137 PMCID: PMC9648985 DOI: 10.1097/ypg.0000000000000327] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/31/2022] [Indexed: 11/11/2022]
Abstract
Psychiatric diseases exact a heavy socioeconomic toll, and it is particularly difficult to identify their risk factors and causative mechanisms due to their multifactorial nature, the limited physiopathological insight, the many confounding factors, and the potential reverse causality between the risk factors and psychiatric diseases. These characteristics make Mendelian randomization (MR) a precious tool for studying these disorders. MR is an analytical method that employs genetic variants linked to a certain risk factor, to assess if an observational association between that risk factor and a health outcome is compatible with a causal relationship. We report the first systematic review of all existing applications and findings of MR in psychiatric disorders, aiming at facilitating the identification of risk factors that may be common to different psychiatric diseases, and paving the way to transdiagnostic MR studies in psychiatry, which are currently lacking. We searched Web of Knowledge, Scopus, and Pubmed databases (until 3 May 2022) for articles on MR in psychiatry. The protocol was preregistered in PROSPERO (CRD42021285647). We included methodological details and results from 50 articles, mainly on schizophrenia, major depression, autism spectrum disorders, and bipolar disorder. While this review shows how MR can offer unique opportunities for unraveling causal links in risk factors and etiological elements of specific psychiatric diseases and transdiagnostically, some methodological flaws in the existing literature limit reliability of results and probably underlie their heterogeneity. We highlight perspectives and recommendations for future works on MR in psychiatry.
Collapse
Affiliation(s)
- Luigi F. Saccaro
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Campus Biotech, Geneva, Switzerland
- Department of Psychiatry, Geneva University Hospital, Geneva, Switzerland
| | - Simone Gasparini
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, Pisa, Italy
| | - Grazia Rutigliano
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
12
|
The BE COOL Treatments (Batroxobin, oxygEn, Conditioning, and cOOLing): Emerging Adjunct Therapies for Ischemic Cerebrovascular Disease. J Clin Med 2022; 11:jcm11206193. [PMID: 36294518 PMCID: PMC9605177 DOI: 10.3390/jcm11206193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
Ischemic cerebrovascular disease (ICD), the most common neurological disease worldwide, can be classified based on the onset time (acute/chronic) and the type of cerebral blood vessel involved (artery or venous sinus). Classifications include acute ischemic stroke (AIS)/transient ischemic attack (TIA), chronic cerebral circulation insufficiency (CCCI), acute cerebral venous sinus thrombosis (CVST), and chronic cerebrospinal venous insufficiency (CCSVI). The pathogenesis of cerebral arterial ischemia may be correlated with cerebral venous ischemia through decreased cerebral perfusion. The core treatment goals for both arterial and venous ICDs include perfusion recovery, reduction of cerebral ischemic injury, and preservation of the neuronal integrity of the involved region as soon as possible; however, therapy based on the current guidelines for either acute ischemic events or chronic cerebral ischemia is not ideal because the recurrence rate of AIS or CVST is still very high. Therefore, this review discusses the neuroprotective effects of four novel potential ICD treatments with high translation rates, known as the BE COOL treatments (Batroxobin, oxygEn, Conditioning, and cOOLing), and subsequently analyzes how BE COOL treatments are used in clinical settings. The combination of batroxobin, oxygen, conditioning, and cooling may be a promising intervention for preserving ischemic tissues.
Collapse
|